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Abstract: In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly
environment-dependent and the parameters of the system model are also uncertain, which may
lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an
improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of
SINS transfer alignment is defined based on the “Velocity and Attitude” matching method. Then the
detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance
and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed
to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF.
The results show that the AIKF algorithm has better estimation accuracy and shorter convergence
time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and
rapidity requirement of transfer alignment.
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1. Introduction

Mirco-Electronical Mechanical System Inertial Measurement Unit (MEMS IMU), as shown in
Figure 1, has been widely used in the Strapdown Inertial Navigation Systems (SINS) field in recent
years because it has low cost, small size, and low power consumption [1]. In airborne MEMS SINS
application, before the operation of the slaved SINS, it must be initially aligned using the master SINS
and Kalman filter [2]. However, MEMS IMU has poor bias repeatability and bias drift level owing
to the low-cost fabrication process, which may lead to large attitude error of the SINS in long time
navigation cases [3,4]. A gyroscope with hundreds of deg/h of bias may lead to large nonlinear error
in the progress of SINS transfer alignment. In the meantime, the uncertainty of noise, the lever arm
effect, elastic distortion, and other disturbance during some violent maneuvers in practical application
will make the transfer alignment more complex [5]. Besides, in airborne transfer alignment, the system
errors of the measurement equation are usually unknown and the model parameters are also uncertain,
which may lead to large error and bad convergence of the Kalman filter.
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that the proposed method has better performance and shorter alignment time. In [9], a new multiple 
fading factors Kalman filtering algorithm is presented to solve the problem that the Kalman filter 
cannot give the optimal solution when the accurate system model and stochastic information are 
unknown. It uses the innovation sequence to compute multiple fading factors to scale the predicted 
covariance matrix. A similar conclusion can be drawn in [10]. By carefully designing a filter, we can 
develop an algorithm that is less sensitive to uncertain noise and has a better estimation effect, 
which is important for transfer alignment. From these references, we can see that the proper filter 
algorithm for MEMS SINS transfer alignment should be more robust and adaptive. This is the main 
idea of our research. 

 

Figure 1. MEMS inertial measurement units. 

Based on these studies on the alignment algorithm, we proposed an improved transfer 
alignment algorithm based on AIKF. The paper is organized as follows. First, the model of SINS 
transfer alignment is defined, which includes the SINS mechanized arrangement, the SINS error 
model, the flexural deflection error model, and the state and measurement equations of the transfer 
alignment. Then, the algorithm of AIKF is presented with detailed description. The calculation 
amount and the performance of AKF and AIKF are also compared. Finally, a digital simulation test 
based on MATLAB is designed. The results are compared with traditional methods to test its 
performance. 

2. Model of SINS Transfer Alignment 

2.1. SINS Mechanized Arrangement 

The local geographical coordinate is chosen as the navigation reference frame (n-frame), and the 
SINS mechanized arrangement equations are: = × − ×= − 2 + × +  (1) 

where 	  is the direction cosine matrix of the body frame with respect to the n-frame. 	 is the 
velocity of the vehicle with respect to the earth in the navigation frame.  is the specific force of 
the vehicle.  is the rotation angular rate of n-frame with respect to the inertial frame (i-frame). 	 is the earth rotation angular rate. 		 is the rotation angular rate of n-frame with respect to 
the earth.  is the local gravity acceleration in n-frame [11]. 

2.2. SINS Error Model 

The attitude error equation of SINS is, = − × + −  (2) 

where 		  is the attitude error angle of the slave SINS between the calculated n-frame and the real  
n-frame. 	 is the rotation angular rate of n-frame with respect to the i-frame, and 	 is the 
error of 	 . 	 is the direction cosine matrix of the body frame with respect to the n-frame. 	 is 
the equivalent bias drift error of the gyroscope. 

The velocity error equation of SINS is, = × − 2 + × + × 2 + +  (3) 

Figure 1. MEMS inertial measurement units.

