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ABSTRACT
The aim of this article is to provide an effective method to generate the
ground structure in truss topology optimization. The core of this method
is to place nodal points for the ground structure at the intersection of the
first and third principal stress trajectories, which are obtained by solving
the equivalent static problem in the design domain with a homogeneous
isotropicmaterial property. It is applicable to generate theground structure
for arbitrary regular and irregular geometric design domains. The proposed
method is tested on somebenchmark examples in truss topology optimiza-
tion. The optimization model is a standard linear programming problem
based on plastic design and solved by the interior point algorithm. Com-
pared with other methods, the proposed method may use a well-defined
ground structure with fewer nodes and bars, resulting in faster solution
convergence, which shows it to be efficient.
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1. Introduction

In truss topology optimization, the main goal is to find the optimal connections between bars and
to obtain the minimum weight or volume, and this approach is becoming very important in meet-
ing growing demands with limited resources. Michell (1904) stated a fundamental design principle
of plastic theory that can be used to judge whether a structure is optimal or not. However, Michell’s
theory does not indicate how to obtain the optimal structure. Dorn, Gomory, and Greenberg (1964)
presented the ground structure method (GSM), which provides a means of obtaining approximated
optimalMichell structures. In the GSM, a set of nodes, including constraint nodes and loading nodes,
is chosen and connected to construct a potential truss structure (i.e. ground structure). Usually, areas
of cross-sectionalmembers are taken as design variables, which allows the truss topology design prob-
lem to be viewed as a sizing problem. During optimization, bars that have sufficiently small areas are
deleted from the ground structure, thereby changing the topology of the truss, with the remaining
bars comprising the optimal structure. However, the removal of bars with small areas may violate the
stress constraint, sometimes known as stress singularity (Sved and Ginos 1968). Neglecting compati-
bility conditions and using approximate stress constraints can help to overcome this problem (Kirsch
1989, 1990; Rozvany 2001). Although the GSM was proposed several decades ago, it is still the main
approach used for truss topology optimization today.

In general, the optimal structure is deemed to be included in the ground structure. Therefore, the
more bars there are, the greater the possibility that the optimal solution is within potential connec-
tions. Usually, a better solution can be obtained by adding bars via the insertion of new nodal points.
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2 G. GAO ET AL.

However, in the case of a ground structure with n nodes, there are at most n(n − 1)/2 potential con-
nections, whichmeans that the number of bars increases as rapidly with n2, leading to the ‘combinato-
rial explosion effect’. Large-scale optimization, which must be done when large numbers of potential
bars are used as design variables, is the main challenge in truss topology optimization. Gilbert and
Tyas (2003) used the adaptive ground structure approach with selective subsets of active bars to solve
large-scale problems that involvedmore than one billion bars, while Sokół (2011b, 2014)modified the
approach and extended it tomultiple load conditions. The reasonwhy somanypotential truss connec-
tions are needed is that nodal positions are not optimal; this is referred to as a truss geometry problem.
However, adding extra nodal points can lead to many short bars and joints in the final topology and
result in additional cost for the computation. Parkes (1975) proposed that a joint-length penalty be
applied to each bar member to decrease the cost of fabricating the joints. Pritchard, Gilbert, and Tyas
(2005) extended this method to the case of large-scale three-dimensional truss topology optimiza-
tion. Dobbs and Felton (1969) proposed the technique of alternating the optimization of topology
and geometry. Achtziger (2006, 2007) used an implicit mathematical programming approach to opti-
mize truss geometry and topology simultaneously without the melting node effect. Wei, Ma, and
Wang (2014) proposed a stiffness spreading method to move bar elements independently in truss
layout optimization to form an optimized design. Zhou (2011) used the densities and orientations of
members as variables to stimulate a truss-like continuum. Despite the efforts of many researchers to
decrease bars and modify nodal positions during optimization, there seems to have been little recog-
nition of the fact that one of the key reasons for the occurrence of the aforementioned problems is
the unreasonable, predefined nodal positions in the initial ground structure. It is likely that a good
result can be obtained by constructing a good ground structurewith reasonable nodal point positions.
However, no criteria have been proposed to judge the performance of the ground structure.

