
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 14, NO. 8, AUGUST 2017 1363

Improving Hyperspectral Image Classification by
Fusing Spectra and Absorption Features

Baofeng Guo, Honghai Shen, and Mingyu Yang

Abstract— Many features can be extracted to classify hyper-
spectral imagery. Classification relying on a single feature set
may lose some useful information due to the intrinsic limitation of
each feature extraction model. To improve classification accuracy,
we propose an information fusion approach, in which both the
global and the local aspects of hyperspectral data are taken into
account and are combined by a decision-level fusion method.
The global features are hyperspectral reflectance curves repre-
senting the holistic response to the incident light, and the local
features are absorption characteristics reflected by materials’
individual constituents. The decision-level fusion is carried out
by analyzing the entropy of the classification output from the
global feature set and modifying this output via the results of a
multilabel classification using the local feature set. Simulations
of classification performance on 16 classes of vegetation from the
AVIRIS 92AV3C and Salinas data set show the effectiveness of the
method, which increases the classification accuracy compared to a
popular support vector machine-based method and a production-
rule-based decision fusion method.

Index Terms— Decision-level fusion, hyperspectral image
classification, multilabel classification.

I. INTRODUCTION

HYPERSPECTRAL sensors simultaneously measure
hundreds of contiguous spectral bands with a fine spec-

tral resolution, e.g., 0.01 μm [1]. This makes it possible to
reduce overlaps between classes, and therefore enhances the
potential to discriminate subtle spectral differences. Using data
from hyperspectral sensors, the classification is carried out
by analyzing the electromagnetic reflectance as a function
of the wavelength or band, i.e., “the spectral signature.”
In recent years, the hyperspectral image classification has
received significant attention in many applications [2].

To effectively classify hyperspectral reflectance curves,
defining appropriate features is one of the major challenges.
Ideal features should characterize the intrinsic distinctness
among different types of materials, and should be robust to
atmospheric and neighboring pixel interferences. The com-
monly used features include the complete spectra [3], the spec-
tral bands from feature selection methods, the transformed
features from project pursuit, and so on.

Recently, absorption features have been considered as an
effective alternative for identifying materials by imaging
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spectroscopy [4]. Absorptions are the dips or valleys in the
reflectance spectra due to the incident light absorbed by the
constituent atoms or molecules. There are evidences showing
that the absorptions are connected with the material’s chemical
constituents, surface roughness, and so on. Since the complete
spectra is a reflectance curve in a wide range of wavelength,
the hyperspectral features based on the complete spectra can be
considered as a global view of the hyperspectral data. On the
other hand, the absorption features are the dips or valleys
appeared around certain narrow wavelengths. So they can be
considered as local views of the hyperspectral data. Because
the spectral reflectance and the absorption features are two
complementary responses (i.e., reflectance versus absorption)
from the material to the incident light and describe the data
from different views (i.e., the global view versus the local
view), it is potential to improve the hyperspectral classification
accuracy by combining two sets of features through informa-
tion fusion.

In this letter, a hyperspectral classification approach based
on a novel decision-level fusion is proposed. First, the spectra
of a pixel are extracted as features to describe the holis-
tic characteristics of the interaction between the materials
and the incident light. Second, the valleys in a spectral
reflectance curve are detected. An absorption feature vector
is formed by labeling the vector with positive ones in the ele-
ments corresponding to these particular wavelength or bands.
Associated with this feature categorization, an information
fusion scheme is introduced to combine the above two sets of
features.

In remote sensing, many studies have been carried out
to employ information fusion for better performance. Unlike
data-level and feature-level fusion that merge multisource
data or multiple feature-sets to improve performance, decision-
level fusion adopts rules to combine the results of individual
classifiers to make the final decision. In this sense, information
fusion can be achieved not only by combining different sources
of data, such as in the traditional sensor fusion, but also by
different feature extraction or “experts’ views,” which can
compensate the deficiency in a single view or knowledge
acquisition. In [5], a support vector machine (SVM)-based
decision fusion is proposed, where SVMs are trained indi-
vidually on different data sources and then are fused by
another SVM. In [6], a decision fusion approach is investigated
to combine results from a supervised SVM classifier and an
unsupervised K -means classifier. Then a weighted majority
voting rule is applied to the decision stage. In [7], a method
based on factor graphs is used for multiple sensors data fusion.
A context-sensitive object recognition method is discussed
in [8], where a decision-level fusion is used to combine
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Fig. 1. Fusion diagram for two sets of hyperspectral features.