In order to improve the performance of the filter, many researchers are involved in developing
improved filtering algorithms. In [6] an H∞ filter and Unscented Transformation (UT) algorithm are
introduced. When applied to a nonlinear model, a model with colored noise, or an unmatched model,
H∞ filter is still robust. An adaptive Unscented Particle filter is introduced in [7] to solve the initial
alignment of SINS with large misalignment. In [8], a robust adaptive filter algorithm based on local
observability analysis is developed for rapid transfer alignment. Simulation results indicate that the
proposed method has better performance and shorter alignment time. In [9], a new multiple fading
factors Kalman filtering algorithm is presented to solve the problem that the Kalman filter cannot
give the optimal solution when the accurate system model and stochastic information are unknown.
It uses the innovation sequence to compute multiple fading factors to scale the predicted covariance
matrix. A similar conclusion can be drawn in [10]. By carefully designing a filter, we can develop an
algorithm that is less sensitive to uncertain noise and has a better estimation effect, which is important
for transfer alignment. From these references, we can see that the proper filter algorithm for MEMS
SINS transfer alignment should be more robust and adaptive. This is the main idea of our research.

Based on these studies on the alignment algorithm, we proposed an improved transfer alignment
algorithm based on AIKF. The paper is organized as follows. First, the model of SINS transfer
alignment is defined, which includes the SINS mechanized arrangement, the SINS error model, the
flexural deflection error model, and the state and measurement equations of the transfer alignment.
Then, the algorithm of AIKF is presented with detailed description. The calculation amount and the
performance of AKF and AIKF are also compared. Finally, a digital simulation test based on MATLAB
is designed. The results are compared with traditional methods to test its performance.

2. Model of SINS Transfer Alignment

2.1. SINS Mechanized Arrangement

The local geographical coordinate is chosen as the navigation reference frame (n-frame), and the
SINS mechanized arrangement equations are:

.
C

n
b = Cn

b

[
ωb

ib×
]
−
[
ωn

in×
]
Cn

b
.
V

n
e = fn −

(
2ωn

ie + ωn
en
)
× Vn

e + gn
(1)

where Cn
b is the direction cosine matrix of the body frame with respect to the n-frame. Vn

e is the velocity
of the vehicle with respect to the earth in the navigation frame. fn is the specific force of the vehicle.
ωn

in is the rotation angular rate of n-frame with respect to the inertial frame (i-frame). ωn
ie is the earth

rotation angular rate. ωn
en is the rotation angular rate of n-frame with respect to the earth. gn is the

local gravity acceleration in n-frame [11].

2.2. SINS Error Model

The attitude error equation of SINS is,

.
ϕn = −ωn

in ×ϕn + δωn
in − Cn

b εb (2)
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where ϕ is the attitude error angle of the slave SINS between the calculated n-frame and the real
n-frame. ωn

in is the rotation angular rate of n-frame with respect to the i-frame, and δωn
in is the error of

ωn
in. Cn

b is the direction cosine matrix of the body frame with respect to the n-frame. εb is the equivalent
bias drift error of the gyroscope.

The velocity error equation of SINS is,

.
δVn

e = fn ×ϕn − (2ωn
ie + ωn

en)× δVn
e + Vn

e × (2δωn
ie + δωn

en) + Cn
b∇

b (3)

where δVn
e is the velocity error of the vehicle in n-frame. ∇b is the equivalent bias drift error of the

accelerometer. δωn
ie and δωn

en are the angular rate error of ωn
ie and ωn

en, respectively [12].

2.3. Flexural Deflection Error Model

When the vehicle is mounted on the aircraft, the airframe may suffer from flexural deflection
caused by the disturbance of airflow or some maneuvers such as turns, climbs, and swings.
This problem will lead to instability or large error of the alignment. Therefore, it is necessary to take
the dynamic flexural deflection into consideration during the process of the transfer alignment [13].

The flexural deflection of the aircraft tends to be a stochastic progress, which can be modeled as a
second-order Markov progress actuated by white noise. Supposing the deflection between the main
SINS and the slave SINS in three axes are independent, the flexural deflection can be described as:

..
θi + 2βi

.
θi + β2

i θi = ηi(i = x, y, z) (4)

where θ = [ θx θy θz ]
T

is the angular vector of the flexural deflection and its variance is σθ =

[ σθx σθy σθz ]
T

. η = [ ηx ηy ηz ]
T

is the white noise with PSD of Qη = [ Qηx Qηy Qηz ]
T

,

which means η ∼ N
(
0, Qη

)
. β = [ βx βy βz ]

T
is a constant value. The relationship between

Qη , σθ , and β can be shown as Qηi = 4β2
i σ2

i . τi is the correlation time of the stochastic progress.
The relationship between βi and τi can be shown as βi = 2.146/τi.

Suppose that θ f = [ θ f x θ f y θ f z ]
T

is the flexural deflection in the body frame (b-frame) and

ω f = [ ω f x ω f y ω f z ]
T

is the deflection angular rate of slave SINS with respect to the main SINS.
Then we have: .