The traditional design domains for truss topology optimization are often regularly rectangular
or square (Sokół 2011a). It is easy to form a mesh of mutually orthogonal families of members for
these ground structures for which the optimal solution will be in accord with Michell’s theory. How-
ever, practical engineering problems are often composed of arbitrary geometries rather than ‘boxes’,
making it difficult to formmutually orthogonal members in the ground structure. Based on the finite
element meshmethod combined with computer-aided design software, Smith (1996, 1998) proposed
an interactive system to generate ground structures in non-convex design areas. Zegard and Paulino
(2014) used the ground structure analysis and design (GRAND) method to generate ground struc-
tures for unstructured design domains. However, thesemethods focusmainly onmeshing of irregular
domains rather than determining how to arrange the nodal positions reasonably, and the mesh with-
out considering external load vectors and displacement boundary conditionsmay lead to undesirable
optimization solutions.

Since the ground structure has a great influence on the final topology structure, the method used
to generate the ground structure is very important in truss topology optimization. If a method can
generate a well-defined ground structure with only a few nodes and bars, it may help to obtain a
good topology solution and decrease computational cost, which is especially significant for problems
in practical engineering. In this article, a new method is proposed to generate the ground struc-
ture according to the principal stress trajectories, and it is applicable to regular and irregular design
domains. In addition, the nodes and bars generated by the proposed method are in locations that are
more likely to be useful for truss topology optimization, and consequently this method may produce
better performing structures and enhance the computational efficiency of the solution.

1.1. Background

The utilization of trajectories of the principal stresses is widespread in the design of strut-and-tie
models of reinforced concrete structures (Nori and Tharval 2007; Tuchscherer, Birrcher, and Bayrak
2011), and is also suggested in many building codes (ACI 2005; BSI 1992). For example, in the
reinforced concrete beams in Figure 1(a), the main steel members are configured along the principal
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ENGINEERING OPTIMIZATION 3

(a)

(b)

Figure 1. Reinforced concrete beams: (a) principal stress trajectories; (b) layout of steels.

trajectories of tensile stresses in order to bear stresses. As a consequence, the bearing capacity of the
beams is enhanced, as shown in Figure 1(b).

In addition, it is well known that the optimal topology for a truss can be considered to be approx-
imately the optimal force transmission path. Since the layout based on trajectories of the principal
stresses proves to have a good effect on improving the capacity of structures, a new method inspired
by the above ideas is proposed to generate the ground structure in truss topology optimization. In
this method, the nodal points for the ground structure are placed at the intersection of the first and
third principal stress trajectories. These trajectories are drawn on the basis of the stresses and strains
obtained by solving the equivalent static problem in the whole design domain with a homogeneous
isotropic material property.

For a plane stress problem, the first principal stress represents the maximum normal stress, while
the third principal stress represents the minimum normal stress, and they are mutually orthogo-
nal. If the trajectories are dense enough, the bars connected by nodal points at the intersection
of these trajectories will be approximately orthogonal in the ground structure, meaning that the
optimization solution satisfactorily meets the orthogonality condition. The approach works well for
arbitrary design domains independent of geometries. At the same time, for a single loading condition,
minimum compliance (or maximum stiffness) optimization is equivalent to the stress-constrained
minimum volume problem (Achtziger et al. 1992), meaning that the stiffness increases and the vol-
ume decreases simultaneously for the structure during the optimization process. It is known that
stiffness is one kind of bearing capacity. Thus, if this approach can enhance the bearing capacity of the
structure, it may help to improve the stiffness (or reduce the volume) of the structure to some extent,
which is compatible with the objective of the optimization. Based on the considerations above, nodal
points could be placed at the intersection of the first and third principal stress trajectories to generate
the ground structure, which may include good candidates for the optimal truss topology and result
in a good optimization solution.

1.2. Drawing the principal stress trajectory

To obtain the principal stress trajectories, the equivalent static elastic problem in the whole design
domain with a homogeneous isotropic material property is solved to obtain stress and strain values.
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4 G. GAO ET AL.

(a) (b)

Figure 2. Simple examples: (a) two virtual principal stress trajectories; (b) several real principal stress trajectories.

This can be accomplished easily using commercial finite elementmethod software, such as COMSOL
or ANSYS. Because the accuracy of principal stress trajectories has a great influence on the optimiza-
tion solution, it is suggested that higher order finite elements as well as a dense mesh be used to solve
the problem in order to improve precision.

