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Excited-state fidelity as a signal 
for the many-body localization 
transition in a disordered Ising 
chain
Taotao Hu1, Kang Xue1, Xiaodan Li2, Yan Zhang1 & Hang Ren3

In this work, we use exact matrix diagonalization to explore the many-body localization (MBL) 
transitions in quantum Ising chains with disordered nearest-neighbour couplings, disordered next-
nearest-neighbour couplings and disordered external fields. It is demonstrated that the fidelity can be 
used to characterize the interaction-driven MBL transition in this closed spin system in a manner that 
is consistent with previous analytical and numerical results. We compute the fidelity for high-energy 
many-body eigenstates, namely, the excited-state fidelity. It is demonstrated that disordered nearest-
neighbour couplings, disordered next-nearest-neighbour couplings and disordered external fields 
each have different effects on the MBL transition. Furthermore, we investigate the MBL transition of a 
quantum Ising chain with both disordered nearest-neighbour couplings and disordered next-nearest-
neighbour couplings to see how these two types of disordered couplings drive the occurrence of the 
MBL transition.

The concept of Anderson localization has been well established since Anderson proposed it in his seminal paper1 
more than half a century ago. This concept states that a static disordered potential can lead to a complete absence 
of diffusion in a closed quantum system. This idea has received considerable attention since its proposal and 
has ultimately led to the conclusion that non-interacting systems in one and two dimensions will be localized 
for arbitrary disorder, even when that disorder is very small2. In ref. 1, Anderson also conjectured that a closed 
interacting quantum system with sufficiently strong disorder would fail to approach thermal equilibrium. Much 
more recently, Basko et al.3 presented new arguments to revive this idea of many-body localization (MBL). MBL 
is a quantum “glass transition” that occurs at nonzero (or even infinite) temperature, where equilibrium quan-
tum statistical mechanics breaks down. In the localized phase, the system fails to thermally equilibrate. Like the 
more familiar ground-state quantum-phase transitions, this transition is a sharp change in the properties of the 
many-body eigenstates of the Hamiltonian; unlike ground-state phase transitions, the MBL transition at nonzero 
temperature appears to be only a dynamical phase transition that is invisible in equilibrium thermodynamics4.

Many recent studies4–17 have investigated and confirmed the phenomenon of MBL, showing that a novel 
dynamical phase transition can occur in interacting disordered systems. Many features of the many-body local-
ized phase have been explored. It has been demonstrated that the bipartite entanglement entropy between two 
sectors of such a system shows a characteristic logarithmic growth in the many-body localized phase18–23. It has 
also been found that the total correlation scales strongly with the localized phase, exhibiting a pronounced peak 
at the transition15.

Disorder is an intrinsic property of all real systems. The interplay between disorder and interaction is a leit-
motif of condensed matter physics; it constitutes the driving mechanism of the “glass transition” (metal-insulator 
transition). Therefore, in this work, we investigate the MBL transition in a quantum Ising chain with disor-
dered couplings to explore how the interplay between disorder and interaction drives the MBL transition. In 
particular, we investigate the effects of not only disordered nearest-neighbour couplings but also disordered 
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next-nearest-neighbour couplings, which here introduce a repulsive interaction between domain walls on adja-
cent bonds in the quantum Ising chain.

Meanwhile, considerable efforts24–37 have recently been devoted to investigating the role of a popular concept 
in quantum information theory, namely, fidelity in quantum critical phenomena38. It has been demonstrated that 
fidelity is useful for characterizing distinct phases of quantum many-body systems39. In particular, the minimum 
in the fidelity near a critical point has been studied in several models24, 25. It has also been shown that fidelity plays 
a crucial role in quantum phase transitions (QPTs) in quantum fields40. In particular, both fidelity and the Berry 
phase have recently been used to analyse QPTs from a geometric perspective. In ref. 33, Venuti et al. unified these 
two approaches, showing that the underlying mechanism is the critical singular behaviour of a complex tensor 
over the Hamiltonian parameter space. The advantage of the fidelity is that it is a spatial geometric quantity; no a 
priori knowledge of the order parameter or symmetry breaking is required in studies of QPTs.