θ f = ω f (5)
.

ω f x = −β2
xθ f x − 2βxθ f x + wθx.

ω f y = −β2
yθ f y − 2βyθ f y + wθy.

ω f z = −β2
zθ f z − 2βzθ f z + wθz

(6)

where wθx , wθy , and wθz are the white noise. βi = 2.146/τi, where τi is the correlation time of the
three axes.

The equations above can be rewritten as:[ .
θ f
.

ω f

]
=

[
0 I

A1 A2

][
θ f
ω f

]
+

[
0
η

]
(7)

where A1 =

 −β2
x 0 0

0 −β2
y 0

0 0 −β2
z

, A2 =

 −2βx 0 0
0 −2βy 0
0 0 −2βz

, η =

 wθx

wθy

wθz


2.4. State and Measurement Equations of the Transfer Alignment

In 1989, Kain and Cloutier proposed the “Velocity and Attitude” matching method, which
combined the advantage of velocity matching with attitude matching [14]. This algorithm has better
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alignment accuracy and costs less alignment time so it has been used in practical applications. Thus, in
this paper we propose a new filter algorithm based on this matching method.

Based on the study of SINS error model, IMU error, misalignment error, and flexural deflection,
we select the attitude error of the slave SINS, velocity error, bias drift of gyroscope and accelerometer,
the misalignment error, the flexural deflection angular, and its angular rate as the state of the filter:

X = [ (ϕn)T (δVn
e )

T
(

εbs
b

)T (
∇bs

b

)T (
µb f
)T (

θb f
)T (

ωb f
)T

]
T

(8)

where ϕn and δVn
e are the attitude error and velocity error of the slave SINS. εbs

b and ∇bs
b are the bias

drift of gyroscope and accelerometer. µb f is the misalignment angle of the body with respect to the
theoretical mounting location. θb f and ωb f are the flexural deflection angle and angular rate.

Combined with Equations (2), (3) and (7), the state function of transfer alignment can be written
as follows:

.
X = FX + W (9)

In this equation,

F =



−
[
ωn

in×
]

03×3 −Cn
bs 03×3 03×3 03×3 03×3

[fn×] −
[(

2ωe
ie + ωn

en
)
×
]

03×3 Cn
bs 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 I3×3

03×3 03×3 03×3 03×3 03×3 A1 A2


,

W =
[
−Cn

bsεbs
w Cn

bs∇
bs
w 015×1

]T
,

−[ωn
in×] =


0 −

(
ωie sin L + VE

RN+h tan L
)

VN
RM+h

ωie sin L + VE
RN+h tan L 0 ωie cos L + VE

RN+h

− VN
RM+h −

(
ωie cos L + VE

RN+h

)
0

,

[fn×] =

 0 − f n
z f n

y
f n
z 0 − f n

x
− f n

y f n
x 0

,

−[(2ωe
ie + ωn

en)×] =


VD

RM+h −2
(

ωie sin L + VE
RN+h tan L

)
VN

RM+h

2
(

ωie sin L + VE
RN+h tan L

)
VD

RM+h + VN
RM+h tan L 2ωie cos L + VE

RN+h

− 2VN
RM+h −2

(
ωie cos L + VE

RN+h

)
0

.

where VN , VE, and VD are the velocity of the vehicle in north, west, and down directions. L and h are
the latitude and altitude of the vehicle. RM and RN are the meridian circle radius and prime vertical
circle radius of the earth. ωie is the earth rotation rate. f n

x , f n
y , f n

z are the output specific force of the
slave SINS. εbs

w and ∇bs
w are the noise of the gyroscope and accelerometer, which are supposed as the

white noise.
Z =

[
ZV Zθ

]T
(10)

The velocity measurement equation can be written as:

ZV = δVn
e,s + Vn

V (11)
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where δVn
e,s is the velocity error of the slave SINS. Vn

V is the measurement noise of velocity,
Vn

V = Vn
w − δVn

e,m − δVn
LA. Vn

w is the speed caused by the vibration and flexural deflection. δVn
e,m

is the velocity error of the main SINS. δVn
LA is the compensation value of the lever arm effect [15].