After the values and directions of the principal stresses have been obtained, the principal stress
trajectories can be drawn. To illustrate a simple example in Figure 2, the steps are as follows:

(1) Select the starting points of trajectories. The points with external loads and displacement con-
straints are usually used. In this example, the constraint nodes a1 and b1 in Figure 2(a) are chosen
as starting points.

(2) Compute the value and direction of the principal stress usingMohr’s circle for the specified point.
(3) Draw a line segment with the direction above and specified constant step length h from this point

to obtain the next point.
(4) Repeat steps (2) and (3).
(5) Stop when the lines reach the boundaries of the design domain. The intersection of the last line

segment and the boundary is the final nodal point (i.e. a8 and b7).

Figure 2(b) shows several real principal stress trajectories drawn by the aforementioned steps. Note
that this approach applies to the first principal stress trajectories (solid lines) as well as the third
principal stress trajectories (dashed lines). The difference is that the former uses themaximumnormal
stress and the latter uses the minimum normal stress; subsequently, nodal points are configured at
the intersection of these trajectories. Apparently, the value of step length h has a direct influence on
the accuracy of the principal stress trajectories. In general, the value of h should be small enough to
decrease the accumulating numerical errors. However, if it is too small, it will increase the time of
drawing greatly without apparently improving accuracy. For the work described in the article, the
value of h has been taken as 1/1000th of the length of the longer boundary of the design domain.

1.3. Generating the ground structure

After the intersecting nodal points have been obtained, the ground structure can be constructed by
connecting these nodes. Because it is difficult to generate mesh using the discrete nodes, the meth-
ods based on mesh to construct ground structures cannot be used directly (Smith 1998; Zegard and
Paulino 2014). Thus, an approach is proposed to generate the ground structure with full member
connections using arbitrary distribution of the nodes.
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ENGINEERING OPTIMIZATION 5

Figure 3. Six arbitrary nodal points.

The detailed procedure used to generate the ground structure is illustrated by a simple example
with six arbitrary nodal points in Figure 3. Assuming that the bars with the same nodes but in a
different order are regarded as different, there areA2

6 = 30member connections in total. The objective
is to find the bar that connects two nodal points without others between them, which is also the basic
rule for generating the ground structure. For convenience, these bars are sorted in ascending order
from the starting point, and bars with the same starting point are arranged in ascending order based
on the ending point, namely:

Bar =
[
1 1 1 1 1 2 2 2 2 2
2 3 4 5 6 1 3 4 5 6 · · · 6 6 6 6 6

1 2 3 4 5

]
(1)

The checking progresses among all bars with the same starting point, and the criterion for eliminating
bars is the overlapping and collinear condition. For example, there are five bars starting with node
1. The steps taken to find bars connecting node 1 without overlapping and collinear members are as
follows: for bar 12, by checking bars 13, 14, 15 and 16, it turns out that bar 12 has no overlapping and
collinear members, so bar 12 remains in the ground structure; next, bar 13 should be checked with
bars 14, 15 and 16. It is obvious that bars 13 and 14 are overlapping and collinear, so the shorter one,
bar 14, remains, and the comparisons between bar 13/bar 14 and others can stop, to decrease useless
computations. Bar 15 is shown to remain, by checking with bar 16. As for bar 16, it is assumed that
there are no overlapping and collinear bars with this bar because it was not deleted in the previous
check. As a consequence, bar 16 also remains. Thus, the bars starting with node 1without overlapping
and collinear members are bars 12, 14, 15 and 16. Figure 4 shows that the other bars are checked in
the same way.

Inspired by the approach in theGRANDmethod (Zegard and Paulino 2014), a connectivitymatrix
C is proposed to find the non-repeated bars, whose row–column represents the nodal number, and

Figure 4. Overlapping and collinear bars checking progress.
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6 G. GAO ET AL.

Figure 5. Connections for the ground structure.

the element value represents the existing bar member:

[C]m,n =
{
1 if bar with nodesm and n exists
0 otherwise or if m = n

(2)

For this example, the connectivity matrix C obtained by the remaining bars from Figure 4 is:

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 1 1
1 0 1 1 1 1
0 1 0 1 1 0
1 1 1 0 1 0
1 1 1 1 0 1
1 1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

It is worth noting that if the checking progress is correct, the connectivitymatrixC is symmetrical, and
its upper triangular part is just the connectivity of non-repeated bars. Thus, the 12 non-overlapping
bars in Equation (4) finally generate the ground structure, which is shown in Figure 5.

