# Determination of cut-off time of accelerated aging test under temperature stress for LED lamps** 

Jian $\mathrm{HAO}^{1,2}$, Lei $\mathrm{JING}^{3}$, Hong-liang $\mathrm{KE}^{2}$, Yao WANG ${ }^{1,3}$, Qun GAO ${ }^{3}$, Xiao-xun WANG ${ }^{1,3}$, Qiang SUN ${ }^{\dagger \ddagger 3}$, Zhi-jun XU ${ }^{3}$<br>( ${ }^{1}$ University of Chinese Academy of Sciences, Beijing 100049, China)<br>$\left(^{2}\right.$ Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, CAST, Lanzhou 730000, China)<br>$\left({ }^{3}\right.$ Opto-Electronics Technology Center, Changchun Institute of Optics, Fine Mechanics and Physics,<br>Chinese Academy of Sciences, Changchun 130033, China)<br>†E-mail: sunq@ciomp.ac.cn<br>Received Dec. 28, 2015; Revision accepted Apr. 11, 2016; Crosschecked Aug. 14, 2017


#### Abstract

To acquire a rational minimum cut-off time and the precision of lifetime prediction with respect to cut-off time for the accelerated aging test of LED lamps, fifth-order moving average error estimation is adopted in this paper. Eighteen LED lamps from the same batch are selected for two accelerated aging tests, with 10 samples at $80^{\circ} \mathrm{C}$ and eight samples at $85^{\circ} \mathrm{C}$. First, the accelerated lifetime of each lamp is acquired by exponential fitting of the lumen maintenances of the lamp for a certain cut-off time. With the acquired lifetimes of all lamps, the two-parameter Weibull distribution of the failure probability is obtained, and the medium lifetime is calculated. Then, the precision of the medium lifetime prediction for different cut-off times is obtained by moving average error estimation. It is shown that there exists a minimum cut-off time for the accelerated aging test, which can be determined by the variation of the moving average error versus the cut-off time. When the cut-off time is less than this value, the lifetime estimation is irrational. For a given cut-off time, the precision of lifetime prediction can be computed by average error evaluation, and the error of lifetime estimation decreases gradually as the cut-off time increases. The minimum cut-off time and medium lifetime of LED lamps are both sensitive to thermal stress. The minimum cut-off time is 1104 h with the lifetime estimation error of $1.15 \%$ for the test at $80^{\circ} \mathrm{C}$, and 936 h with the lifetime estimation error of $1.24 \%$ for the test at $85^{\circ} \mathrm{C}$. With the lifetime estimation error of about $0.46 \%$, the median lifetimes are 7310 h and 4598 h for the tests at $80^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$, respectively.


Key words: LED lamp; Accelerated aging test; Medium lifetime; Moving average error
http://dx.doi.org/10.1631/FITEE. 1500483

## 1 Introduction

With the advantages of long lifetime, high energy conservation, and good environmental protection, light-emitting diodes (LEDs), as the fourthgeneration energy source, are being widely used in various lighting fields (Koh et al., 2011; Ignacio et al., 2012; Hu and Qian, 2013; Jafrancesco et al., 2015;

[^0]Shi et al., 2015). While long lifetime and good reliability are desirable, an unavoidable issue is how to estimate the lifetime of LEDs during a shorter test time. IES LM-79 (IES, 2008b), IES LM-84 (IES, 2014a), and IES TM-28 (IES, 2014b) standards report the test and calculation method for LED products, and the test time is at least 6000 h under an ambient temperature of $25^{\circ} \mathrm{C}$. The standards IES LM-80 (IES, 2008a) and IES TM-21 (IES, 2011) recommend a lifetime test method for LED products, in which the test temperature is $25^{\circ} \mathrm{C}$ and the test time is at least 6000 h. IES LM-80 and IES TM-21 standards recommend a lifetime test method in which three tests under different temperatures are required and the test
time is also at least 6000 h . Narendran and Gu (2005) reported the lifetime estimation of white light LEDs by a two-step method. The lifetimes of nine groups of LEDs were acquired by aging tests, with the test time of 6000 h for each, under different T-point temperatures first, and then the lifetime estimation under $25^{\circ} \mathrm{C}$ was achieved by fitting the acquired lifetimes. Chang et al. (2012) reviewed the reliability of LEDs with the test time of 6000 h , including the general lifetime estimation methods and advanced lifetime estimation methods using analytical tools, simulation, and prototype testing. Fan et al. (2012) compared four methods of lifetime estimation for high-power white LED, with the test time of 10000 h , including the IES TM-21 method, approximate method, analysis method, and two-stage method. Fan et al. (2014) also reported a precise lifetime prediction method for LEDs compared to the IES TM-21 method, using the Kalman filter (KF) model to process the initial data of lumen maintenances. The test time was 6000 h . Lall and Wei (2015) reported a more precise lifetime prediction method in comparison with the KF model using the extended KF (EKF) model to process the initial data of lumen maintenances. The test time was also 6000 h . Obviously, the test time of at least 6000 h restricts the replacement rate of LED products, and therefore various methods of accelerated aging test of LEDs have been proposed.