The attitude measurement value Zθ can be obtained by matching the attitude matrixes of the main
SINS and slave SINS. Considering the flexural deflection equation:

Zθ = ϕn − Cn
bsµ− Cn

bsθ+ vn
θ (12)

where µ is the error angle between the main SINS and slave SINS. vn
θ is the measurement noise of

attitude error.
Combined with (11) and (12), the measurement equation can be written as:

Z = HX + V (13)

where

H =

[
03×3 I3×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3

I3×3 03×3 03×3 03×3 03×3 03×3 −Cn
bs Cn

bs 03×3

]

V =
[

vn
V vn

θ

]T

According to Equations (9) and (13), we have the transfer alignment equation of “Velocity and
Attitude” matching algorithm. {

Xk = Φk,k−1Xk−1 + Wk−1
Zk = HkXk + Vk

(14)

where Xk is the 21-dimension state vector. Zk is the 6-dimension measurement vector. Wk−1 is the
21-dimension state noise variance vector. Vk is the 6-dimension measurement noise variance vector.
Φk,k−1 is the 21 × 21 state transfer matrix of the system.

3. The Improved Adaptive Incremental Kalman Transfer Alignment Algorithm

The measurement noise Vk of the “Velocity and Attitude” matching method is mainly caused
by the distortion of flexural deflection. However, the prior knowledge of Vk may be different from a
practical situation because of the change of slaved SINS location and the maneuvers of the aircraft.
The state noise variance vector Wk−1 can also be different from its prior knowledge because the
character of the MEMS IMU noise is easily affected by the temperature and vibration. Traditional
Kalman filter is only available when the prior knowledge of the state noise and measurement noise
are known and their character do not change, which may lead to large alignment error. Although
conventional adaptive Kalman filter is able to estimate the system noise on-line, its estimation accuracy
is still not good when the system noise changes greatly. In order to improve the accuracy of the filter,
the adaptive incremental Kalman filter is proposed.

3.1. The Adaptive Kalman Filter (AKF)

The state equation and measurement equation of the conventional adaptive Kalman filter:{
Xk = Φk,k−1Xk−1 + Wk−1

Zk = HkXk + Vk
(15)

where Xk is the n-dimension state vector, Zk is the m-dimension measurement vector, and Wk is the
p-dimension state noise variance vector. Vk is the m-dimension measurement noise variance vector.
Φk,k−1 is the n × n state transfer matrix of the system.
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Supposing that Wk and Vk satisfy the following relations:
E[Wk] = qk, E

[
WkWT

j

]
= Qkδkj

E[Vk] = rk, E
[
VkVT

j

]
= Rkδkj

E
[
WkVT

j

]
= 0

where Qk is p × p dimension symmetric non-negative definite matrix of variance. Rk is m × m
dimension symmetric positive definite matrix of variance. δkj is Kronecher-δ function.

The adaptive Kalman filter can be obtained by recursion. The estimated value of state vector Xk
represented by X̂k at the time of tk is:

X̂k,k−1 = Φk,k−1X̂k−1 + qk−1
Pk,k−1 = Φk,k−1Pk−1ΦT

k,k−1 + Qk−1

Kk = Pk,k−1HT
k Ω−1

k
X̂k = X̂k,k−1 + Kk[Zk − Ẑk−1]

Pk = Pk,k−1 −KkΩkKT
k

(16)

where
Ẑk,k−1 = HkX̂k,k−1 + rk
Ωk = HkPk,k−1HT

k + Rk

Suppose εk,k−1 = Zk− Ẑk,k−1, and the mean value of system noise qk and its variance Ωk, the mean
value of measurement noise rk and its variance Rk are estimated using maximum verified method:

q̂k−1 =
(

1− 1
k

)
q̂k−2 +

1
k (X̂k −Φk,k−1X̂k−1)

Q̂k−1 =
(

1− 1
k

)
Q̂k−2 +

1
k

(
KkεkεT

k KT
k + Pk −Φk,k−1Pk−1ΦT

k,k−1

)
r̂k =

(
1− 1

k

)
r̂k−1 +

1
k (Zk −HkX̂k,k−1)

R̂k =
(

1− 1
k

)
R̂k−1 +

1
k
(
εkεT

k −HkPk,k−1HT
k
)

(17)

The adaptive Kalman Filter is able to estimate the system and measurement noise. However, in
practical application, such as airborne transfer alignment of SINS, the disturbance is very complex and
the character of the system and measurement noise may change fast with time, which may lead to
large estimation error by using the adaptive Kalman Filter. In order to improve the performance, we
can apply the adaptive incremental Kalman Filter to airborne SINS transfer alignment.