multiview remotely sensed data using the scene contextual
information. In [9], a hyperspectral classification method is
proposed based on a probabilistic weighted fusion rule for
multiple spectral-spatial features. Other relevant researches
on remote sensing can be found in [10]–[12]. For a com-
prehensive review of various decision fusion schemes, please
refer to [13].

According to the nature of the above two sets of features,
a popular SVM is chosen to classify the global reflectance
features and a multilabel classifier [14] is used to classify
the local absorption features. Furthermore, using an informa-
tion entropy rule, a new scheme of decision-level fusion is
proposed to better combine the results of the SVM and the
multilabel classifier.

II. DECISION-LEVEL FUSION BASED ON ENTROPY

In the above arguments, we examined the ability of the
absorption features to classification, and contend that they
may lose efficacy due to the leak of information and the
loss of exclusivity of absorption features. Therefore, for a
more effective hyperspectral data classification, we consider
an information fusion diagram, in which the global fea-
tures of hyperspectral data (represented by the traditional
spectral reflectance curve) and the local features (repre-
sented by the new-added absorption features) are combined.
Because the two sets of features characterize the hyperspectral
from the “reflectance” view and the “absorption” view, respec-
tively, they are complementary to each other. Fusing them,
therefore, will provide more knowledge about the desired
hyperspectral signature for classification.

A. Fusion Framework
The proposed fusion diagram, shown in Fig. 1, consists of

two sets of hyperspectral features. The upper branch of the fea-
tures are the hyperspectral reflectance curves (i.e., the global
features), which are given by

xr =
(

X1
r , X2

r , . . . , X L
r

)

where Xi
r represents the i th band’s reflectance value, i =

1, 2, . . . , L, and L is the total number of bands in the hyper-
spectral data. SVMs have shown competitive performance
with the best available algorithms in many classification areas
including the hyperspectral data classification [3], and so were
chosen as the classifiers for the global feature set xr .

The lower branch of features are new-added, which are
based on the absorption valleys (i.e., the local features), and
are represented by a binary vector

xa =
(

X1
a, X2

a, . . . , X L
a

)
(1)

where the binary variable Xi
a = 1 if an absorption valley is

detected in the i th band and Xi
a = 0 when no absorption

occurs in this band. As discussed in Section I, if multiple
classes are involved in the classification, the chance of finding
unique absorption features for material identification becomes
much slim. This is because the chance of the absorption
features of one material coinciding with others increases sig-
nificantly when more materials are involved. Fig. 2 shows the
locations of the absorption features for all 16 classes of mate-
rials listed in AVIRIS 92AV3C. Before selecting absorption
features, the spectra of the hyperspectral data are normalized
to the range of [0, 1]. Then, a peak detection algorithm is
carried out on the normalized spectra to find all absorption
valleys. To avoid the impact from noise, only the absorption
valleys that can meet the following two criteria will be selected
as the absorption features. First, the depth of the absorption
valley should be larger than 0.005 that is chosen by empirical
observation. Second, the absorption features should appear
on more than half of the training spectra, which can reduce
the interference from noise. From Fig. 2, it is seen that the
majority of the absorption features are shared by each other,
and it is almost impossible to find a unique absorption feature
for identification in this case. Therefore, a method based on a
multilabel classification [14], depicted as follows, is proposed
to better handle the absorption features.

B. Multilabel Classification for Absorption Features
Multilabel classification studies the problem where multiple

target labels must be assigned to each instance or feature.
This is exactly the problem that we encounter for classifying
the absorption features, where an absorption valley may be
associated with a set of materials simultaneously (see Fig. 2).
Generally, the multilabel learning algorithms can be cate-
gorized as two groups, namely, the problem transformation
methods and the algorithm adaptation methods [14]. Here we
adapt a binary relevance method in our application. The basic
idea of the binary relevance method is to decompose the mul-
tilabel classification into N independent binary classification
problems, where N is the total number of the classes or labels.
The traditional relevance method is not designed for inputs
of binary vectors, so it cannot be used in our application
straightforwardly. Hence, we modified the method as follows.