Koh et al. (2013) reported the accelerated aging test of LED light source modules under the ambient temperature of $55^{\circ} \mathrm{C}$. The cut-off time was 3600 h with the criterion of lumen maintenance of $95 \%$. Qian et al. (2015) reported the same accelerated aging test with different LED products, and the cut-off time was 2000 h . Tan and Singh (2014) reported the accelerated aging tests of LED packages under the conditions of ambient temperature of $85^{\circ} \mathrm{C}$ and humidity levels of of $95 \%, 85 \%$, and $70 \%$, respectively. The cut-off times were within 1000 h , with the criterion of lumen maintenance of $85 \%$. Cai et al. (2015) reported the accelerated aging tests of LED packages under the ambient temperatures of 65,85 , and $95^{\circ} \mathrm{C}$, respectively, and with a humidity of $85 \%$. The cut-off times were within 1400 h with the criterion of a lumen maintenance of about $90 \%$. Tang et al. (2012) reported a step-stress accelerated aging test for LED light source modules under ambient temperatures of 45,65 , and $85^{\circ} \mathrm{C}$. The cut-off time was 2300 h with the criterion of a lumen maintenance of $95 \%$. Ren et
al. (2012) reported several step-stress accelerated aging tests for LED light source modules under ambient temperatures of 45,85 , and $95^{\circ} \mathrm{C}$. The cut-off time was fixed as 2100 h for all tests. In all the above references, the cut-off times of the accelerated aging tests of LEDs were determined by stipulated values of lumen maintenances; obviously, the longer the cut-off time, the more precise the lifetime estimation.

In this paper, a new approach to determining the cut-off time of the accelerated aging test of LED lamps based on the moving average error evaluation is proposed. Two accelerated aging tests with the same type of lamp are arranged under the ambient temperatures of $80^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$, respectively. The order of moving average error calculation is selected to be five, which yields a satisfactory evaluation result. The proposed approach gives not only a rational minimum cut-off time of the accelerated aging test but also the lifetime estimation error for different cut-off times.

Table 1 gives the notations used in this paper.
Table 1 Notations used in this paper

| Notation | Description |
| :---: | :--- |
| $\Phi_{t} / \Phi_{0}$ | Lumen maintenance |
| $\beta_{T}$ | Decay rate |
| $T$ | Junction temperature |
| $t$ | Test time |
| $\tau$ | Lifetime |
| $F(t)$ | Two-parameter Weibull distribution |
|  | failure probability |
| $m$ | Shape parameter |
| $\eta$ | Characteristic lifetime |
| $\tau_{0.5}$ | Medium lifetime |
| $\rho(l)$ | Moving average error of order $h$ |

## 2 Theoretical analysis

### 2.1 Arrhenius model and two-parameter Weibull distribution

The lumen maintenance of an LED product obeys the exponential decay law:

$$
\begin{equation*}
\Phi_{t} / \Phi_{0}=\exp \left(-\beta_{T} t\right) \tag{1}
\end{equation*}
$$

where $\Phi_{t} / \Phi_{0}$ is the lumen maintenance, $\beta_{T}$ is the decay rate at the junction temperature $T$, and $t$ is the operating time. When $\Phi_{t} / \Phi_{0}=0.7$, the operating time in Eq. (1) is considered to be the lifetime $\tau$ :

$$
\begin{equation*}
\tau=-\frac{\ln 0.7}{\beta_{T}} \tag{2}
\end{equation*}
$$

The failure probability of LED lamps over time follows two-parameter Weibull distribution (Zhang et al., 2006):

$$
\begin{equation*}
F(t)=1-\exp \left[-(t / \eta)^{m}\right] \tag{3}
\end{equation*}
$$

where $F(t)$ is the failure probability, $m$ represents the so-called shape parameter, and $\eta$ represents the characteristic lifetime. The unknown parameters of Eq. (3) can be solved by the maximum likelihood function method together with the acquired lifetimes of the lamps. Actually, we complete this process using the command 'Wblfit' in the MATLAB software toolbox. Then the lifetime $\tau$ for different failure probabilities can be obtained by

$$
\begin{equation*}
\tau=\eta\left(\ln \frac{1}{1-F(\tau)}\right)^{\frac{1}{m}} \tag{4}
\end{equation*}
$$

When $F(\tau)=0.5$, the corresponding lifetime is called the medium lifetime of $\tau_{0.5}$.