3.2. The Adaptive Incremental Kalman Filter (AIKF)

In real flight, the change of two adjacent measurement values Zk and Zk−1 is small. If we choose
the incremental of two successive measurement values as the measurement value, which is represented
by ∆Zk, the system error can be reduced. Based on this idea, we can obtain the state equation and
measurement equation of the incremental Kalman filter [16,17]:{

Xk = Φk,k−1Xk−1 + Wk−1
∆Zk = HkXk −Hk−1Xk−1 + Vk

(18)

where ∆Zk is the incremental of the m-dimension measurement vector, and ∆Zk = Zk − Zk−1, where
Zk is the measurement vector.

According to the principles of the independent incremental stochastic progress, the ∆Zk and
∆Zk−1 are independent.
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The adaptive incremental Kalman filter can be obtained by recursion. The estimate value of state
vector Xk, represented by X̂k at time tk is:

X̂k,k−1 = Φk,k−1X̂k−1 + qk−1
Pk,k−1 = Φk,k−1Pk−1ΦT

k,k−1 + Qk−1

Kk =
(
Pk,k−1HT

k −Φk,k−1Pk−1HT
k−1
)
Ω−1

k
X̂k = X̂k,k−1 + Kk[∆Zk − ∆Ẑk,k−1]

Pk = Pk,k−1 −KkΩkKT
k

(19)

where
∆Ẑk,k−1 = HkX̂k,k−1 −Hk−1X̂k−1 + rk

Ωk = HkPk,k−1HT
k + Rk −Hk−1Pk−1ΦT

k,k−1HT
k−1 −Hk−1Φk,k−1Pk−1HT

k−1 + Hk−1Pk−1HT
k−1

In the progress of SINS transfer alignment, the mean value of system noise qk and its variance Qk,
the mean value of measurement noise rk and its variance Rk are all unknown time-varying parameters,
which needs to be estimated using the maximum verified method.

q̂k =
1
k

k
∑

j=1

(
X̂j −Φj,j−1X̂j−1

)
Q̂k =

1
k

k
∑

j=1

(
X̂j −Φj,j−1X̂j−1 − q̂k

)(
X̂j −Φj,j−1X̂j−1 − q̂k

)T

r̂k =
1
k

k
∑

j=1

[
∆Z−

(
HjX̂j,j−1 −Hj−1X̂j−1

)]
R̂k =

1
k

k
∑

j=1

[
∆Z−

(
HjX̂j,j−1 −Hj−1X̂j−1

)
− r̂k

][
∆Z−

(
HjX̂j,j−1 −Hj−1X̂j−1

)
− r̂k

]T

(20)

The estimation value Q̂k and R̂k are biased using the equation above. In order to obtain the
unbiased estimation, we set the innovation of εk = ∆Zk − ∆Zk,k−1 and we have:

E[εk] = 0 (21)

E
[
εkεT

k

]
= HkPk,k−1HT

k + Rk −Hk−1Pk−1ΦT
k,k−1HT

k −HkΦk,k−1Pk−1HT
k−1 + Hk−1Pk−1HT

k−1 (22)

According to Equation (19), we have:
E[q̂k] =

1
k

k
∑

j=1
E
(

Kjεj + qj

)
= qk

E[r̂k] =
1
k

k
∑

j=1
E
(
εj + rj

)
= rk

(23)

Then we can see that the estimation of the mean value is unbiased. Also, we have:

E[R̂k] =
1
k

k
∑

j=1
E
[
εjε

T
j

]
= 1

k

k
∑

j=1
(HjPj,j−1HT

j −Hj−1Pj−1ΦT
j,j−1HT

j

−HjΦj,j−1Pj−1HT
j−1 + Hj−1Pj−1HT

j−1) + Rk

(24)
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So, the R̂k is biased. Then we introduce the suboptimal unbiased maximum a posteriori (MAP)
estimator R̂k:

R̂k =
1
k

k
∑

j=1

(
εjε

T
j −

(
Ωj −Rj

))
= 1

k

k
∑

j=1

(
εjε

T
j −

(
HjPj,j−1HT

j −Hj−1Pj−1ΦT
j,j−1HT

j −HjΦj,j−1Pj−1HT
j−1 + Hj−1Pj−1HT

j−1

)) (25)

Similarly, we have:

E[Q̂k] =
1
k

k

∑
j=1

(
Φj,j−1Pj−1ΦT

j,j−1 − Pj

)
+ Qk (26)