Given a training set as a group of binary vectors xi =
(X1

i , X2
i , . . . , X L

i ), X j
i ∈ [0, 1] and their corresponding class

labels yi ∈ {1, 2, . . . , N}, i = 1, 2, . . . , M , where xi repre-
sents an absorption feature vector defined in (1), L is the
total number of bands, and M is the number of training
samples, the absorption feature vector x′k for class yk = n,
n ∈ {1, 2, . . . , N}, is summarized by ensuring that the majority
(e.g., 95%) of samples have the absorption valleys represented
by x′k . Then we get a new training set as follows:

T = {(
x′k, yk

)}
, k = 1, 2, . . . , N

where x′k = [(X ′)1
k, (X ′)2

k, . . . , (X ′)L
k ] representing the

kth materials’ absorption feature vector, (X ′) j
k ∈ {0, 1}.

An example of the training set T can be demonstrated
by Fig. 2, where each row of the figure illustrates a
220-dimensional absorption feature vector x′k corresponding to
the vegetation labeled by the y-axis. In Fig. 2, the black dots
represent the positive ones (i.e., presence of absorption) and
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Fig. 2. Absorption features (labeled by black dots) for 16 classes of materials in AVIRIS 92AV3C data set.

the white areas are zeros (i.e., absence of absorption). Because
in the binary vector x′k the positive value of the component
(X ′) j

k (i.e., the absorption valley is found in the j th band)
could be the result of a multiclass set Y j , Y j = {y1, y2, . . .},
it becomes a classical problem of multilabel classification, and
can be solved by the following steps [14].

1) A binary training set Dk is formed by assigning the
relevance of each absorption feature to yk

Dk =
{(

(X ′) j
k , φ(Y j , yk)

}
, j = 1, 2, . . . , L

where

φ(Y j , yk) =
{+1, if yk ∈ Y j

−1. otherwise.

}

2) A binary classifier fk is trained based on Dk , (k =
1, 2, . . . , L), where for relevant label yk ∈ Y j , (X ′) j

k
is regarded as one positive example, and vice versa;

3) Prediction for unseen instance x is carried out by query-
ing (X ′) j , j = 1, 2, . . . , L on each of the individual
binary classifier, and the result is given by

y = argmax
k

(yk| f (X j ) > 0, 1 ≤ k ≤ N, 1 ≤ j ≤ L).

C. Fusion Rule Based on Entropy

After extracting the reflectance feature vector xr and the
absorption feature vector xa , a natural way to combine them
for classification is by information fusion. In this application,
the two feature sets have different utilities to represent the
hyperspectral data. To meet their specific classifier require-
ments, it is better to assign a corresponding classifier to
each feature set individually. Meanwhile, as we discussed in
Section II-B it is preferred to use the multilabel classification
for the absorption features. So to achieve a better performance,
a decision-level fusion is investigated.

The decision-level fusion is a high-level operation, where
separate intermediate decisions are drawn from each individual
feature set and then combined to reach a global decision.
As we discussed above, we choose an SVM to classify the
reflectance feature vector xr and a multilabel algorithm to
classify the reflectance feature vector xa . As indicated by
our simulation, the classification accuracy of the reflectance
feature vector xr is higher than that of the absorption feature
vector xa , therefore, a customized decision-level fusion rule is
designed for this scenario as follows:

1) applying SVM to the reflectance feature vector xr , and
getting an initial classification result yr ;

2) applying the multilabel algorithm to the absorption fea-
ture vector xa , and getting a complementary classifica-
tion result ya;

3) assessing the accuracy of the initial classification result
yr ;

4) if the accuracy of yr is satisfactory, the final decision
is given by the primary classification result from the
reflectance features xr , i.e., y = yr ; otherwise, the
complementary result from the absorption features xa

is selected as the final decision, i.e., y = ya .