### 2.2 Analysis of errors

In this work, the moving average error $\rho(l)$ is used to evaluate the error of the medium lifetime prediction; it can be expressed as

$$
\begin{equation*}
\rho(l)=\frac{1}{h} \sum_{k=l-h+1}^{l}\left|1-\frac{\tau_{0.5, k}}{\tau_{0.5, k-1}}\right|<\varepsilon \% \tag{5}
\end{equation*}
$$

where $h$ represents the order of the moving average error with $h \geq 1, \tau_{0.5, k}$ and $\tau_{0.5, k-1}$ represent the $k$ th and $(k-1)$ th medium lifetimes, respectively, $\tau_{0.5, k} / \tau_{0.5, k-1}$ is called the relative error, and $\varepsilon$ is a suitable value given beforehand. Assuming that the number of processed medium lifetimes is $N, l=h+1, h+2, \ldots, N$. The number of relative errors is $N-1$. When $\rho(l)$ is less than $\varepsilon$, the accelerated aging test can be stopped.

In the data processing of a dynamic test, 5thorder to 11th-order moving average error estimation is usually adopted, and in this work fifth-order moving average error estimation is used. Thus, $h=5$ and $l=6,7, \ldots, N$. So, Eq. (5) can be written as

$$
\begin{equation*}
\rho(l)=\frac{1}{5} \sum_{k=l-4}^{l}\left|1-\frac{\tau_{0.5, k}}{\tau_{0.5, k-1}}\right|<\varepsilon \% \tag{6}
\end{equation*}
$$

## 3 Experiments and results

### 3.1 Experiments

Fig. 1 shows the platform for the accelerated aging test for LED samples. The online test system was composed of the thermostat box, integrating sphere of 0.5 m from Labsphere, AC power source, spectral radiometer, and the computer. A multiposition rotary shelf in the thermostat box was controlled by the command of the computer. Eighteen samples were divided into two groups for two accelerated aging tests. One test, with 10 samples, was conducted under the accelerated temperature of $80^{\circ} \mathrm{C}$. The total accelerated aging time was 1296 h . The other eight samples were tested at $85^{\circ} \mathrm{C}$. The total accelerated aging time was 1056 h . The samples were encapsulated by Lide with the same components including chips from ES, the green phosphor from Nakamura-Yuji, red phosphor from Grirem, 6630 potting glue, DX20C patch glue, and the driver from Lide. The correlated color temperature of these samples was about 3500 K . Before the accelerated aging tests, the samples were subjected to environmental tests including vibration, shock, and current. In this way, defects in the drivers, such as bad soldering joints and defective electronic components, were excluded. Data were acquired once every 24 h . For each data acquisition, the rotary shelf was rotated by eight laps to obtain eight values of the luminous flux, and the average luminous flux was then obtained. The results of the acquired lumen maintenance for each lamp are shown in Fig. 2.

### 3.2 Data processing for the test at $80^{\circ} \mathrm{C}$

First, the acquired lumen maintenances of Fig. 2a before a cut-off time $t$ were fitted by the exponential decay law (1), and the accelerated lifetimes of 10 lamps were obtained with the criterion given by Eq. (2). The results are listed in columns 2-11 of Table 2. With the acquired accelerated lifetimes of 10 lamps, the two unknown parameters of the Weibull distribution of the failure probability of LED lamps in

Eq. (3) were solved by the maximum likelihood function method for each cut-off time. This fitting was done by a program with the command of 'Wblfit' in the MATLAB Statistics Toolbox. Then the medium lifetime was obtained by Eq. (4) with the solved two-parameter Weibull distribution. The results for different cut-off times are listed in Table 2.


Fig. 1 Platform of the accelerated aging test for LED lamps
1 , thermostat box; 2, integrating sphere of $0.5 \mathrm{~m} ; 3$, multiposition rotary shelf; 4, AC power source; 5, spectral radiometer


Fig. 2 Variation of the acquired luminous fluxes: (a) at $80^{\circ} \mathrm{C}$; (b) at $85^{\circ} \mathrm{C}$

The variation of the medium lifetime with the cut-off time is shown in Fig. 3. It can be seen that the medium lifetime varies in an irregular manner at cut-off times less than 936 h and shows a declining trend as the cut-off time becomes greater than 936 h . This gives us a clue of the initial cut-off time to start the calculation of the moving average error because the declining trend of lifetime with cut-off time is reasonable in practice. Then the 16 medium lifetimes in Table 2, from the 27th row (cut-off time of 936 h ) to the 42 nd row (the last row), were used to calculate the relative error $\tau_{0.5, k} / \tau_{0.5, k-1}$ with the initial value of $k=2$. It is clear that the number of relative errors is 15 , and the calculated values are listed in Table 2.

The precision of the acquired medium lifetimes was then evaluated by the fifth-order moving average error method. According to Eq. (6), the value of $l$ can be $6,7,8,9,10,11,12,13,14,15$, and 16 . Clearly, the number of moving average errors of $\rho(l)$ is 11 . The moving average errors were calculated and listed in Table 2. Fig. 4 shows the variation of the moving average error with respect to the cut-off time.


