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In this work, we propose the design of a sharp bend in a two-dimensional optical waveguide which has super-
ellipse curve boundaries and a gradient refractive index structure in its core. Numerical simulations are presented
to show the efficient light propagation in the waveguide bend, as well as the efficient light coupling between the
proposed waveguide bend and a straight waveguide, for TE0 and TM0 modes. The proposed design strategy is
also useful for designing other compact optical and photonic components. © 2017 Optical Society of America
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1. INTRODUCTION

Optical waveguide bends are frequently used to connect differ-
ent optical components in photonic integrated circuits (PICs).
Compact optical waveguide bends, which have small bending
radius, are useful as potential components for developing high-
density PIC devices [1]. However, previous studies have shown
that the bending loss of a waveguide bend increases significantly
as the bending radius is decreased [1–4]. This in turn may de-
grade the performance of dense PIC devices. A promising sol-
ution is to use sharp bends in silicon-on-insulator (SOI) strip
waveguides, which confines propagating light to its core and
has very low bending loss [5]. However, it is inefficient to di-
rectly couple the SOI waveguide bends with conventional
silica-based optical waveguides [6,7]. More recently, sharp
waveguide bends based on anisotropic and isotropic metama-
terials have been proposed [8–10]. Although metamaterial-
based optical waveguide bends have compact size and nearly
perfect light transmission, anisotropic and isotropic metamate-
rials are difficult to fabricate in the optical range. In recent
years, a sharp optical waveguide bend based on free-form meta-
material [11] has been reported. By spatially engineering the
refractive index of the SOI substrate, free-form metamaterial
can be fabricated into difference kinds of nanophotonic com-
ponents. However, the free-form metamaterial-based compo-
nents require inverse designing and nanofabrication with
resolution of 100 nm, and thus are complicated to implement.
In this work, we numerically investigate the possibility of
designing a compact optical waveguide bend composed of

conventional optical materials, capable of coupling efficiently
with conventional silica-based optical waveguides. We present
the design of a sharp bend in a two-dimensional optical wave-
guide, with super-ellipse boundaries and gradient refractive in-
dex (GRIN) structure in its core.

2. DESIGN OF THE OPTICAL WAVEGUIDE BEND

To simplify the problem, we use two-dimensional waveguides
in this work. Instead of the commonly used circular bend con-
figuration, in our design we choose super-ellipse curves as the
shape of boundaries and axis of the waveguide bend, as shown
in Fig. 1(a). The axis of the waveguide bend is indicated by the
dashed line in Fig. 1(a). The super-ellipse curve can be de-
scribed by the parametric equations�

x � rs�cos θs�2∕ns
y � rs�sin θs�2∕ns

; (1)

where rs and θs are coordinates of the super-ellipse polar coor-
dinate system. The values of rs and ns for the inner boundary,
axis, and outer boundary of the waveguide bend are listed in
Table 1. The waveguide bend is connected to an input and
output waveguide, both of which are straight waveguides with
a core width of 1 μm and refractive index of nco � 1.5 in its
core. The outside medium surrounding the waveguide core is
air. Both input and output waveguides support TE0, TE1,
TM0, and TM1 modes [12]. The curvature of a parametric
curve can be calculated using the equation [13]
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The curvatures of the inner boundary, axis, and outer boundary
of the waveguide bend are shown in Fig. 1(b), indicated by
solid, dashed, and dotted lines, respectively. As shown in the
figure, for each super-ellipse curve, the curvature starts from
zero at the input facet (θs � 0), increases to its maximum at
the middle of the bend (θs � 45°), and then declines to zero
at the output facet (θs � 90°). Thus, if light propagates within
the waveguide bend, the propagating light will be bent more
strongly around the middle of the waveguide bend. Con-
sequently, in the present design, we set the higher value of re-
fractive index around the angle of θs � 45°. Furthermore, as
Fig. 1(b) also shows, the curvature along the inner boundary
is larger than that along the axis as well as the outer boundary