Considering the unique and crucial role of fidelity in quantum critical phenomena, in this work, we apply the 
fidelity approach to the study of MBL transitions. In ref. 26 the authors applied the fidelity approach to estimate 
random transitions of a disordered quantum model. They showed that the fidelity susceptibility and its scaling 
properties provide useful information about the phase diagram. Thus, the purpose here is phenomenological; we 
believe that this approach should work based on previous analysis24, 26, and we do the numerics and see that it 
does indeed work. Since MBL involves all energies and, recently, has been widely studied for high-energy states4–9, 
the states in the middle of the spectrum are important. Therefore, here, instead of the ground state, which repre-
sents a low temperature, we consider only high-energy states; namely, our focus is on the excited-state fidelity. 
Thus, fingerprints of the MBL transition are expected to be observed in the fidelity of the excited states. Following 
ref. 24 the ground-state fidelity is defined as the overlap between λΨ ( )0  and λ δλΨ +( )0 , i.e.,

λ λ δλ λ λ δλ+ = Ψ Ψ + .F ( , ) ( ) ( ) (1)0 0 0

Similarly, the fidelity of the n-th excited state λΨ ( )n  of the system is defined as the overlap of the excited states 
with parameters λ and λ + δλ:

λ λ δλ λ λ δλ+ = Ψ Ψ + .F ( , ) ( ) ( ) (2)n n n

Numerical model
The Hamiltonian of a one-dimensional quantum Ising chain with nearest-neighbour couplings and 
next-nearest-neighbour couplings in an external field in the z direction reads as follows:
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where σi
z  is the Pauli matrix acting on the i-th qubit; N denotes the total number of sites; Ji and Ki are the 

nearest-neighbour coupling and next-nearest-neighbour coupling, respectively, at site i; and hi represents the 
static external field at site i. In the present work, we are interested in the regime of repulsive interactions in a 
quantum Ising chain. We will study the features of the excited-state fidelity for the model given in (3) in four 
cases: (a) The Ji are independent random variables at each site i, each with a probability distribution that is uni-
form in [−J, J], whereas Ki and hi are constant, −Ki = hi = 0.5. (b) The Ki are independent random variables at 
each site i, each with a probability distribution that is uniform in [−K, K], whereas Ji and hi are constant, 
−Ji = 2hi = 1. (c) The hi are independent random variables at each site i, each with a probability distribution that 
is uniform in [−h, h], whereas Ki and Ji are constant, Ji = −2Ki = 1. (d) Both the Ji and the Ki are independent 
random variables at each site i, each with a probability distribution that is uniform in [−J, J] or [−K, K], respec-
tively, whereas hi is constant, hi = 0.5. Thus, we compute the excited-state fidelities Fn(J, J + δJ), Fn(K, K + δK), 
Fn(h, h + δh) and Fn(J, K; J + δJ, K + δK), respectively, for these four cases. Notably, for disordered Ji, disordered Ki 
and disordered hi, the parameter perturbations δJi, δKi and δhi at each site that are used in this paper are not deter-
minate; instead, they, like Ji, Ki and hi, are random variables drawn from uniform random distributions in [−J, J], 
[−K, K] and [−h, h], respectively, with the following forms: δJi = εJi, δKi = εKi and δhi = εhi (ε is a small constant). 
In cases (a), (b) and (c), let ε = 10−5; in case (d), let ε = 10−3. Then, for each disorder realization, we find the 
many-body eigenstates Ψn  that are in the middle third of the energy-ordered list of all data. Our qualitative con-
clusions do not depend on the exact values of these parameters. We then compute the fidelity Fn for each eigen-
state Ψn . Averaging over all selected excited states and disorder realizations yields the mean value E[F]. The 
numerical analyses were performed using standard libraries for exact matrix diagonalization. For all parameter 
values, this model has two global conservation laws: one for the total energy and one for the total magnetization 
Sz along the z direction. The total Sz symmetry and parallel programming techniques were employed to make the 
computations feasible. For each disorder amplitude J , K  and h , we used 104 disorder realizations for N = 6 and 
N = 8, 2000 realizations for N = 10 and N = 12, 200 realizations for N = 14, and 50 realizations for N = 16 to obtain 
the data shown in this paper.

In Figs 1(a), 2(a) and 3(a), we plot the averaged excited-state fidelity E[F] as a function of each of the disorder 
strengths J, K and h, respectively, for the energies in the middle third of the spectrum. We can see pronounced 
differences among the data in these three figures. It is known that in the ergodic phase ( <J Jc , >K Kc  and 

<h hc), the many-body eigenstates are thermal41–43, and consequently, the isolated quantum system can relax to 
thermal equilibrium under the dynamics of its Hamiltonian. By contrast, in the many-body localized phase 
( >J Jc ,  >K Kc  and >h hc ),  the many-body eigenstates are not thermal3;  consequently,  the 
“eigenstate-thermalization hypothesis”41–43 is false in the localized phase. Thus, in the localized phase, the isolated 
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quantum system does not relax to thermal equilibrium under the dynamics of its Hamiltonian. To obtain further 
confirmation that the MBL transition really occurs and to identify the critical points Jc, Kc and hc for the model 
given in (3), we also compute, for each disorder realization, the corresponding local expectation value of the z 
component of the spin