Q̂k =
1
k

k

∑
j=1

(
Kjεjε

T
j KT

j + Pj −Φj,j−1Pj−1ΦT
j,j−1

)
(27)

The recurrence formulas of adaptive incremental Kalman filter together with the suboptimal
unbiased MAP estimator are:

q̂k =
(

1− 1
k

)
q̂k−1 +

1
k (X̂k −Φk,k−1X̂k−1)

Q̂k =
(

1− 1
k

)
Q̂k−1 +

1
k (KkεkεT

k KT
k + Pk −Φk,k−1Pk−1ΦT

k,k−1)

r̂k =
(

1− 1
k

)
r̂k−1 +

1
k [∆Zk − (HkX̂k,k−1 −Hk−1X̂k−1)]

R̂k =
(

1− 1
k

)
R̂k−1

+ 1
k [εkεT

k − (HkPk,k−1HT
k −Hk−1Pk−1ΦT

k,k−1HT
k −HkΦk,k−1Pk−1HT

k−1 + Hk−1Pk−1HT
k−1)]

(28)

where εk = ∆Zk − (HkX̂k,k−1 −Hk−1X̂k−1)− r̂k−1.
When the noise parameters are unknown and time-varying [18,19], the estimator is:

q̂k = (1− dk−1)q̂k−1 + dk−1(X̂k −Φk,k−1X̂k−1)

Q̂k = (1− dk−1)Q̂k−1 + dk−1

(
KkεkεT

k KT
k + Pk −Φk,k−1Pk−1ΦT

k,k−1

)
r̂k = (1− dk−1)r̂k−1 + dk−1[∆Zk − (HkX̂k,k−1 −Hk−1X̂k−1)]

R̂k = (1− dk−1)R̂k−1

+dk−1

[
εkεT

k −
(

HkPk,k−1HT
k −Hk−1Pk−1ΦT

k,k−1HT
k −HkΦk,k−1Pk−1HT

k−1 + Hk−1Pk−1HT
k−1

)] (29)

where dk−1 = 1−b
1−bk , 0 < b < 1 , b is the forgetting factor. Usually 0.95 < b < 0.995. When b→ 1 ,

dk−1 → (1/t) , which is in accord with the Sage and Husa adaptive algorithm. The forgetting factor
should be adjusted according to the character of the noise. If the frequency band of the noise is low, the
value should be close to 1, otherwise the value should be reduced. The forgetting factor b can control
the memory length of the filter to strengthen the estimation of the lately measurement data and reduce
percentage of the old data.

3.3. Comparison of AKF and AIKF

To compare the estimation accuracy, the two methods of AKF and AIKF are simulated under the
same condition. The results are presented as Figure 2. In Figure 2, we compare the performance of
AKF and AIKF. During the steps 200~400 and steps 600~800, the measurement noise becomes worse
abruptly. We can apparently see that AIKF has better estimation accuracy. The estimation error of AIKF
is less than 0.5 while the error of AKF can be larger than 2.5. Besides, we can see that the estimation
value of AIKF is still very smooth in the whole progress when the measurement noise changes. On the
contrary, AKF is more easily affected by the disturbance of the measurement noise.
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Figure 2. Comparison of AKF and AIKF. (a) Estimation result of AIKF and AKF; (b) Estimation error
of AIKF and AKF.

To compare the two methods in a more comprehensive way, the calculation amount of the different
filtering algorithms are also considered, as is shown in Table 1.

Table 1. Calculation amount of each algorithm.

AIKF AKF KF

Noise
estimator

q̂k 2n2 + 3n 2n2 + 3n -
Q̂k 2n2 + m2 + 2nm2 − nm + 2n2m + 4n3 4n3 + 2n2m + 2n2 + 3mn − n -
r̂k 4mn + 3m 2mn + 3m -
R̂k 12mn2 + 8m2n + 3m2 − 6mn 4m2 + 2mn2 + 2m2n − mn -

Prediction
update

X̂k,k−1 2n2 2n2 2n2

Pk,k−1 4n3 − n2 4n3 − n2 4n3−n2

Measurement
update

X̂k 10mn + 2m − n 4mn + m nm + n + m
Pk 8mn2 + 6m2n-m2 − 4mn 4mn2 + 4m2n − 2mn 2mn2 + 2n3 − n2

Kk 4n2m + 2n3 + 2nm2 − n2 − 2nm + m3 2mn2 + 2m2n − 2mn + m3 4n2m + 4nm2 − 3nm + m3