In 1), i.e., the assessment of the accuracy of the classi-
fication result for the reflectance feature vector xr , we first
calibrate the SVMs’ output to probability. Since standard
SVMs do not provide posterior probability directly, a mapping
method [15] is applied, where an additional sigmoid function
is used to approximate the necessary posterior probability.

After getting the SVMs’ probability outputs, we measure the
accuracy of the SVMs’ results by calculating the uncertainty
of p(y|xr). In this sense, the higher the uncertainty of the
output is, the lower the accuracy of the classification is.
In information theory, the uncertainty is often measured
by entropy. So to assess the accuracy of the classification
result yr , one convenient approach (based on the above basic
concept in information theory) is to calculate the entropy of
p(y|xr) as follows:

H (Y |xr) = −
∑

y∈Y

p(y|xr) log p(y|xr). (2)

Based on (2), we propose a decision-level fusion rule, which
can be depicted in Algorithm 1.

In Algorithm 1, the threshold η is used to measure whether
the accuracy of the SVMs’ output is satisfactory. The particular
value of η can be determined by examining the training data,
and the detailed discussion is given in Section III.

Comparing with previous research, the present approach is
neither a “hard” decision fusion that usually uses a majority
voting to get the final decision, nor a “soft” decision fusion that
usually uses a Bayesian probability combination. It, however,
can be considered as a hybrid decision fusion, in which an
uncertainty measurement (e.g., the entropy) is drawn from the
“soft” outputs (i.e., the probability outputs of the SVM), and is
used to arbitrate the “hard” decisions before reaching the final
decision. The strategy is particularly useful in our application
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Algorithm 1 Decision-Level Fusion Rule Based on Entropy
Require: xr,xa, η
Ensure: y
1: yr ← classify xr using SVMs
2: ya ← classify xa using the multi-label classifier
3: p (y|xr) ← transform SVMs’ output using (1)
4: H (Y |xr)) ← calculate entropy based on p (y|xr)
5: if H (Y |xr)) < η then
6: y ← yr
7: else
8: y ← ya
9: end if

since only two decisions can be made from the two sets of
features, in which the majority voting is not able to work.

III. SIMULATION RESULTS

Simulations of classification performance have been car-
ried out to assess the proposed band-selection method on
the hyperspectral data set AVIRIS 92AV3C. The database
is illustrative of the problem of hyperspectral image analy-
sis to determine land use. It can be downloaded from
ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/. The AVIRIS sensor
collects nominally 224 bands of data, but 4 of these contain
only zeros and so are discarded, leaving 220 bands in the
92AV3C data set. Each image is of size 145× 145 pixels. The
datacube was collected over a test site called Indian Pine in
north-western Indiana, USA. The database is accompanied by
a reference map, indicating partial ground truth. Each pixel
is labeled as belonging to one of 16 classes of vegetation,
including Alfalfa, Corn-notill, Corn-mintill, and so on. Pixels
of all the 16 classes of vegetation are used in the simulation.

To implement the proposed fusion method, the parameter η
is needed to be chosen at first. Two conditional probabil-
ity distributions, i.e., pt = P(H (Y |yr = y) and p f =
P(H (Y |yr �= y), are estimated by normalizing the histograms
of H (Y |yr = y) and H (Y |yr �= y), where the random
variable Y represents the output of the SVM, and conditions
yr = y and yr �= y represent correct decisions and wrong
decisions, respectively. It is known that with the increase
of the entropy of H (Y ), pt decreases and p f increases,
respectively. In other words, with the increase of the entropy
(i.e., the uncertainty of the output), the chance of incorrect
classification will rise and the chance of correct classification
will fall. Since in our algorithm the parameter η is designed
to measure whether the accuracy of the SVMs’ output is
satisfactory, it can be chosen as a value where the probability
of the misclassification is just above the probability of the
correct classification, as follows:

η∗ = argmin
η

(∫ ∞

η
ptd H (Y ) ≥

∫ ∞

η
pt d H (Y )

)
. (3)