= Ψ Ψm s (4)i
n

n i
z

n
( )

at site i in the eigenstate Ψn . For each site in each disorder realization, we compare these expectation values for 
eigenstates that are adjacent in energy; in the first three cases, averaging over all selected excited states, disorder 
realizations, and sites yields the mean value of the difference − +E m m[ ]i

n
i

n( ) ( 1)  for various J, K and h, respec-
tively, where the eigenstates are indexed by n in the order of their energies. The selected many-body eigenstates 
are those in the middle third of the energy-ordered list of states. In this energy range, the difference 

− +E m m[ ]i
n

i
n( ) ( 1)  in energy density between adjacent states Ψn  and Ψ +n 1  is of order −N 2 N  and thus becomes 

exponentially small in N as N increases. If these eigenstates are thermal, then they represent temperatures that 

Figure 1. (a) Average fidelity as a function of the disorder strength J for system sizes from 6 to 16. The system 
sizes N are indicated in the legend. (b) Average difference as a function of the disorder strength J. (c) Average 
difference as a function of the system size N for different values of the disorder strength J. The values of J are 
indicated in the legend. In the ergodic phase (at small J), where the eigenstates are thermal, these differences 
vanish exponentially in N as N increases, whereas they remain large in the localized phase (at large J).
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differ only by this exponentially small amount; therefore, the expectation values of si
z for two such states should 

be the same for → ∞N .
In Figs 1(b) and 2(b), we plot the mean value of the difference − +E m m[ ]i

n
i

n( ) ( 1)  as a function of each of the 
disorder strengths J and K, respectively, for energies in the middle third of the spectrum. In Figs 1(c), 2(c) and 3(b), 
we also plot the mean value of the difference − +E m m[ ]i

n
i

n( ) ( 1)  as a function of the system size N for different val-
ues of the disorder strengths J, K and h, respectively.

For disordered couplings J and K, from Figs 1(c) and 2(c), one can see that the differences − +E m m[ ]i
n

i
n( ) ( 1)  

do indeed appear to be exponentially decreasing with increasing N in the ergodic phase (at small J and K, respec-
tively), as expected. By contrast, in the localized phase (at large J and K, respectively), the differences 

− +E m m[ ]i
n

i
n( ) ( 1)  between adjacent eigenstates remain large as N increases, confirming that these many-body 

eigenstates are not thermal, namely, that they are localized at large disorder strengths J and K. These findings 

Figure 2. (a) Average fidelity as a function of the disorder strength K for system sizes from 6 to 16. The system 
sizes N are indicated in the legend. (b) Average difference as a function of the disorder strength K. (c) Average 
difference as a function of the system size N for different values of the disorder strength K. The values of K are 
indicated in the legend. In the ergodic phase (at small K), where the eigenstates are thermal, these differences 
vanish exponentially in N as N increases, whereas they remain large in the localized phase (at large K).
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indicate that the disordered couplings drive the occurrence of the MBL transition in this model. Accordingly, we 
can obtain Jc ∈ (3, 4) and Kc ∈ (2.7, 4), respectively, for the breakdown of the ergodic phase. In Figs 1(a) and 2(a), 
one can see that with increasing disorder, the excited-state fidelity decreases and eventually saturates at a nearly 
stable value, where the critical point depends on the system size. Meanwhile, in Figs 1(b) and 2(b), the difference 

− +E m m[ ]i
n

i
n( ) ( 1)  increases and also eventually saturates at a nearly stable value with increasing disorder; again, 

the critical point is size dependent. By comparing Fig. 1(a) and (b) and also Fig. 2(a) and (b), one can see that the 
transition regions for the excited-state fidelity and the difference − +E m m[ ]i

n
i

n( ) ( 1)  are consistent. Thus, the 
excited-state fidelity effectively signals the MBL transition in such a disordered Ising chain. Although both disor-
dered nearest-neighbour couplings and disordered next-nearest-neighbour couplings can drive the occurrence of 
the MBL transition, their effects on the MBL transition somewhat differ. In Fig. 1(a), for disordered 
nearest-neighbour couplings J, the value of the critical point decreases and the drop becomes sharper as the sys-
tem size N decreases. Interestingly, Fig. 2(a) shows that for disordered next-nearest-neighbour couplings K, two 
distinct behaviour regimes are evident: for system sizes of 6, 10 and 14 and for system sizes of 8, 12 and 16. Within 
each of these groups, however, the same behaviour is observed: the value of the critical point decreases and the 
drop becomes sharper as the system size N decreases. A comparison between Figs 1(a) and 2(a) reveals that for 
system sizes of 6, 10 and 14, the curves of the excited-state fidelity as a function of the disorder strengths J and K 
have similar shapes, whereas for system sizes of 8, 12 and 16, the curves for the two disorder strengths J and K are 
different: the drops are sharper for the next-nearest-neighbour couplings K. However, the reason for this interest-
ing distinction is not yet clear. We will research this problem further in our future work.