Fig. 3 Variation of medium lifetime with cut-off time for the test at $80^{\circ} \mathrm{C}$


Fig. 4 Variation of the moving average error versus cut-off time for the test at $80^{\circ} \mathrm{C}$

Table 2 The accelerated lifetimes of 10 lamps and related parameters in the test at $80^{\circ} \mathrm{C}$

| Cut-off time (h) | Accelerated lifetime (h) |  |  |  |  |  |  |  |  |  | $\tau_{0.5}$ <br> (h) | $\begin{gathered} \tau_{0.5, k} \\ \tau_{0.5, k-1} \\ (\%) \\ \hline \end{gathered}$ | $\begin{aligned} & \rho(l) \\ & (\%) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |  |  |
| 336 | 17316 | 28914 | 4165 | 4885 | 8491 | 7562 | 9623 | 8559 | 9091 | 8825 | 9839 | - | - |
| 360 | 15993 | 21263 | 4222 | 4945 | 8269 | 7588 | 9210 | 8356 | 8783 | 8569 | 9299 | - | - |
| 384 | 11291 | 12129 | 3920 | 4520 | 6860 | 6527 | 7441 | 6943 | 7192 | 7068 | 7364 | - | - |
| 408 | 11144 | 11238 | 4033 | 4641 | 6850 | 6640 | 7415 | 6968 | 7295 | 7080 | 7331 | - | - |
| 432 | 11814 | 11166 | 4243 | 4904 | 7099 | 6987 | 7674 | 7254 | 7464 | 7359 | 7614 | - | - |
| 456 | 11120 | 10157 | 4294 | 4944 | 6962 | 6922 | 7420 | 7101 | 7261 | 7181 | 7379 | - | - |
| 480 | 11603 | 10469 | 4472 | 5154 | 7259 | 7252 | 7720 | 7410 | 7565 | 7488 | 7684 | - | - |
| 504 | 11886 | 10384 | 4614 | 5323 | 7430 | 7572 | 7872 | 7625 | 7748 | 7686 | 7862 | - | - |
| 528 | 12083 | 10373 | 4788 | 5535 | 7628 | 7862 | 8009 | 7833 | 7921 | 7877 | 8044 | - | - |
| 552 | 12204 | 10230 | 4956 | 5726 | 7745 | 8073 | 8102 | 7973 | 8038 | 8006 | 8163 | - | - |
| 576 | 12281 | 10093 | 5121 | 5919 | 7849 | 8278 | 8197 | 8108 | 8152 | 8130 | 8271 | - | - |
| 600 | 11950 | 9820 | 5216 | 6023 | 7816 | 8310 | 8117 | 8081 | 8099 | 8090 | 8217 | - | - |
| 624 | 11519 | 9418 | 5269 | 6076 | 7685 | 8231 | 7954 | 7956 | 7955 | 7956 | 8069 | - | - |
| 648 | 11342 | 9208 | 5370 | 6205 | 7677 | 8291 | 7940 | 7969 | 7954 | 7962 | 8060 | - | - |
| 672 | 11085 | 8988 | 5441 | 6292 | 7603 | 8296 | 7860 | 7920 | 7890 | 7905 | 7997 | - | - |
| 696 | 11084 | 8947 | 5568 | 6454 | 7650 | 8418 | 7908 | 7992 | 7950 | 7971 | 8063 | - | - |
| 720 | 11120 | 8920 | 5689 | 6615 | 7713 | 8548 | 7960 | 8074 | 8017 | 8045 | 8138 | - | - |
| 744 | 10952 | 8773 | 5751 | 6699 | 7666 | 8548 | 7910 | 8042 | 7976 | 8009 | 8100 | - | - |
| 768 | 10704 | 8686 | 5764 | 6735 | 7581 | 8490 | 7817 | 7962 | 7890 | 7926 | 8024 | - | - |
| 792 | 10528 | 8544 | 5810 | 6791 | 7524 | 8462 | 7763 | 7917 | 7841 | 7879 | 7974 | - | - |
| 816 | 10462 | 8478 | 5882 | 6884 | 7527 | 8499 | 7770 | 7932 | 7851 | 7892 | 7985 | - | - |
| 840 | 10364 | 8390 | 5934 | 6951 | 7502 | 8506 | 7754 | 7921 | 7837 | 7879 | 7970 | - | - |
| 864 | 10462 | 8434 | 6052 | 7102 | 7586 | 8655 | 7858 | 8033 | 7946 | 7989 | 8078 | - | - |
| 888 | 10335 | 8339 | 6089 | 7142 | 7545 | 8629 | 7824 | 7999 | 7912 | 7956 | 8042 | - | - |
| 912 | 10318 | 8319 | 6157 | 7226 | 7561 | 8679 | 7852 | 8031 | 7941 | 7986 | 8072 | - | - |
| 936 | 10263 | 8280 | 6210 | 7293 | 7557 | 8706 | 7862 | 8042 | 7952 | 7997 | 8089 | - | - |
| 960 | 10106 | 8176 | 6222 | 7296 | 7493 | 8641 | 7808 | 7981 | 7894 | 7937 | 8019 | 0.87 | - |
| 984 | 9913 | 8048 | 6209 | 7274 | 7403 | 8537 | 7722 | 7887 | 7805 | 7846 | 7927 | 1.15 | - |
| 1008 | 9753 | 7944 | 6201 | 7262 | 7333 | 8455 | 7652 | 7813 | 7733 | 7773 | 7853 | 0.93 | - |
| 1032 | 9568 | 7829 | 6176 | 7225 | 7241 | 8345 | 7560 | 7715 | 7638 | 7676 | 7757 | 1.22 | - |
| 1056 | 9338 | 7684 | 6130 | 7158 | 7128 | 8202 | 7450 | 7593 | 7522 | 7558 | 7634 | 1.59 | 1.15 |
| 1080 | 9247 | 7628 | 6139 | 7165 | 7093 | 8163 | 7421 | 7559 | 7490 | 7525 | 7600 | 0.45 | 1.07 |
| 1104 | 9029 | 7497 | 6092 | 7096 | 6991 | 8027 | 7311 | 7443 | 7377 | 7410 | 7483 | 1.54 | 1.15 |
| 1128 | 8960 | 7455 | 6103 | 7104 | 6966 | 7998 | 7286 | 7417 | 7351 | 7384 | 7458 | 0.33 | 1.03 |
| 1152 | 8864 | 7408 | 6092 | 7094 | 6943 | 7955 | 7264 | 7387 | 7325 | 7356 | 7424 | 0.46 | 0.87 |
| 1176 | 8712 | 7313 | 6061 | 7045 | 6870 | 7860 | 7185 | 7305 | 7245 | 7275 | 7341 | 1.12 | 0.78 |
| 1200 | 8656 | 7285 | 6072 | 7050 | 6851 | 7834 | 7164 | 7283 | 7224 | 7253 | 7321 | 0.27 | 0.74 |
| 1224 | 8615 | 7267 | 6088 | 7062 | 6841 | 7820 | 7153 | 7272 | 7213 | 7242 | 7310 | 0.15 | 0.47 |
| 1248 | 8580 | 7258 | 6106 | 7077 | 6836 | 7814 | 7148 | 7266 | 7207 | 7237 | 7306 | 0.05 | 0.41 |
| 1272 | 8536 | 7235 | 6116 | 7083 | 6823 | 7737 | 7133 | 7251 | 7192 | 7222 | 7281 | 0.21 | 0.39 |
| 1296 | 8456 | 7188 | 6107 | 7065 | 6789 | 7679 | 7097 | 7212 | 7154 | 7183 | 7242 | 0.53 | 0.27 |

