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Abstract — This research mainly expounds upon the
decision-level software defect prediction theory. The defect

characteristics is the first research focus. For the first re-
search focus, a characteristic comparison set is built out of

the existing defect characteristics according to the dissim-

ilarity of defect characteristics and the defect character-
istics are organized outside the characteristic comparison

set into some defect characteristic clusters to reduce the
scale of the characteristic data. The defects is the second

research focus. For the second research focus, the vector

weights are assigned to the defect characteristics contained
in the defects according to the minimum critical character-

istic set. Moreover, the multi-agent algorithm integration

technology is used to predict defects according to the re-
pulsive relationship between similar defect clusters.
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I. Background

Software defect prediction remains a new research area
in software engineering. In the birth stage of computers
and electronics, computer hardware had many defects,
and nobody cared about software defects and their im-
pacts on the quality of software systems. Therefore, soft-
ware defects did not arouse widespread attention and con-
cern. Recently, the reliability and quality of computer
hardware have been continuously improved while com-
puter software defects are increasingly prominent. In the
face of an obvious software crisis, more importance is at-
tached to the detection and repair of software defects[1−3].
Because the quantity and negative effect of software de-
fects are underestimated, software defects have become
one of the main reasons for the failure of large engineering
projects, leading to huge economic losses in the 21st cen-
tury. Thus, ensuring the quality of software systems en-
joys top priority in software development and is an urgent

issue that needs to be timely identified to predict software
defects for software development. For a major engineering
project, it is essential to measure, predict, and evaluate
software defects. Especially for a major research and de-
velopment (R&D) project in the fields of aviation, space-
flight, and national defense, software defects will severely
affect the R&D progress and even cause failure of the
project, thus leading to huge financial, manpower, and
material losses. Defect prediction is the only way to accu-
rately locate the defect distribution in a large project,
shorten the downtime, reduce the overall project risk,
and ensure the overall project quality. Therefore, soft-
ware defect prediction has become a requisite means for
the smooth implementation of a large engineering project.
In summary, software defect prediction is of great sig-
nificance in ensuring the quality of a large engineering
project.

With the continuous advancement in information sci-
ence, a great variety of software (especially large-scale em-
bedded software) has been developed, which tends to be
more complex, larger, and diversified. In this situation,
software defects are on the increase. Each software defect
is generated under different conditions and environments,
and hence differs in its specific characteristics. A software
defect may have an enormous negative effect upon soft-
ware quality. Usually, such massive and complex defect
data and defect characteristic data are referred to as big
data. For research on software defect prediction, deter-
mining how to statistically classify, model, and formu-
larize the defects according to the defect characteristics
and thus effectively predicting the possible defects con-
tained in software remains a critical issue. If the weight
of each defect characteristic in the defect characteristics
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is exhaustively used to predict the defects, the complex-
ity of computation will be increased exponentially (as il-
lustrated in Fig.1), thus greatly affecting the prediction
efficiency. Too many factors (defect characteristics and
defects) need to be considered during the prediction pro-
cess, thus affecting the accuracy of prediction. As set forth
in Ref.12, Tim Menzies of University of North Carolina
discussed the prediction effect of regional data and global
data and observed the following phenomenon: 1) regional
defect prediction was usually more effective and efficient
than global defect prediction and 2) in most cases, the
prediction effect for regional data was better than that
for big data except that not all projects had sufficient re-
gional data. Therefore, a new hot spot of research has be-
come determining how to reduce the computational scale
of the defects and defect characteristics during the defect
prediction process and how to more clearly and simply
distribute the defects.

Fig. 1. Complexity

II. Related Studies

Today, the globally prevailing technologies of software
defect prediction can be roughly classified into two types:
static software defect prediction and dynamic software de-
fect prediction.

Static software defect prediction includes metric-based
defect prediction, defect prediction based on software de-
fect distribution, and model-based defect prediction.

1. Metric-based defect prediction
The metric-based defect prediction technologies in-

clude 1) software defect prediction based on software
scaleseven typical models and standards: defects per
thousand source code lines (also called CMMI standard),
Akiyama model, predicate model, Halstead model, Lipow
model, Gaffney model, and Compton and Withrow model
and 2) software defect prediction based on software com-
plexity, which is represented by the McCabe Cyclomatic
Complexity Metric proposed by McCabe & Associates in
the 1970s.