For accuracy assessment, about 10% pixels from each class
were randomly chosen as the training data set, with the
remaining 90% forming the test set on which performance
was assessed. The random sampling used here is to be

TABLE I

CLASSIFICATION PERFORMANCE (SVM-BASED METHOD USING
REFLECTANCE FEATURES VERSUS THE PROPOSED FUSION

SCHEME USING REFLECTANCE AND ABSORPTION

FEATURES, AVIRIS 92AV3C DATA SET,
10% TRAINING SAMPLES)

consistent with previous researches and to allow an estimate
of the standard deviation caused by sampling. However, it is
noticed that this random sampling may tend to overestimate
the classification accuracy due to the spatial autocorrelation
between the test and training samples. To amend this, a more
adequate assessment could be set up by a spatially disjointed
sampling.

As discussed previously, SVMs are chosen as the classifier
for the reflectance feature vector. The kernel function used
is a heterogeneous polynomial. The penalty parameter C is
tested between 10−3 and 105, and the polynomial order is
tested from 1–10 by a twofold validation procedure using only
training data. The polynomial order 4 and C = 1500 were
finally found as the best values for this training set, and
applied to the following testing stage.

Table I compares the performance of the fusion method
and the SVM-based method [3]. It can be seen that the
overall accuracy of the fusion methods is 76.99%, which is
significantly higher than that of the SVM-based method using
the reflectance features. In all 16 classes, there are 12 classes
whose individual classification accuracies are improved by the
fusion method. The Cohen’s kappa coefficient of the fusion
method is also higher than that of the SVM-based method
(0.74 versus 0.60).

To avoid bias on random samplings of the training data
set, the testing was repeated 10 times to allow an estimate of
the error in this sampling process. The 10 times classification
results based on the reflectance features and three fusion
approaches are shown in Table II. The first method is the
SVM-based method that uses only the reflectance features.
The second method is a fusion method based on the production
rule [13]. Both the third and the fourth methods are based on
the proposed fusion scheme except that the third one uses
the spectral angle mapping (SAM) algorithm to classify the
reflectance features but the fourth one uses the SVM. It is seen
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TABLE II

PERFORMANCE COMPARISON OF THE PROPOSED FUSION SCHEME
WITH OTHER METHODS, AVIRIS 92AV3C DATA SET,

16 CLASSES, 10% TRAINING SAMPLES

TABLE III

PERFORMANCE COMPARISON OF THE PROPOSED FUSION SCHEME
WITH OTHER METHODS, AVIRIS 92AV3C DATA SET,

7 CLASSES, 5% TRAINING SAMPLES

TABLE IV

PERFORMANCE COMPARISON OF THE PROPOSED FUSION
SCHEME WITH OTHER METHODS, SALINAS DATA SET,

16 CLASSES, 5% TRAINING SAMPLES

that the overall classification accuracies of the fusion methods
are higher than that of the SVM-based method using only
the reflectance features. It is reasonable due to the new-added
information from the absorption features. The differences
among the three fusion methods show that the proposed fusion
scheme is slightly better than other two alternatives, in which
the choice of using SVM as the classifier to the reflectance
features is found to be better than that of using the SAM
classifier.

To compare with more fusion schemes, another assessment
is carried out based on the AVIRIS 92AV3C data set. To keep
the same experimental setting with [4], seven classes of
vegetations, including Corn-notill, Corn-mintill, Grass-trees,
Soybean-notill, Soybean-mintill, Soybean-clean, and Woods,
are chosen for classification, and about 5% of samples
are used for training. The experimental results are shown
in Table III. It is seen that the performance of the proposed
fusion scheme is competitive to the state-of-the-art fusion
approaches [4], [13], and outperforms the popular SVM-based
method [3].

To further testify the proposed fusion scheme, another
hyperspectral data set, Salinas scene, is assessed. This scene
was collected by the 224-band AVIRIS sensor over Salinas
Valley, California, USA. The area covered comprises 512 lines
by 217 samples and includes vegetables, bare soils, and
vineyard fields. In the experiment, about 5% of samples are
used for training and the remaining 95% of samples are used
for testing. Table IV shows the overall classification accuracies
based on 10 times random samplings of the training data.
It can be seen from Table IV that the classification accuracy of

the proposed fusion is slightly higher than the product fusion
scheme [13] and the SVM-based method [3]. Compared to
the 92AV3C scene, the classification of the Salinas data is
relatively easier, which makes the improvement by decision
fusion limited.