Bar =
[
1 1 1 1 2 2 2 2 3 3 4 5
2 4 5 6 3 4 5 6 4 5 5 6

]
(4)

This approach can generate the ground structure with full connections independent of nodal posi-
tions and numbers, especially for irregular design domains. It is notable that the ground structure
obtained in this way is a convex polygon. That is to say, if the original design domain is convex, this
method can be used to generate the ground structure directly. But if the design domain is concave, this
method should be used in conjunction with the collision-detection technique (Bergen 2004; Ericson
2004) to delete unexpected members that lie in concave zones.

1.4. Collision-detection technique

The collision-detection technique is widely used in the games industry and in computational geom-
etry (Bergen 2004; Ericson 2004). Generally speaking, it provides some algorithms to help judge the
collision between two objects. For truss topology optimization, these algorithms are used to eliminate
unexpected bars which lie outside the design domain when constructing the ground structure. The
L-beam problem is used here as a demonstration.

The design domain of the L-beam problem is shown in Figure 6(a), where the points represent
nodes in the ground structure. Figure 6(b) shows the ground structure with full connections by the
method proposed above. Bars 51, 53, 54, 81, 82 and 83 are unexpected members which lie outside
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ENGINEERING OPTIMIZATION 7

(a)

(b) (c)

Figure 6. L-beam problem: (a) original node distribution; (b) connections without collision-detection technique; (c) connections
with collision-detection technique.

the design domain. It is worth noting that these five bars intersect with the dashed rectangle, which is
usually called the restriction zone (Zegard and Paulino 2014), and others lying in the design domain
do not. Therefore, it merely needs to judge whether the bars in the ground structure with full con-
nections intersect with the restriction zone (a line segment against a rectangle in this example), and
then eliminate intersecting members. Figure 6(c) shows the final ground structure constructed by
the remaining bars, where all members lie within the design domain. The numerical algorithms or
criteria used to judge the collision with restriction zones are called the collision-detection technique.
With the help of this approach, the ground structure for concave design domains can be successfully
constructed.

2. Formulation

The work reported in this article focuses on plastic design in which only a stress (strength) condition
is prescribed and elastic compatibility is not required (Hemp 1973; Rozvany 2011). As mentioned
above, for a single loading condition, optimization of the maximum stiffness is equivalent to the
stress-constrained minimum volume problem. The optimal result is known to be statically deter-
minate, and therefore the optimal solution for these structures is equally valid for optimal elastic and
plastic designs (Rozvany 1997; Rozvany, Sokół, and Pomezanski 2014). In addition, the plastic design
for one load case is free from the stress singularity problem (Kirsch 1989, 1990).

The basic formulation of the stress-constrained, minimum-volume problem in plastic design,
neglecting the compatibility condition, is (Bendsøe and Sigmund 2003):

min
f ,v

M∑
e=1

ve
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8 G. GAO ET AL.

s.t. : Bf = F

−σCve ≤ lefe ≤ σTve, e = 1, . . .M

ve ≥ 0, e = 1, . . .M (5)

where ve and fe are the volume and axial force of the eth truss member, respectively. M is the total
number of members, F is the nodal force vector with size N × 1, where N denotes the number
of degrees of freedom. B is the compatibility matrix with size M×N, the ith column of which is
[0, . . . ,−C(i)

ax ,−C(i)
ay , 0, . . . ,C

(i)
bx ,C

(i)
by , 0, . . .]

T. Here, Cx and Cy refer to the cosines of the x-direction
and y-direction of the ith member with starting point a and ending point b, respectively. For a sta-
ble ground structure, B has full ranks N (N ≤ m). The terms σT and σC refer to the stress limits in
tension and compression, respectively.

It is worth noting that the stress constraints are written in terms of force. To obtain a fully stressed
design, the expressions of volume and axial force are modified as follows (Bendsøe and Sigmund
2003):

ve = le
(
f+e
σT

+ f−e
σC

)

f = f+ − f−
(6)

Then, the formulation of the optimization problem is changed to a standard linear programming
(LP) problem:

min
f+,f−

M∑
e=1

le
(
f+e
σT

+ f−e
σC

)

s.t. : B(f+ − f−) = F

f+e ≥ 0, f−e ≥ 0, e = 1, . . .M

(7)

where the design variables are axial forces only, and f+e and f−e can be seen as the eth member tension
and compression, respectively, and at least one of them is zero. The axial force is tension if f−e =
0, f+e > 0 and compression if f−e > 0, f+e = 0. In the case where f−e = 0, f+e = 0, it is assumed that
the bar can be deleted from the connections of the ground structure. It is easy to achieve a global
optimal solution for the LP problem using the interior point algorithm (Luenberger and Ye 2008).
It is notable that the above LP problem can also be handled with the adaptive GSM (Gilbert and
Tyas 2003; Sokół 2011b, 2014), which is much more effective for large-scale problems. However, the
direct method is chosen in this article because the numerical examples used are just medium-scale
problems.