2. Defect prediction based on software defect
distribution

Defect prediction based on software defect distribution
is a typical analytical and reasoning technique, including
Principal component analysis (PCA), Linear discriminant
analysis (LDA), Boolean discriminant function (BDF),
Clustering analysis (CA), and regression analysis (typical

methods include Artificial neural network (ANN), Multi-
ple regression analysis (MR), and Case-based reasoning
(CBR)).

3. Model-based defect prediction
Model-based defect prediction includes the Construc-

tive quality model (COQUALMO), Defect removal effi-
ciency (DRE) model, and Bayesian network model.

Model-based defect prediction technologies are also
dynamic software defect prediction technologies, which
are also called multi-objective software defect prediction
technologies. Typical model-based defect prediction tech-
nologies include the Rayleigh model, exponential distri-
bution model, and S-curve distribution model.

Between 2012 and 2014, several scholars successively
posited various methods, theories, and models for soft-
ware defect prediction. The following section introduces
typical examples, including static and dynamic software
defect prediction technologies:

1) In 2013, Professor Tim Menzies (From the faculty of
Computing Science at West Virginia University, he is cur-
rently working at the University of North Carolina, and
his paper on defect prediction ranks in the top five glob-
ally by citation count) published a paper on the effect of
defect prediction results on global and local defect samples
based on machine learning. In the paper, he comprehen-
sively analyzed the effects of various prediction methods
and algorithms on the defect prediction for global and lo-
cal defect samples. He ignored the defect classification for
global defect samples, made full use of existing local de-
fect samples, and utilized, under certain constraints, the
defect samples closely correlated to the data to be pre-
dicted, finally determining that constrained use of local
samples could sometimes have a better effect than the
use of global samples.

2) In August 2013, Tim Menzies together with re-
searchers at Tsinghua University studied the equilibrium
issue in defect prediction for the inter-institutional pri-
vate defect samples and global defect samples and evalu-
ated the effect of the CLIFF+MORPH algorithm in defect
prediction, finding that the CLIFF+MORPH algorithm is
significantly more effective than other algorithms in equi-
librium defect prediction[4,5].

3) In 2014, Robert M. Bell, Thomas J. Ostrand, and
Elaine J. Weyuker from AT&T Laboratory noted that the
effect of local defect data on prediction results was very
limited[6].

4) In 2014, Xiamen University and the University of
Science and Technology of China jointly noted that the
efficiency of defect prediction could be significantly im-
proved if defect prediction was designed to incorporate
various requirement information.

5) In 2012, Lourdes Pelayo and Scott Dick from the
University of Alberta (Canada) noted that the stratified
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selection technology could significantly improve the equi-
librium of global and local defect data in defect prediction
and further increase the accuracy of defect prediction[7].

6) In 2013, Gerardo Canfora, Andrea De Lucia, and
Massimiliano Di Penta of Italy jointly proposed a multi-
agent and cross-project defect prediction algorithm. By
integrating different curve prediction algorithms, the algo-
rithm could integrate and calculate the defect prediction
samples of multiple projects simultaneously, thus improv-
ing the efficiency of defect prediction.

7) In 2012, Jayalath Ekanayake and Jonas Tappolet
of Switzerland studied the effect of time shift upon defect
prediction and verified the effect for the first time.

8) In 2012, Zhongbin Sun, Qinbao Song, and Xiaoyan
Zhu (from Xi’an Jiaotong University) proposed a code-
based machine-learning algorithm that used the global
defects contained in codes as samples. The machine learn-
ing algorithm could significantly improve the efficiency of
defect prediction[8].

Among the methods, algorithms, and models de-
scribed above, 1)–5), 7), and 8) are static software defect
prediction technologies,[9,10] and 6) is a dynamic software
defect prediction technology. In addition, 1)–3), 5), and 8)
are software defect prediction technologies based on ma-
chine learning[11−15], 4) is a multiple regression analysis
technology, 6) is a multi-objective defect prediction tech-
nology, and 7) is a defect prediction technology based on
time shift[16−19]. These methods represent not only the
latest achievements made in software defect prediction in
recent years but also the global research trend.