It can be seen that the moving average error decreases as the cut-off time increases from 1056 h to 1080 h ; then it increases as the cut-off time increases from 1080 h to 1104 h . This variation characteristic of $\rho(l)$ is irrational in practice, because $\rho(l)$ should be
smaller for a longer cut-off time. The moving average error has a monotonically declining trend after the cut-off time of 1104 h , and this implies a minimum cut-off time for this accelerated aging test. Correspondingly, the estimated medium lifetime is 7483 h
with the evaluation error of $1.15 \%$. It can be seen from Table 2 that, as the cut-off time increases to 1152, 1200,1248 , and 1296 h , the lifetime estimation errors are $0.87 \%, 0.74 \%, 0.41 \%$, and $0.27 \%$, respectively. The corresponding medium lifetimes are 7424,7321 , 7306 , and 7242 h , respectively.

### 3.3 Data processing for the test at $85{ }^{\circ} \mathrm{C}$

The same method as in Section 3.2 was used for data processing. First, the accelerated lifetimes of eight lamps were obtained by exponential fitting of the lumen maintenances in Fig. 2b for different cutoff times (Table 3, columns 2-9). With the acquired accelerated lifetimes of eight lamps, the two unknown
parameters of the Weibull distribution of the failure probability of LED lamps were solved. Then the corresponding medium lifetimes were obtained with the solved two-parameter Weibull distribution (Table 3).

The variation of the medium lifetime versus the cut-off time is shown in Fig. 5. It can be seen that the medium lifetime varies without any regular pattern as the cut-off time is less than 720 h , and then it shows a declining trend. The value of 720 h is the initial cut-off time to start the calculation of the moving average error. Then, 15 medium lifetimes in Table 3, from the 7 th row (cut-off time of 720 h ) to the 31 st row (the last row), were used to calculate the relative error $\tau_{0.5, k} / \tau_{0.5, k-1}$ with the initial value $k=2$. It is clear