for any given angle of θs, which implies that the propagating
light will be bent more strongly around the inner boundary
relative to the axis or outer boundary. In view of this, in
our design we set a higher refractive index around the inner
boundary than we do along the axis or outer boundary.
Based on the preceding curvature analysis, we set the refractive
index profile of the waveguide bend as

n�θs ; rs� � nmin � �nmax − nmin�R�rs�Θ�θs�; (3)

where the parameter nmin � 1.5 is equal to the refractive index
of the straight waveguide core, and nmax � 3.375 is determined
by optimization (see Section 3 for further details). R�rs�
describes refractive index profile along the super-ellipse polar
coordinates rs, which is defined as

R�rs� �
r3 − rs
r3 − r1

: (4)

R�rs� is plotted in Fig. 2(a). Parameters r1, r3 are listed in
Table 1. Θ�θs� describes the refractive index profile along
the super-ellipse polar coordinates θs, which is defined as

Θ�θs� �

8><
>:

θs∕θa if 0 ≤ θs ≤ θa;
1 if θa ≤ θs ≤ π

2 − θa;�
π
2 − θs

�
∕θa if π

2 − θa ≤ θs ≤ π
2 :

(5)
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Fig. 1. (a) Structure of the super-ellipse waveguide bend. (b)
Curvature along the inner boundary, axis, and outer boundary of
the waveguide bend, indicated by solid, dashed, and dotted lines,
respectively.

Table 1. Parameters for Super-Ellipse Curves

rs�μm� ns
Inner boundary r1 � 1.5 n1 � 4.0
Waveguide bend axis r2 � 2.0 n2 � 3.5
Outer boundary r3 � 2.5 n3 � 3.0

(a) (b)

(c)     

(d)

Fig. 2. (a) Curve of R�rs�. (b) Curve of Θ�θs�. (c) Refractive index
distribution of the bend in super-ellipse polar coordinates �θs ; rs�.
(d) Refractive index distribution of the bend in Cartesian coordinates.
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Θ�θs� is plotted in Fig. 2(b). The parameter θa in Eq. (5) is set
to be 23.4°, which is determined by optimization (see
Section 3). The refractive index profile along super-ellipse polar
coordinates �θs ; rs� is plotted in Fig. 2(c) and is mapped into
the Cartesian coordinates, as shown in Fig. 2(d), by using
Eq. (1). In Fig. 2(c), the “flat top” width of Θ�θs� seems to
be larger than that of Fig. 2(d), which can be explained by
the coordinate transformation. The “flat top” width of Θ�θs�
can be described by an angle of θws � π

2 − 2θa � 43.2°. In
Fig. 2(d), the “flap top” width of n�x; y� along polar coordinate
θ can be calculated as θw � π

2 − 2 arctan��tan θa�2∕ns � ≈ 23.3°,
which is roughly half of θws. It is worthwhile to point out that
the variable ns in Eq. (1) is linear along the super-ellipse polar
coordinate rs,

ns � n1 − �n1 − n3�
rs − r3
r1 − r3

; (6)

where n1, n3, r1, and r3 are listed in Table 1.

3. OPTIMIZATION AND PERFORMANCE OF THE
WAVEGUIDE BEND FOR TE MODES

In this work, the waveguide bends are modeled and simulated
using the finite element software package COMSOL. To opti-
mize the waveguide bend for TE0 mode, TE0 mode fields are
excited in the input straight waveguide at the wavelength of
1.55 μm. Then we use a very simple method to determine
the parameters of nmax and θa in Eqs. (3) and (5), whereby
we change their values alternatively and repeatedly until we ob-
tain the optimal parameters of nmax � 3.375 and θa � 23.4°,
with an optimal bending efficiency of ηTE0 � 0.974. The
bending efficiency ηi is defined as the power transmission
coefficient of

ηi �
Pi
out

Pi
in

; (7)

where Pi
in and Pi

out are the input and output power of mode
i. To estimate the coupling between the different modes, the
crosstalk CTij are defined as