III. Problem Description

Today, academic studies on software defect prediction
mainly focus on cross-project defect data, multi-agent in-
tegration of historical defect data, multi-agent stratifi-
cation, the effects of different defect data on prediction
results, and integration of prediction algorithms. Most
scholars focus their studies on algorithms for software de-
fect prediction and have published over tens of thousands
of technical papers accordingly. They have a far higher en-
thusiasm for algorithms than for software defects them-
selves. Similarly, they are accustomed to applying their
algorithms to the existing defect data and comparing the
experimental results with those attained using other al-
gorithms. Such defect prediction methodology is called
algorithm-level defect prediction.

Meanwhile, a minority of scholars and engineers fo-
cus instead on defect distribution, selecting optimal algo-
rithms according to the analysis of defect data distribu-
tion and characteristics and applying the optimal algo-
rithms to the data used for defect prediction. Such defect
prediction methodology is called panoramic defect pre-
diction. However, the ultimate goal of defect prediction is

not to compare the advantages/disadvantages of different
algorithms or to select an algorithm considered by schol-
ars to be the most suitable for defect prediction but to
make a decision on defect prediction by scholars or engi-
neers. Comparison is the easiest way to make a decision.
In Fig.2, sets of stereographs with three types of charac-
teristics are presented, and to be compared, graphic a can
only possess one of the three types of graphic characteris-
tics. By comparison, it is apparent that graphic a does not
belong to Set A and surely belongs to Set B. Therefore, it
can be concluded that if Set A is determined, the remain-
ing graphics surely belong to Set B. While the graphics
with three types of characteristics are classified, a set of
graphics with similar characteristics can be obtained only
by determining a set uncorrelated to the graphics to be
classified.

Fig. 2. Contrast

The defects is processed according to their distribution
and characteristics, and a comparison set is determined
according to the dissimilarity between defects. According
to the comparison set, defects are clustered to reduce the
scale of defects, and according to the repulsive relation-
ship between different data, the scale of data is further
reduced. In this manner, the defect prediction will ac-
quire higher efficiency and lower complexity. The results
of defect prediction will provide a basis for judging soft-
ware quality and repairing software defects. This defect
prediction methodology is called decision-level defect pre-
diction. As illustrated in Fig.3, there only exist two types
of stereographic characteristics and three graphics (a, b,
and c). a and c are repulsive to each other, and b and c are
also repulsive to each other. Then, a and b are surely at-
tractive to each other and thus are clustered. During the
clustering process, the relationship between a and b can
be determined only by determining the c that is repulsive
to both a and b. During the process of defect prediction,
the remaining data are the data similar to the data used
for defect prediction only by finding the data repulsive to
the data used for defect prediction. Algorithm-level de-
fect prediction and panoramic defect prediction involve
too many subjective factors, ignore its own characteristics
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of defects, and resort to certain algorithms that are ex-
tremely complex, inefficient, and difficult to understand.
Therefore, these technologies cannot ensure the objectiv-
ity of the defect prediction results and severely affect the
judgment of the software quality and repair of software
defects.

Fig. 3. Repulsion

To overcome the above deficiencies, this paper puts
forth decision-level defect prediction, which focuses on the
defects and defect characteristics. Using three technical
means (including defect simulation prediction, laboratory
software testing, and laboratory defect gathering), this
paper predicts the bounded defects and uncovers the ef-
fect upon defect prediction made by the minimum critical
characteristic set of two focuses of the bounded software.
Bounded defect prediction refers to the defect prediction
for the local and global defect data that is similar to the
local defect data under certain constraints. The defects
and defect characteristics for defect prediction are similar
two walking persons involved in a mathematical meeting
problem. If the two persons walk in the same direction,
it will be difficult for them to meet (the process is time-
consuming). Even if they can meet each other, their total
walking distance will be greater than the relative distance
between them, the meeting point will surely be beyond the
shortest distance between them, and it is difficult to accu-
rately predict the meeting point. If their speed difference
is less than zero, they will never meet each other. If they
walk in directions opposite to each other, significant time
will be saved, their total walking distance will be equal
to the relative distance between them, and the meeting
point can be accurately positioned within the shortest dis-
tance between them. For details, refer to Fig.4. If defect
prediction is studied from the perspective of double fo-
cuses, defect prediction will acquire higher efficiency and
accuracy, and the negative effects of human factors will
be reduced. However, it is difficult to determine the mini-
mum critical characteristic set of the defect characteristics
and use the minimum critical characteristic set for defect
prediction. To attain this goal, this paper expounds on
the following key issues: the extraction and acquisition of
defect characteristics, dissimilarity between defect charac-
teristics, clustering of defect characteristics, modeling for