Table 3 The accelerated lifetimes of eight lamps and related parameters in the test at $85{ }^{\circ} \mathrm{C}$

| Cut-off time (h) | Accelerated lifetime (h) |  |  |  |  |  |  |  | $\tau_{0.5}$ | $\begin{gathered} \tau_{0.5, k} / \\ \tau_{0.5, k-1} \\ (\%) \\ \hline \end{gathered}$ | $\begin{aligned} & \rho(l) \\ & (\%) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |
| 360 | 3774 | 4518 | 5789 | 6227 | 5132 | 4058 | 4013 | 5025 | 4881 | - | - |
| 384 | 3719 | 4425 | 5832 | 6368 | 5174 | 4008 | 3999 | 5194 | 4905 | - | - |
| 408 | 3693 | 4420 | 5924 | 6554 | 5241 | 4030 | 4047 | 5418 | 4982 | - | - |
| 432 | 3638 | 4327 | 5824 | 6457 | 5154 | 4001 | 4035 | 5483 | 4932 | - | - |
| 456 | 3617 | 4272 | 5763 | 6451 | 5131 | 3991 | 4063 | 5543 | 4921 | - | - |
| 480 | 3618 | 4246 | 5727 | 6500 | 5150 | 4004 | 4128 | 5647 | 4945 | - | - |
| 504 | 3635 | 4245 | 5729 | 6549 | 5186 | 4028 | 4187 | 5777 | 4952 | - | - |
| 528 | 3616 | 4224 | 5689 | 6523 | 5168 | 4028 | 4212 | 5848 | 4983 | - | - |
| 552 | 3628 | 4231 | 5739 | 6621 | 5225 | 4068 | 4269 | 5986 | 5041 | - | - |
| 576 | 3619 | 4210 | 5702 | 6646 | 5217 | 4062 | 4299 | 6067 | 5047 | - | - |
| 600 | 3620 | 4206 | 5707 | 6719 | 5235 | 4075 | 4342 | 6181 | 5079 | - | - |
| 624 | 3601 | 4196 | 5679 | 6741 | 5225 | 4077 | 4363 | 6240 | 5083 | - | - |
| 648 | 3572 | 4174 | 5614 | 6708 | 5190 | 4060 | 4372 | 6260 | 5061 | - | - |
| 672 | 3576 | 4161 | 5561 | 6684 | 5159 | 4053 | 4388 | 6283 | 5049 | - | - |
| 696 | 3575 | 4160 | 5524 | 6703 | 5149 | 4057 | 4411 | 6330 | 5053 | - | - |
| 720 | 3589 | 4156 | 5487 | 6703 | 5129 | 4054 | 4434 | 6376 | 5055 | - | - |
| 744 | 3597 | 4156 | 5446 | 6704 | 5112 | 4052 | 4456 | 6413 | 5054 | 0.02 | - |
| 768 | 3580 | 4129 | 5362 | 6641 | 5061 | 4029 | 4453 | 6404 | 5019 | 0.69 | - |
| 792 | 3573 | 4099 | 5302 | 6597 | 5009 | 3999 | 4438 | 6382 | 4972 | 0.94 | - |
| 816 | 3559 | 4087 | 5247 | 6548 | 4975 | 3987 | 4425 | 6343 | 4956 | 0.32 | - |
| 840 | 3547 | 4058 | 5158 | 6475 | 4909 | 3957 | 4407 | 6297 | 4910 | 0.93 | 0.58 |
| 864 | 3536 | 4021 | 5052 | 6368 | 4832 | 3921 | 4379 | 6232 | 4851 | 1.20 | 0.82 |
| 888 | 3493 | 3967 | 4922 | 6214 | 4732 | 3866 | 4325 | 6118 | 4761 | 1.86 | 1.05 |
| 912 | 3474 | 3933 | 4827 | 6110 | 4659 | 3833 | 4296 | 6049 | 4703 | 1.22 | 1.11 |
| 936 | 3443 | 3908 | 4745 | 6026 | 4600 | 3807 | 4277 | 5999 | 4657 | 0.98 | 1.24 |
| 960 | 3248 | 3898 | 4688 | 5984 | 4567 | 3795 | 4279 | 5984 | 4632 | 0.54 | 1.16 |
| 984 | 3436 | 3896 | 4655 | 5950 | 4545 | 3793 | 4282 | 5970 | 4620 | 0.26 | 0.97 |
| 1008 | 3428 | 3887 | 4645 | 5941 | 4537 | 3781 | 4270 | 5959 | 4609 | 0.24 | 0.65 |
| 1032 | 3415 | 3872 | 4635 | 5932 | 4528 | 3770 | 4259 | 5949 | 4598 | 0.24 | 0.45 |
| 1056 | 3406 | 3864 | 4628 | 5921 | 4519 | 3763 | 4252 | 5941 | 4590 | 0.17 | 0.29 |

that the number of relative errors is 14 , and the calculation results are listed in Table 3.

The precision of the acquired medium lifetimes was then evaluated by the fifth-order moving average error method. The value of $l$ can be $6,7,8,9,10,11$, $12,13,14$, and 15 , so the value of $\rho(l)$ is 10 . The moving average errors were calculated and listed in Table 3. Fig. 6 shows the variation of the moving average error versus the cut-off time.