IV. CONCLUSION

A decision-level fusion method for hyperspectral image
classification has been described based on the reflectance
features and the absorption features. Given the complementary
relation between the reflectance features and the absorption
features, combining them is analogous to the idea of sensors
fusion that many fusion literatures employ. It can better char-
acterize the spectral signature from both a global reflectance-
view and a local absorption-view. Experiments on the AVIRIS
92AV3C and Salinas data sets show that the proposed method
outperformed the popular SVM-based method and was com-
petitive with the state-of-the-art fusion methods. The future
work will concentrate on new methods for better classifying
the absorption features.

REFERENCES

[1] A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging
spectrometry for earth remote sensing,” Science, vol. 228, no. 4704,
pp. 1147–1153, 1985.

[2] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders,
N. M. Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data
analysis and future challenges,” IEEE Geosci. Remote Sens. Mag., vol. 1,
no. 2, pp. 6–36, Jun. 2013.

[3] G. Camps-Valls and L. Bruzzone, “Kernel-based methods for hyperspec-
tral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 43,
no. 6, pp. 1351–1362, Jun. 2005.

[4] Z. Fu and A. Robles-Kelly, “Discriminant absorption-feature learning
for material classification,” IEEE Trans. Geosci. Remote Sens., vol. 49,
no. 5, pp. 1536–1556, May 2011.

[5] B. Waske and J. A. Benediktsson, “Fusion of support vector machines for
classification of multisensor data,” IEEE Trans. Geosci. Remote Sens.,
vol. 45, no. 12, pp. 3858–3866, Dec. 2007.

[6] H. Yang, Q. Du, and B. Ma, “Decision fusion on supervised and unsu-
pervised classifiers for hyperspectral imagery,” IEEE Geosci. Remote
Sens. Lett., vol. 7, no. 4, pp. 875–879, Oct. 2010.

[7] A. Makarau, G. Palubinskas, and P. Reinartz, “Alphabet-based multi-
sensory data fusion and classification using factor graphs,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 969–990,
Apr. 2013.

[8] F. T. Mahmoudi, F. Samadzadegan, and P. Reinartz, “Object recognition
based on the context aware decision-level fusion in multiviews imagery,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 1,
pp. 12–22, Jan. 2015.

[9] Z. Chunsen, Z. Yiwei, and F. Chenyi, “Spectral–spatial classification
of hyperspectral images using probabilistic weighted strategy for mul-
tifeature fusion,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 10,
pp. 1562–1566, Oct. 2016.

[10] B. Luo, M. M. Khan, T. Bienvenu, J. Chanussot, and L. Zhang,
“Decision-based fusion for pansharpening of remote sensing images,”
IEEE Geosci. Remote Sens. Lett., vol. 10, no. 1, pp. 19–23,
Jan. 2013.

[11] D. G. Stavrakoudis, E. Dragozi, I. Z. Gitas, and C. G. Karydas,
“Decision fusion based on hyperspectral and multispectral satellite
imagery for accurate forest species mapping,” Remote Sens., vol. 6, no. 8,
pp. 6897–6928, 2014.

[12] J. Wu, Z. Jiang, J. Luo, and H. Zhang, “Composite kernels conditional
random fields for remote-sensing image classification,” Electron. Lett.,
vol. 50, no. 22, pp. 1589–1591, 2014.

[13] R. Polikar, “Ensemble based systems in decision making,” IEEE Circuits
Syst. Mag., vol. 6, no. 3, pp. 21–45, Sep. 2006.

[14] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”
Int. J. Data Warehousing Mining, vol. 3, no. 3, pp. 1–13, 2007.

[15] J. C. Platt, “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” in Advances in Large
Margin Classifiers. Cambridge, MA, USA: MIT Press, 1999, pp. 61–74.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