the characteristic comparison set, modeling for the min-
imum critical characteristic set, modeling for the defect
comparison set, algorithm and modeling for reducing the
scale of the defects via the minimum critical character-
istic set, and methodology and modeling for defect pre-
diction. This study will provide a theoretical and model
basis for improving the efficiency and accuracy of defect
prediction, developing the defect prediction software, and
assuring the software quality in aerospace projects and
help to reduce the risks of failure arising from software
defects in spaceflight, aviation, and other major projects.

Fig. 4. Time cost

IV. Defect and Characteristic
Comparison Models

The Negative K means method will be introduced to
the defect comparison model and characteristic compari-
son model. First, data are preprocessed via the CANOPY
algorithm to determine the category value K contained
in Negative K means. As demonstrated in Fig.5, a start
point p is then randomly selected from the data set ALL
(the data can be defect characteristics or defects), and
the data node a1 that is the farthest from p is selected for
use as the first cluster center to generate the a1-centered
set A1. The second cluster center a2 is the farthest from
the central point between p and a1, and the a2-centered
cluster A2 is generated. There exists no intersection be-
tween A2 and A1. The third cluster center a3 is the far-
thest from the central point between p and a2, and the
a3-centered cluster A3 is generated. There exists no inter-
section between A3 and A2, A1. Likewise, the kth clus-
ter center ak is the farthest from the central point be-
tween p and ak−1, and the ak-centered cluster ak is gen-
erated. There exists no intersection between ak and aK−1

to A1 ∩ aK ∪AK−1 ∪ . . . A1 is a comparison data set, and
A is a similar data set.

V. Multi-agent Integration Mathematical
Model
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Fig. 5. Comparison model

The attraction and repulsion strategies determine the
quantity of minimum characteristic sets and create the
prediction Eq.(1). w is the weight undetermined coeffi-
cient, n is the dimensionality of the minimum character-
istic set, x is the characteristic state, and the order u is
an undetermined coefficient. Eq.(2) is a SVM prediction
equation, where x is the data point of a defect. Eq.(3)
is a Bayesian forecasting equation, where H is the ini-
tial probability, P (H) is a prior probability, P (D) is the
prior probability of data D, P (D|H) is the probability of
data D based on the assumption of H , and P (H |D) is a
posterior probability. Eq.(4) is a neural network predic-
tion equation, where p is the input defect value, Oi is an
output value, and W is an undetermined coefficient.

V (b) = w0 + w1x1 + w2x
2
2 + w3x

3
3 + · · ·+ wnxu

n (1)

SVM agent: f(x) = W Tx + b (2)

Bayesian agent:

p(H |D) = P (D|H)∗P (H)/P (D) (3)

Neural network agent:

Oi = FL(· · · (F2(F1(PiW
(1))W (2)) · · ·)W (L)) (4)

First, the quantity of variables x in the prediction
equation is determined according to the quantity of de-
fect characteristics in the minimum characteristic set, and
Eq.(2) is created with the unknown quantities w and u.
Then, multi-dimensional binary classification of the defect
learning data is conducted via the SVM (agent) Eq.(2),
and initial values are assigned to w and u. Subsequently,
the Bayesian agent (Eq.(3)) is used to calculate the poste-
rior probability of each characteristic according to the cal-
culated real classification, and the w and u values are ad-
justed. Finally, the neural network agent (Eq.(4)) is used
to conduct iterations and result comparison for Eq.(1) and
real calculation, adjust the w and u values accurately ac-
cording to the differences between the real and calculated
values, and ultimately determine Eq.(1).