In total 4n2 + 2n + 10n3 + 5m + 3m2 + 18nm2 +
nm + 26n2m + m3

8n3 + 10n2m + 5n2 + 4mn +
2n + 4m + 4m2 + 8m2n + m3

6n3 + 6mn2 + 4nm2 − 2nm
+ m3 + m + n

n = 21, m= 6 177,300 109,731 74,457

In Table 1, we list the calculation amount of AIKF, AKF, and KF. The calculation amount is
evaluated by the floating-point operations (flops), which is defined as the operation of adding,
decreasing, multiplying, or dividing between two floating numbers. Supposing the dimension of the
state vector is n and the measurement vector dimension is m, we can calculate the total flops of each
filter algorithm. In SINS transfer alignment, the state vector n is 21 and the measurement vector m
is 6. Then the total flops of AIKF, AKF, and KF are 177,300, 109,731, and 74,457, respectively. AIKF and
AKF are more complex than KF because of the on-line noise estimation part. AIKF increases 61.6%
calculation amount compared to AKF. However, the formulas of AIKF are still simple enough for
practical application.

From the above comparison of conditional AKF and AIKF, we can obviously see that AIKF has
better estimation accuracy, which is also more robust to the disturbance of system noise compared
with traditional AKF. Though AIKF has a larger calculation amount, the formulas of AIKF are still
simple enough to satisfy the real-time requirement in practical application.

4. Simulation Test and Results

In order to test the validity and accuracy of this algorithm, a simulation test is designed using
MATLAB, which is shown in Figure 3.
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Suppose the aircraft is moving straightly at 180 m/s and the yaw is −30◦. During the flight, the
aircraft makes two 20◦ swing maneuvers at the 10th second and 33rd second, respectively. In the
meantime, the dynamic flexural deflection variance is set to 6′, 10′, and 7′, respectively. The correlation
time parameters are 0.5, 0.4, and 10 s, respectively. The parameters of the MEMS IMU are shown in
Table 2.

Table 2. The parameters of the MEMS IMU.

Gyro Accelerometer

Bias drift 250 ◦/h 10 mg
Noise 0.5 ◦/

√
h 1 mg/

√
Hz

The aircraft attitude, velocity, the flexural deflection angle and its angular rate are generated
by the maneuvers simulator. The transfer alignment progresses are calculated using KF and AIKF,
respectively. The results are shown in Figures 4 and 5.

Comparing the Figure 5g with Figure 5h, we can see the estimation error of accelerometer bias
has been reduced to less than 1 mg rapidly during the first swing maneuvers using AIKF, while the
estimation of accelerometer bias is much slower and its error is still around 7 mg using KF.

Comparing Figure 5e with Figure 5f, we can see the estimation error of gyroscope bias has been
reduced to 20 ◦/h within 2 s using AIKF, while KF takes 10 s. If we magnify the error curve of the
estimation error, as we show in Figure 6, we can see that the estimation error of gyroscope bias has
been reduced from 20◦/h to 13◦/h in 2.5 s using KF while the AIKF reduced the error from 9◦/h
to 1.5◦/h. The final accuracy is 5◦/h by KF and 0.6◦/h by AIKF, respectively. The AIKF costs less
convergence time and has much better accuracy than KF.
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Figure 4. Comparison of estimation result using KF and AIKF. (a) Estimation of attitude error using KF;
(b) Estimation of attitude error using AIKF; (c) Estimation of velocity error using KF; (d) Estimation
of velocity error using AIKF; (e) Estimation of gyroscope bias using KF; (f) Estimation of gyroscope
bias using AIKF; (g) Estimation of accelerometer bias using KF; (h) Estimation of accelerometer bias
using AIKF.
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using KF; (f) Estimation error of gyroscope bias using AIKF; (g) Estimation error of accelerometer 
bias using KF; (h) Estimation error of accelerometer bias using AIKF. 
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has been reduced to less than 1 mg rapidly during the first swing maneuvers using AIKF, while the 
estimation of accelerometer bias is much slower and its error is still around 7 mg using KF. 
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Figure 5. Comparison of estimation error result using KF and AIKF. (a) Estimation error of attitude
error using KF; (b) Estimation error of attitude error using AIKF; (c) Estimation error of velocity error
using KF; (d) Estimation error of velocity error using AIKF; (e) Estimation error of gyroscope bias using
KF; (f) Estimation error of gyroscope bias using AIKF; (g) Estimation error of accelerometer bias using
KF; (h) Estimation error of accelerometer bias using AIKF.
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Figure 6. Part of the estimation error result using KF and AIKF. (a) Estimation error of gyroscope bias 
using KF; (b) Estimation error of gyroscope bias using AIK. 