Fig. 5 Variation of medium lifetime with cut-off time for the test at $85{ }^{\circ} \mathrm{C}$


Fig. 6 Variation of the moving average error versus cut-off time for the test at $85^{\circ} \mathrm{C}$

It can be seen that the moving average error increases as the cut-off time increases from 840 h to 936 h , and then it decreases monotonically. This variation characteristic of $\rho(l)$ implies that the minimum cut-off time for this accelerated aging test is 936 h . Correspondingly, the estimated medium lifetime is 4657 h with the evaluation error of $1.24 \%$. As the cut-off time increases to 984,1032 , and 1056 h , the lifetime estimation errors are $0.97 \%, 0.45 \%$, and $0.29 \%$, respectively. The corresponding medium lifetimes are 4620,4598 , and 4590 h , respectively.

## 4 Conclusions

We have proposed a new approach to determine the minimum cut-off time and to calculate the error of lifetime estimation with different cut-off times for the accelerated aging test of LED lamps, based on moving average error evaluation. Two accelerated aging tests with the LED lamps from the same batch were performed under the ambient temperatures of $80^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$.

It was shown that an initial cut-off time to start the calculation of the moving average error of lifetime estimation is needed, which can be acquired from the variation curve of the medium lifetime versus the cut-off time. There exists a minimum cut-off time for the accelerated aging test of LED lamps, which can be determined based on the variation of the moving average error versus the cut-off time. When the cut-off time is less than the minimum value, the lifetime estimation of LED lamps is irrational. It was demonstrated that for a given cut-off time of the accelerated aging test, the precision of lifetime prediction can be evaluated by the average error method. As the cut-off time increases, the error of lifetime estimation decreases gradually.

It is also shown in a comparison between the two accelerated aging tests that the minimum cut-off time and the medium lifetime are sensitive to thermal stress. The minimum cut-off time is 1104 h with the lifetime estimation error of $1.15 \%$ for the test at $80^{\circ} \mathrm{C}$, whereas it is 936 h with the lifetime estimation error of $1.24 \%$ for the test at $85^{\circ} \mathrm{C}$. With the lifetime estimation error of about $0.46 \%$, the medium lifetime of the LED lamp is 7310 h for the test at $80^{\circ} \mathrm{C}$, whereas it is only 4598 h for the test at $85^{\circ} \mathrm{C}$.

Note that the number of samples is less than or equal to 10 in this work. According to the relationship between confidence, reliability, and the number of samples, the reliability is $85 \%$ with a confidence of 0.8 . Furthermore, the minimum cut-off time and precision of lifetime estimation for different cut-off times given in this study are applicable only to this type of LED lamp under thermal stress accelerated aging. For other types of LED lamp, both parameters should be determined by particular experiments. We believe that the experiments for various types of LED lamps will yield valuable references in the field of lifetime prediction, which will be our next research task.

## References

Cai, M., Yang, D., Tian, K., et al., 2015. Step-stress accelerated testing of high-power LED lamps based on subsystem isolation method. Microelectron. Reliab., 55(9-10): 1784-1789.
https://doi.org/10.1016/j.microrel.2015.06.147
Chang, M.H., Das, D., Varde, P.V., et al., 2012. Light emitting diodes reliability review. Microelectron. Reliab., 52(5): 762-782. https://doi.org/10.1016/j.microrel.2011.07.063
Fan, J.J., Yung, K.C., Pecht, M., 2012. Lifetime estimation of high-power white led using degradation-data-driven method. IEEE Trans. Dev. Mater. Reliab., 12(2):470-477. https://doi.org/10.1109/TDMR.2012.2190415
Fan, J.J., Yung, K.C., Pecht, M., 2014. Prognostics of lumen maintenance for high power white light emitting diodes using an on linear filter-based approach. Reliab. Eng. Syst. Safety, 123:63-72.
https://doi.org/10.1016/j.ress.2013.10.005
Hu, X., Qian, K., 2013. Optimal design of optical system for LED road lighting with high illuminance and luminance uniformity. Appl. Opt., 52(24):5888-5893. https://doi.org/10.1364/AO.52.005888
IES, 2008a. Approved Method: Measuring Lumen Maintenance of LED Light Sources, LM-80-08. Illuminating Engineering Society of North America, New York.
IES, 2008b. Electrical and Photometric Measurements of Solid State Lighting Products, LM-79-08. Illuminating Engineering Society of North America, New York.
IES, 2011. Projecting Long Term Lumen Maintenance of LED Light Sources, TM-21-11. Illuminating Engineering Society of North America, New York.
IES, 2014a. Approved Method: Measuring Luminous Flux and Color Maintenance of LED Lamps, Light Engines, and Luminaires, LM-84-14. Illuminating Engineering Society of North America, New York.
IES, 2014b. Projecting Long-Term Luminous Flux Maintenance of LED Lamps and Luminaires, TM-28-14. Illuminating Engineering Society of North America, New York.
Ignacio, V., Isidro, L., Juan, A., 2012. Reliability analysis of LED-based electronic devices. Proc. Eng., 35:260-269. https://doi.org/10.1016/j.proeng.2012.04.189
Jafrancesco, D., Mercatelli, L., Sansoni, P., et al., 2015. Optical design of a light-emitting diode lamp for a maritime lighthouse. Appl. Opt., 54(11):3252-3262.
https://doi.org/10.1364/AO.54.003252
Koh, S., van Driel, W., Zhang, G.Q., 2011. Degradation of
epoxy lens materials in LED systems. 12th Int. Conf. on Thermal, Mechanical and Multi-physics Simulation and Experiments in Microelectronics and Microsystems, p.1/5-5/5. https://doi.org/10.1109/ESIME.2011.5765850