3. Numerical examples

The following benchmark examples are solved to show the effectiveness of the proposed method.
Unless stated otherwise, the parameters used to draw the trajectories of the principal stresses are
defined as follows: Poisson’s ratio ν = 0.33, Young’s modulus E = 2× 1011 Pa and external load
P = 1N. The optimization of the truss topology is based on equal stress limits for tension and com-
pression, meaning σT = 1 and σC = 1. The equivalent static problem in the design domain is solved
by commercial software COMSOL3.5 with the Lagrange–quadratic element to draw the trajectories
of the principal stresses and to optimize the topology of the trusses. All problems are tested on an
Intel i5 M 560 personal computer running at 2.67GHz with 4GB of RAM.
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ENGINEERING OPTIMIZATION 9

3.1. Irregular design domain

Awell-known example of truss optimization in the irregular design domain is the Michell cantilever,
for which loading and boundary conditions are shown in Figure 7. Unlike the ‘box’ zones, the design
domain has circular support, making it complicated to construct the ground structure with mutually
orthogonal bars in traditionalways. If the height bof the domain is long enough, the analytical optimal
volume is Vopt = Pa log(a/r)(1/σT + 1/σC) = 16.0944 (Michell 1904).

In this example, the starting points of the principal stress trajectories are equally distributed on
the circular boundary. Because too few principal stress trajectories cannot reflect the real stress dis-
tribution, which has a great influence on the optimal solution, it is suggested that the trajectories be
drawn densely enough to generate the ground structure. Cases of different numbers of principal stress
trajectories are listed in Figure 8, where N is the number of each kind of principal stress trajectory.
The solid lines represent the first principal stress trajectories and the dashed lines represent the third
principal stress trajectories. The intersections of these trajectories are used as the nodes that connect
the bars in the ground structure.

Ground structures will be constructed using these nodes via the approach presented in Section
1.3. The ground structure for N = 12 is shown in Figure 9. It can be seen that the design domain
has a concave region (i.e. the circular support zone). The bars that intersect with the half-circle are
unexpected ones, all or part of which are outside the design domain in Figure 9(a). Therefore, in the
collision-detection algorithm a line segment against a circle is used to eliminate redundant bars, and
the remaining members generate the final ground structure in Figure 9(b).

The optimum topology solutions for these ground structures are listed in Figure 10, and the
detailed optimization information is listed in Table 1, where TLP presents the time taken by the cen-
tral processing unit (CPU) to solve the LP problem. The bars for optimal structures are just along
the principal stress trajectories. If these principal stress trajectories are drawn densely enough, the
final optimization solution can meet the orthogonality condition. It is worth noting that the optimal
value of the volume decreases as the number of principal stress trajectories increases, and the topol-
ogy structure becomes more and more similar to the analytical structure (Michell 1904). In the case
in which 24 trajectories are used to generate the ground structure, the minimum volume obtained is
16.2065, where the relative error is merely 0.7% compared with the analytical solution. In addition,
the topology structures are very brief and clear, without unnecessary irregular members.

For the sake of comparison, the same problem is solved using the ground structure generated via
the GRAND method (Zegard and Paulino 2014). Table 2 presents the solutions of various numbers
of elements with the constant parametersMaxIter = 20 and Lvl = 25. Figure 11 shows the mesh and
topology structure byNElem = 500. From the data inTables 1 and 2, it can be found that the proposed
method can use fewer nodes and bars to generate a well-defined ground structure and obtain a similar

Figure 7. Michell cantilever problem.
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10 G. GAO ET AL.

Figure 8. Different numbers of principal stress trajectories for the Michell cantilever.