VI. Experimental Results

Within a period of 36 months, the software defects in-
volved in an astronautic camera project were tracked and
predicted. Feedback data revealed that the software and
devices could provide quality assurance for the software of
the astronautic remote sensing cameras, thus laying a firm
foundation for success of the astronautic project. Figs.6–
9 present the medium-term prediction within the first 18
months. Fig.6 presents the cluster analysis for the 1521
defects recorded within the first 18 months, and a total of
97 similar defect categories are generated. Fig.7 presents
the repulsion analysis based on the center characteristics
of each defect cluster shown in Fig.8, and there are a to-
tal of 26 defect clusters. Fig.7 presents the distribution of
the results; it can be observed that the highly frequent
defects mainly appear at four coordinate points includ-
ing (−1.1,−1), (1, 1), (0, 0.8), and (−3, 1.3). Eq.(5) is a
prediction function that is obtained via calculation. Fig.9
presents the medium-term defect prediction results, and
it can be observed that the software defects in the astro-
nautic remote sensor project increase within the first 18
months and are likely to increase continuously in the sub-
sequent months. The overall prediction result can be at-
tained by comparing the above prediction results with the
actual quantity of defects observed by the project team.
In the 18th month, a difference of +60 defects (the er-
ror rate is approximately +4%) exists between the pre-
diction and actual results. According to the prediction
of defect distribution, it is estimated that 70% of the un-
found defects appear at the four coordinate points includ-
ing (−1.1,−1), (1, 1), (0, 0.8), and (−3, 1.3). In the 19th

month, the project team conducted an overall test for the
work performed within the first 18 months and observed
a total of 21 defects. Overall, 52% of the total defects
appeared at the four coordinate points (−1.1,−1), (1, 1),
(0, 0.8), and (−3, 1.3). The accuracy rate of the prediction
results was as high as 97%. Figs.10–13 present the predic-
tion results within the entire 36 months, and Eq.(6) is
a defect prediction function. In the analysis data for de-
fect clustering, a total of 3754 defects are observed, and
a total of 153 defect clusters are generated, as shown in
Fig.10. In the analysis data for defect repulsion, a total of
27 defect clusters are generated. The main defect charac-
teristics are distributed at the coordinate points includ-
ing (−1.1,−1), (−2.8,−1.3), (−1.8,−2), (−0.8,−0.3),
(−0.2, 1.3), (0, 0.7), (0,−0.5), (0.3, 0), (0.8, 1), (1.5, 0),
and (1.6,−1.2). In the 36th month, the project team com-
pared the prediction results with the observed defects and
observed a difference of +44 defects between them. The
difference value accounts for 1% of the total defects, which
far less than the error rate of 3% available in medium-term
prediction. The required error-free rate for the project
should be higher than 97%. Therefore, the software qual-
ity meets the quality requirements for the astronautic re-
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mote sensor project.

V (b) = −34.79 + 69.47x1 + 42.73x2
2 + 17.399x3

3

−3.03x4
4 + 0.26x5

5 − 0.01x6
6 (5)

V (b) = −33.39 + 69.47x1 + 42.43x2
2 + 16.299x3

3

−2.03x4
4 + 0.16x5

5 − 0.03x6
6 (6)

Fig. 6. Medium-term prediction of defect cluster

Fig. 7. Medium-term prediction of defect repulsion

Fig. 8. Medium-term prediction of defect distribution

VII. Conclusion

This paper mainly expounds on the decision-level soft-

ware defect prediction by reducing the scale of two fo-
cuses (including the defect characteristics and defects).
This paper provides an in-depth and systematic analysis
of various key issues, including how to create the defect
characteristic comparison set and defect comparison set,
a repulsion theory for defect characteristics and defects,
and a methodology and model for defect prediction. Thus,
a theory on the minimum critical characteristic set for
defects is proposed. To predict the software system de-
fects accurately, this paper resorts to the multi-agent de-
fect prediction methodology (note: the agents include the
SVM, Bayesian forecasting, and ANN). The experimen-
tal results demonstrate that this multi-agent prediction
methodology is very effective in predicting the quality of
astronautic project software.

Fig. 9. Medium-term defect prediction

Fig. 10. Late-stage prediction of defect clusters

Fig. 11. Late-stage prediction of defect repulsion
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Fig. 12. Late-stage prediction of defect distribution

Fig. 13. Late-stage defect prediction
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