Meanwhile, for disordered external fields, Fig. 3(b) indicates that the differences − +E m m[ ]i
n

i
n( ) ( 1)  also 

appear to be exponentially decreasing with increasing N in the ergodic phase (at small h), as expected. Moreover, 
in the localized phase (at large h), the differences − +E m m[ ]i

n
i

n( ) ( 1)  between adjacent eigenstates again remain 
large as N increases; as in the cases of the disordered couplings discussed above, this observation confirms that 
these many-body eigenstates are not thermal but rather are localized at large disorder strengths h. This finding 
indicates that disordered external fields can also drive the occurrence of the MBL transition. Accordingly, we 

Figure 3. (a) Average fidelity as a function of the disorder strength h for system sizes from 6 to 16. The system 
sizes N are indicated in the legend. In the ergodic phase (at small h), E[F] decays substantially under the 
dynamics until h approaches the critical point; then, in the localized phase (at large h), E[F] increases again to 
approximately approach 1. (b) Average difference as a function of the system size N for different values of the 
disorder strength h. The values of h are indicated in the legend. In the ergodic phase (at small h), where the 
eigenstates are thermal, these differences vanish exponentially in N as N increases, whereas they remain large in 
the localized phase (at large h).
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obtain hc ∈ (2, 3.5) for the breakdown of the ergodic phase, which is consistent with the predictions presented in 
refs 5 and 11 and in our recent work17. In Fig. 3(a), the curve of E[F] versus h shows, at low h, an initial increase 
towards a minimum; then, at higher h, it increases to approximately approach 1. In other words, the excited-state 
fidelity goes to 1 or remains unchanged when deep in either the thermal or the localized phase but diverges at the 
transition. This diverging valley might be understood as a consequence of the many-body mobility edge. The 
critical point again depends on the system size; the behaviour of the transition region for the excited-state fidelity 
is consistent with that of the difference − +E m m[ ]i

n
i

n( ) ( 1) . This observation indicates that the excited-state fidel-
ity can effectively signal the MBL transition in a disordered Ising chain of this type, as well.

Finally, in Fig. 4, we plot the average excited-state fidelity as a function of both J and K for a system of size 
8 to see how these two types of couplings drive the MBL transition to occur. The plot shows that under these 
dynamics, E[F] decays substantially within a certain range of the (J, K) parameter space and then gradually tends 
towards stability. The edge of this range of the (J, K) parameter space might also be understood as a consequence 
of the many-body mobility edge.

Summary
In this paper, we use exact matrix diagonalization to explore the many-body localization (MBL) transitions in 
quantum Ising chains with disordered nearest-neighbour couplings, disordered next-nearest-neighbour cou-
plings and disordered external fields. Numerical simulations show that the excited-state fidelity can be used to 
characterize the interaction-driven MBL transition in a unique way that is nevertheless consistent with previous 
analytical and numerical results24, 26. We test the fidelity between two excited states related by a small parameter 
perturbation δJ, δK, δh or (δJ, δK); notably, the parameter perturbation at each site that is considered here is also 
a random variable. Disorder is an intrinsic property of all real systems, and the interplay between disorder and 
interaction constitutes the driving mechanism of the glass transition (metal-insulator transition); similarly, the 
transition from the ergodic to the many-body localized phase is a highly non-equilibrium phenomenon, but 
one that is poorly understood at present. Our study of the exact matrix diagonalization of the model given in 
(3) allows us to partially explore how the interplay between disorder and interaction drives the occurrence of 
the MBL transition and elucidates some of the properties of the ergodic and localized phases through an exam-
ination of some of the properties of the many-body eigenstates of our finite-size systems in the vicinity of the 
localization transition. The results show that for this model with disordered couplings, the excited-state fidelity 
exhibits a pronounced drop at the transition and then gradually tends towards stability in the localized phase, 
with a critical point that depends on the size of the system, whereas for this model with disordered external 
fields, the excited-state fidelity exhibits a pronounced drop at the transition and then increases to approximately 
approach 1 in the localized phase. These findings demonstrate that disordered nearest-neighbour couplings, dis-
ordered next-nearest-neighbour couplings and disordered external fields have different effects on the MBL tran-
sition. In particular, we also investigate the MBL transition of such a quantum Ising chain with both disordered 
nearest-neighbour couplings and disordered next-nearest-neighbour couplings to investigate how these two types 
of disordered couplings drive the occurrence of the MBL transition. The results show that under these dynamics, 
E[F] decays substantially within a certain range of the (J, K) parameter space and then gradually tends towards 
stability. We hope that the present work can provide a meaningful tool for gaining a better understanding of the 
MBL transition and ergodicity breaking in quantum systems, and we will research this interesting phenomenon 
further in our future work.
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