D
ow

nl
oa

de
d 

by
 [

C
ha

ng
ch

un
 I

ns
tit

ut
e 

of
 O

pt
ic

s,
 F

in
e 

M
ec

ha
ni

cs
 a

nd
 P

hy
si

cs
],

 [
G

e 
G

ao
] 

at
 0

3:
22

 1
3 

A
pr

il 
20

16
 



ENGINEERING OPTIMIZATION 11

(a)

(b)

Figure 9. Ground structure for N = 12: (a) convex ground structure; (b) concave ground structure.
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12 G. GAO ET AL.

Figure 10. Optimum solutions of different numbers of trajectories for the Michell cantilever.

volume value compared with this popular mesh method, and consequently less CPU time for solv-
ing the LP problems to result in faster solution convergence. In addition, in approximately the same
volume (with relative error 0.7%), the topology structure obtained by the new method in Figure 10
(N = 24) is simpler and clearer, without unnecessary bars with near-zero area, compared with the
result in Figure 11(b). From the above observations , one may conclude that the new approach can
generate well-defined ground structures for irregular design domains which include good candidates
for the optimal topology structure, leading to better optimization solutions.
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ENGINEERING OPTIMIZATION 13

Table 1. Solutions of different trajectories for the Michell cantilever.

Number Node Bar Volume Error TLP (s)

12 91 3,222 16.8519 4.71% 0.290826
14 120 5,745 16.6076 3.19% 0.518796
16 151 9,135 16.4487 2.20% 0.827591
18 187 14,168 16.3485 1.58% 1.53509
20 228 21,197 16.2791 1.15% 2.69551
22 273 30,635 16.2348 0.87% 4.09549
24 322 42,842 16.2065 0.70% 6.69554

Table 2. Solutions of different elements for the Michell cantilever by ground structure analysis and design (GRAND).

NElem Node Bar Volume Error TLP (s)

40 86 3,292 16.8734 4.84% 0.364764
70 143 9,181 16.6006 3.15% 1.1523
100 200 17,943 16.4121 1.97% 3.49436
200 394 67,431 16.2736 1.11% 23.6787
300 592 145,490 16.2369 0.89% 74.5118
400 794 249,054 16.2188 0.77% 189.686
500 994 371,079 16.2075 0.70% 347.925

(a) (b)

Figure 11. Michell cantilever topology optimization by ground structure analysis and design (GRAND) for NElem = 500: (a) finite
element method mesh for the design domain; (b) optimum topology.

3.2. Regular design domain

This method is applicable to regular design domains as well. The Bridge problem is illustrated as
an example, with the loading and boundary conditions shown in Figure 12. The analytical optimal
volume is Vopt = P(a/2)(1/2 + π/4)(1/σT + 1/σC) = 3.8562 (Michell 1904).

In this example, points around loading and constraint nodes are chosen as the starting points of
the trajectories of the principal stresses. The structure in this example is symmetrical for axis x = 1.5,
which means that only half of the trajectories need to be drawn, and the rest can be obtained using
a symmetry operation. Topology solutions of different numbers of principal stress trajectories are
listed in Table 3, where Nf and Nt represent the number of the first and the third principal stress
trajectories, respectively. Again, the volume value becomes smaller and smaller with the increasing
number of trajectories. In the case of Nt = 11 and Nf = 12, the optimal volume is 3.8652 with rel-
ative error 0.23%. The distribution of principal stress trajectories and the optimum solution for this
case are shown in Figure 13(a) and (b), respectively. Note that the bars in the topology structure are
approximately along the principal stress trajectories.
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14 G. GAO ET AL.

Figure 12. Bridge problem.

Table 3. Solutions of different trajectories for the Bridge problem.

Nt Nf Node Bar Volume Error TLP (s)

7 4 52 1,304 3.8984 1.09% 0.13718
8 6 91 4,066 3.8743 0.47% 0.396737
9 8 138 9,416 3.8674 0.29% 1.28103
10 11 211 22,109 3.8670 0.28% 3.82562
11 12 250 31,069 3.8652 0.23% 5.40863

(a) (b)

Figure 13. Case ofNt = 11 andNf = 12 for the Bridge problem: (a) principal stress trajectories distribution; (b) optimumsolution.