CTij � 10 log10
Pj
out

Pi
in

: (8)

The power of different modes can be calculated using the over-
lap integral method [14]. For the optimized super-ellipse bend,
the crosstalk between modes TE0 and TE1 is about −27 dB,
corresponding to coupling coefficient below 0.002. The bend-
ing efficiency ηi and crosstalk CTij for the TE0 modes are also
listed in the first column of Table 2. The distribution of the
electric field component Ez is shown in Fig. 3(a), and Fig. 3(b)

shows the field intensity jE j along three transverse cross-
sections, viz., the input facet �y � 0; x > 0�, middle of the
bend �y � x; x > 0�, and output facet �x � 0; y > 0�, indi-
cated by +,°, and ×, respectively. The symbol r represents
r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
, where �x; y� are coordinates of the points along

the transverse cross-sections. The dotted lines in Fig. 3(b) in-
dicate the inner and outer boundaries of the waveguide bend at
the input and output facets, for which r � 1.5 and 2.5 μm,

Table 2. Performance of the Designed Bend and
Circular Bend for TE Modes, Including Bending Efficiency
ηi and Crosstalk CTi j

Designed Bend Circular Bend

TE0 TE1 TE0 TE1

ηi 0.974 0.742 0.494 0.266
CTij (dB) −27.4 −27.8 −11.2 −11.3

Fig. 3. (a) Field component Ez of the designed super-ellipse wave-
guide bend, TE0 mode. (b) Field intensity along three transverse cross-
sections, viz., the input facet, middle of the bend, and output facet,
indicated by +,°, and ×, respectively. The dotted lines indicate the inner
and outer boundaries of the waveguide bend at the input and output
facets, and the shaded area indicates the inner and outer boundaries at
the middle of the bend. (c) Field component Ez of the designed super-
ellipse waveguide bend, TE1 mode.
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respectively. As shown in the figure, the full width at half-maxi-
mum (FWHM) width of the propagating field is about 1 μm at
the input and output facets of the waveguide bend. The shaded
area in Fig. 3(b) indicates the inner and outer boundaries at the
middle of the bend (along the cross-section of y � x ), for
which r � 1.78 and 2.81 μm, respectively. Figure 3(b) shows
that the FWHMwidth of the propagating field at the middle of
the bend is approximately 0.5 μm, which is only half the width
of that at the input and output facets. In addition, along the
cross-section of y � x, the electric field intensity values at the
inner and outer boundaries is 0.13 and 0.04 (arbitrary unit),
respectively, which are much less than those at the input and
output facets (between 0.39–0.45). Thus, the light propagating
through the bend is confined within the core of the waveguide
bend, which in turn helps to reduce the bending loss.
Furthermore, from Figs. 3(a) and 3(b), we can infer that the
incident light converges along the axis in the first half of the
waveguide bend, then diverges in the second half of the bend,
and finally transitions into the modal field of the output wave-
guide. The gradual transition of the propagating light may ex-
plain the efficient coupling between the waveguide bend and
the straight waveguides. The designed waveguide bend with
TE1 mode setting is also simulated, as shown in Fig. 3(c).
From Fig. 3(c), we can see that the field radiates from the outer
boundary, as well as from the output facet of the waveguide
bend. The performance of the designed bend is also calculated

numerically, as shown in the second column of Table 2.
For TE1 mode, the bending efficiency ηTE1 is 0.742, less than
ηTE0, which can be explained by the comparatively smaller
field confinement of the TE1 modes. We define the
mode-confinement factor of the straight waveguide as

Γ �
R
core P · dsR
∞ P · ds

; (9)

where P is the time-averaged Poynting vector, and the integra-
tion is calculated along a transverse cross-section of the straight
waveguide. By using Eq. (9), we find that ΓTE0 � 0.925 and
ΓTE1 � 0.599. For TE1 mode, the mode field distribution
expands more into the surrounding medium (air); thus, the
propagating field is less affected by the bending core and
experiences greater bending loss.