Koh, S., Yuan, C., Sun, B., et al., 2013. Product level accelerated lifetime test for indoor luminaires. 14th Int. Conf. on Thermal, Mechanical and Multi-physics Simulation and Experiments in Microelectronics and Microsystems, p.1-6. https://doi.org/10.1109/EuroSimE.2013.6529995

Lall, P., Wei, J., 2015. Prediction of L70 life and assessment of color shift for solid-state lighting using Kalman filter and extended Kalman filter-based models. IEEE Trans. Dev. Mater. Reliab., 15(1):54-68. https://doi.org/10.1109/TDMR.2014.2369859
Narendran, N., Gu, Y., 2005. Life of LED-based white light sources. J. Display Technol., 1(1):167-171. https://doi.org/10.1109/JDT.2005.852510
Qian, C., Fan, X.J., Fan, J.J., et al., 2015. An accelerated test method of luminous flux depreciation for LED luminaires and lamps. Reliab. Eng. Syst. Safety, 147:84-92. https://doi.org/10.1016/j.ress.2015.11.009
Ren, R., Yang, D., Cai, M., et al., 2012. Reliability assessment of LED luminaires based on step-stress accelerated degradation test. 13th Int. Conf. on Electronic Packaging Technology \& High Density Packaging, p.1495-1499. https://doi.org/10.1109/ICEPT-HDP.2012.6474890
Shi, D., Feng, S., Zhang, Y., et al., 2015. Thermal investigation of LED array with multiple packages based on the superposition method. Microelectron. J., 46(7):632-636. https://doi.org/10.1016/j.mejo.2015.03.010
Tan, C.M., Singh, P., 2014. Time evolution degradation physics in high power white LEDs under high temperaturehumidity conditions. IEEE Trans. Dev. Mater. Reliab., 14(2):742-750. https://doi.org/10.1109/TDMR.2014.2318725
Tang, H., Yang, D.G., Zhang, G.Q., et al., 2012. Multi-physics simulation and reliability analysis for LED luminaires under step stress accelerated degradation test. 13th Int. Conf. on Thermal, Mechanical and Multi-physics Simulation and Experiments in Microelectronics and Microsystems, p.1/5-5/5. https://doi.org/10.1109/ESimE.2012.6191774
Zhang, L.F., Xie, M., Tang, L.C., 2006. Bias correction for the least squares estimator of Weibull shape parameter with complete and censored data. Reliab. Eng. Syst. Safety, 91(8):930-939.
https://doi.org/10.1016/j.ress.2005.09.010
doi：10．1631／FITEE． 1500483
题目：LED 灯具温度应力加速老化截止时间的确定
概要：在 LED 灯具加速老化过程中，为获得最小截止时间，对其寿命进行快速预估，本文采用 5 阶滑动平均误差方法分析数据。选用同批次的 16 个样本，分别进行 $80^{\circ} \mathrm{C}$ 和 $85^{\circ} \mathrm{C}$ 应力条件下的加速老化。首先，采用e指数对光通维持率进行拟合，获得每个灯具的加速寿命，进而采用威布尔分布对加速寿命进行拟合，获得中位寿命。其次，采用平均滑动误差方法，可获取不同截止时间下中位寿命预估误差。结果表明：加速老化过程中，存在最小截止时间，该时间可通过滑动平均误差和截止时间的关系确定；当截止时间小于该值时，寿命预估不合理；寿命预估误差随截止时间增加而逐渐减小。对于该类 LED 灯具， $80^{\circ} \mathrm{C}$ 时最小截止时间为 1104 小时，寿命预估误差为 $1.15 \% ; 85^{\circ} \mathrm{C}$ 时最小截止时间为 936 小时，寿命预估误差为 $1.24 \%$ 。当寿命估计误差约为 $0.46 \%$ 时， $80{ }^{\circ} \mathrm{C}$ 和 $85{ }^{\circ} \mathrm{C}$ 对应的中位寿命分别为 7310 小时和 4598 小时。

关键词：LED 灯具；加速老化测试；中位寿命；滑动平均误差


[^0]:    ${ }^{\text {* }}$ Corresponding author

    * Project supported by the National High-Tech R\&D Program (863) of China (Nos. 2015AA03A101 and 2013AA03A116) and the Cui Can Project of Chinese Academy of Sciences (No. KZCC-EW-102)
    (D) ORCID: Jian HAO, http://orcid.org/0000-0002-2419-25083
    © Zhejiang University and Springer-Verlag GmbH Germany 2017