The problem is also optimized by the traditional method with square mesh division and full con-
nections, which can easily formmutually orthogonal bars. Table 4 provides optimization information
about different meshes for the ground structures. From the data in Tables 3 and 4, the observation
can be made that in order to obtain a similar volume value, there are fewer nodes and bars in the
ground structure generated by the new method. In the case of a volume value with error of about
0.24%, the ground structure of mesh 48 × 32 in Figure 14(a) must be used, which has more bars
(795,804) than the new method (31,069), thus inevitably increasing the computational cost for solv-
ing the LP problem. In addition, Figure 14(b) shows that the optimized topology has no vertical bar
that is independent of the number of meshes used. However, such a vertical member exists in the
topology that is optimized by the new method in Figure 13(b), which is in agreement with the ana-
lytical solution. Therefore, the new proposed method can generate a well-defined ground structure
whose nodes and bars are more likely to be useful for truss topology optimization, which can result
in good performance structures for the regular design domains as well.
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ENGINEERING OPTIMIZATION 15

Table 4. Solutions of different mesh divisions for the Bridge problem.

Mesh Node Bar Volume Error TLP (s)

18× 12 247 18,622 3.9048 1.26% 2.91788
24× 16 425 55,024 3.8964 1.04% 15.6073
30× 20 651 129,182 3.8801 0.62% 55.9815
36× 24 925 260,468 3.8742 0.47% 166.688
42× 28 1247 472,822 3.8693 0.34% 427.410
48× 32 1617 795,804 3.8656 0.24% 1014.71

(a) (b)

Figure 14. Bridge topology optimization by mesh 48× 32: (a) design domain mesh; (b) optimum topology.

4. Discussion

The above examples show that the proposed method can generate well-defined ground structures
with only a few nodes and bars for truss topology optimization, with equal permissible stresses in
tension and compression. However, in plastic design, especially for structures with statically inde-
terminate support conditions (Rozvany 1996; Sokół and Rozvany 2013), the stress limit ratio (κ =
σT/σC) has an effect on the optimal structure; in this case, the trajectories have to be changed to
obtain good solutions for different stresses in tension and compression. One possible approach is to
use the dual extension/compression modulus model to establish the nonlinear relationship between
stress and modulus (Liu and Qiao 2011), the elasticity parameters of which can be adjusted depend-
ing on the stress limit ratio. In this way, the layout of trajectories of principal stresses may be adjusted
reasonably for different stresses in tension and compression, and lead to good topology structures.
In addition, owing to the difference in properties, it is worth noting that the trajectories of principal
stresses for isotropic material may not be optimal for orthotropic material defined by Michell struc-
tures. Nevertheless, combined with shape optimization (Achtziger 2006, 2007), the position of nodal
points generated by the proposed method for design domains with orthotropic material can also be
better adjusted to construct good ground structures. Moreover, although not considered here, the
method may be extended to multi-load case problems in plastic design, whose trajectories of princi-
pal stresses can be obtained by superposition of the trajectories of principal stresses thatwere obtained
in the one-load case on the basis of component loads (Nagtegaal and Prager 1973; Rozvany, Sokół,
and Pomezanski 2014; Sokół 2014). In this case, it is suggested that the adaptive GSM is used to solve
the large-scale LP problems, and this proves to be efficient and reliable (Gilbert and Tyas 2003; Sokół
2011b, 2014).

This article provides an algorithm to construct the ground structure with full connections and
without overlapping members, using arbitrary nodes. However, it is obvious that it can be simplified
and improved by other,more efficientmethods. Furthermore, the forward integrationmethod used to
draw trajectories is not accurate enough and costs additional time, which could be improved bymore
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16 G. GAO ET AL.

accurate approaches (e.g. Xu and Yuan 2005) and should be realized automatically to improve the
accuracy and efficiency in future research.

5. Conclusion

An efficient new method is proposed to generate the ground structure in truss topology optimiza-
tion in plastic design. Unlike traditional ways, which use the relationship between nodes and mesh
to construct ground structures, the proposed method uses the intersections of the trajectories of the
first and third principal stresses as nodal points to generate the ground structure, which are obtained
by solving the equivalent static problem in the whole design domain with a homogeneous isotropic
material property. There are some merits to this method. First, this approach can be applied to arbi-
trarily shaped design domains. The bars constructed in the ground structure can be approximately
orthogonal if there are dense enough principal stress trajectories, independent of the geometry of
the zones. Secondly, the nodes and bars generated for the ground structure are more likely to be in
reasonable locations that may help to construct useful bars for truss topology optimization. Thus,
the proposed method may generate well-defined ground structures with only a few nodes and bars,
resulting in structures with good performance, which shows that it can enhance the computational
efficiency of the solution.
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