For the sake of comparison, a circular waveguide bend of
similar size is also simulated. Figure 4 shows the simulation
of a 90° circular waveguide bend, which has inner and outer
boundaries of 1.5 and 2.5 μm in radius, respectively. The cir-
cular waveguide bend, as well as the input and output wave-
guides, have uniform refractive index of 1.5 in the core and
the surrounding medium is air. The performance values of
the circular bend are listed in the third and forth columns
of Table 2. For the circular waveguide bend, the bending
efficiencies are 0.494 and 0.266 for TE0 and TE1 modes,

Fig. 4. Field component Ez of the circular waveguide bend
for (a) TE0 mode and (b) TE1 mode.

Fig. 5. Field componentHz of the designed super-ellipse waveguide
bend for (a) TM0 mode and (b) TM1 mode.
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respectively, which are significantly less than those of the pro-
posed super-ellipse bend. We can clearly see the strong radia-
tion around the circular waveguide bend in Figs. 4(a) and 4(b).
In addition, Figs. 4(a) and 4(b) also clearly show the crosstalk of
the TE0 and TE1 modes in the output straight waveguide. For
the circular waveguide bend, the crosstalk between TE0 and
TE1 modes is about −11.2 dB, corresponding to a power-
coupling efficiency of about 0.0074 between the two modes.

4. PERFORMANCE OF THE WAVEGUIDE BENDS
FOR TM MODES

The designed super-ellipse waveguide bend is also simulated
with the TM0 and TM1 mode settings, as shown in Fig. 5.
The performance of the designed waveguide bend is shown
in the first two columns of Table 3. For TM0 and TM1 modes,

the bending efficiency of the designed bend is ηTM0 � 0.958
and ηTM1 � 0.478, respectively. The TM0 and TM1 mode
confinement factors of the straight waveguide are ΓTM0 �
0.923 and ΓTM1 � 0.341 respectively, which explains the
higher bending efficiency for the TM0 mode and lower bend-
ing efficiency for the TM1 mode. The crosstalk between TM0
and TM1 modes is below −30 dB. The circular bend of the
previous section is also simulated with the TM0 and TM1
mode settings, as shown in Fig. 6. It should be noted that
in Fig. 6(b), the field distribution of Hz in the output straight
waveguide is mainly TM0 mode and the incident field is only
TM1 mode in the input waveguide. In case of exciting TM1
mode in the input waveguide, the output power carried by the
TM0 and TM1 mode fields are P�TM1�

out � 0.026P�TM1�
in and

P�TM0�
out � 0.117P�TM1�

in , respectively; this is consistent with
the field distribution Hz in Fig. 6(b).

5. DISCUSSION AND CONCLUSIONS

In this work, we have presented the design of a low-loss and
compact optical waveguide bend which has super-ellipse boun-
daries and gradient refractive index structure in its core. First,
the boundaries and axis of the waveguide bend are chosen to be
super-ellipse curves. Next, the refractive index of the waveguide
bend is set according to the curvature distribution of bounda-
ries of the waveguide bend and its axis. Numerical simulations
show that, for TE0 and TM0 modes of the input and output
waveguides, light couples efficiently between the proposed
waveguide bend and the input and output waveguides, and
light that propagates through the bend is confined to the core
of the waveguide bend. The design strategy used in this work is
also useful for designing other compact optical and photonic
components.

Considering the implementation of the proposed waveguide
bend, one possible solution is to design and fabricate a sharp
bend in a vertical slab waveguide [15] using the grayscale
e-beam lithography, and control the height of the vertical slab
waveguide to tailor the effective refractive index distribution in
the bend core. Another possible solution is to design a sharp
bend in a ridge waveguide consisting of graded photonic crys-
tals (GPhC) [16], whereby the GRIN structure in the bend
core can be implemented by spatially varying the sizes of
the dielectric rods or air holes of the GPhC.
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