Table 3. Bias estimation result of two algorithms. 

Algorithm 
Estimation Error of Gyroscope Bias/(°/h) Estimation Error of Accelerometer Bias/(mg)

x-Axis y-Axis z-Axis x-Axis y-Axis z-Axis 
KF 6.94 6.71 7.00 6.18 1.36 0.21 

AIKF 0.81 0.81 0.73 0.81 0.14 0.02 

Table 4. Main functional specification of MEMS gyroscope. 

Algorithm 
Estimation Error of Attitude Error/(′) Estimation Error of Velocity Error /(m/s) 

x-Axis Y-Axis z-Axis x-Axis y-Axis z-Axis 
KF 10.42 18.81 4.77 0.0151 0.0151 0.0147 

AIKF 1.33 2.46 0.48 0.0016 0.0015 0.0015 

5. Conclusions 

In this paper, we develop the transfer alignment model based on the “Velocity and Attitude” 
matching method and the flexural deflection model. An improved AIKF algorithm is proposed to 
solve the problem that the state noise and measurement noise parameters cannot be accurately 
measured. Also, the methods of conditional AKF and AIKF are compared in terms of estimation 
accuracy and calculation amount, AIKF has better estimation accuracy and is more robust to the 
disturbance of system noise compared with traditional AKF. Though AIKF has a larger calculation 
amount, it can still satisfy the real-time requirement in practical application. A simulation system is 
designed to compare AIKF with KF. The results show that the estimation error of the gyroscope bias 
is less than 1°/h and the estimation error of the accelerometer bias is less than 1 mg by using AIKF, 
which is five times better than KF and takes less alignment time. This method can estimate the bias 
of the IMU, initial attitude, and velocity of SINS in a short time. 
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Figure 6. Part of the estimation error result using KF and AIKF. (a) Estimation error of gyroscope bias
using KF; (b) Estimation error of gyroscope bias using AIK.

In Tables 3 and 4, we can see that the estimation error of gyroscope bias is less than 1◦/h, the
accelerometer bias is less than 1 mg, the attitude error is less than 2.5′ and the velocity error is less
than 0.002 m/s. The forgetting factor b can control the memory length of the filter. The old knowledge
of measurement data can be forgotten so that the disturbance of new measurement data will not affect
the filter. So AIKF can achieve better accuracy, especially in a complicated environment. The AIKF has
almost five times better accuracy than KF, which means AIKF can satisfy the requirement of airborne
transfer alignment.

Table 3. Bias estimation result of two algorithms.

Algorithm
Estimation Error of Gyroscope Bias/(◦/h) Estimation Error of Accelerometer Bias/(mg)

x-Axis y-Axis z-Axis x-Axis y-Axis z-Axis

KF 6.94 6.71 7.00 6.18 1.36 0.21
AIKF 0.81 0.81 0.73 0.81 0.14 0.02

Table 4. Main functional specification of MEMS gyroscope.

Algorithm
Estimation Error of Attitude Error/(′) Estimation Error of Velocity Error /(m/s)

x-Axis Y-Axis z-Axis x-Axis y-Axis z-Axis

KF 10.42 18.81 4.77 0.0151 0.0151 0.0147
AIKF 1.33 2.46 0.48 0.0016 0.0015 0.0015

5. Conclusions

In this paper, we develop the transfer alignment model based on the “Velocity and Attitude”
matching method and the flexural deflection model. An improved AIKF algorithm is proposed to solve
the problem that the state noise and measurement noise parameters cannot be accurately measured.
Also, the methods of conditional AKF and AIKF are compared in terms of estimation accuracy and
calculation amount, AIKF has better estimation accuracy and is more robust to the disturbance of
system noise compared with traditional AKF. Though AIKF has a larger calculation amount, it can still
satisfy the real-time requirement in practical application. A simulation system is designed to compare
AIKF with KF. The results show that the estimation error of the gyroscope bias is less than 1◦/h and
the estimation error of the accelerometer bias is less than 1 mg by using AIKF, which is five times better
than KF and takes less alignment time. This method can estimate the bias of the IMU, initial attitude,
and velocity of SINS in a short time.
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