
Performance improvement of the Giant Steerable
Science Mirror prototype: calibration, added-on
damping treatment, and warping harness
QI-CHANG AN,1,2 JING-XU ZHANG,1 FEI YANG,1 HONG-CHAO ZHAO,1 AND LIANG WANG1,*
1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
2University of Chinese Academy of Sciences, Beijing 100039, China
*Corresponding author: wangliang.ciomp@foxmail.com

Received 22 September 2017; revised 16 November 2017; accepted 19 November 2017; posted 21 November 2017 (Doc. ID 307736);
published 14 December 2017

The Giant Steerable Science Mirror (GSSM), the tertiary mirror of the Thirty Meter Telescope, is designed to
meet complicated requirements. Calibration, added-on damping treatment, and warping harness will lower the
cost to meet those strict requirements. A laser tracker and sphere-mounted retro-reflector (SMR) were used to
calibrate the GSSM prototype (GSSMP). Use of non-uniform distribution SMRs will lower the systematic met-
rology error. The frequency response function between input excitation and dummy mirror responses is inves-
tigated to realize the design of tuned mass damping, which will be added on the GSSMP as a damping treatment
to improve settling time and tracing performance. Finally, we utilized the warping harness, combining Zernike
mode and bending mode, to relax the requirements of GSSM for low-order mirror figure aberrations. © 2017

Optical Society of America
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1. INTRODUCTION

The Thirty Meter Telescope (TMT) is a future large telescope,
whose tertiary mirror is noted as the Giant Steerable Science
Mirror (GSSM), the largest planar mirror (3.594 m × 2.536 m)
in the world. Different from other steering mirrors, light trans-
mission from the primary mirror to instruments will be realized
by GSSM. What is more, the performance of GSSM is under
high requirements, which is hard to reach only by design.
Thus, we illustrate three coherent procedures, including
calibration, added-on damping treatment, and warping harness,
to obtain a high-quality GSSM.

Calibration is aimed at meeting the special requirements and
removing undesired systematic effects from measurement.
Calibration, making GSSM perform to accuracy that is other-
wise impossible or very expensive to achieve, has been widely
used in the TMT primary mirror assembly (M1 structural de-
formation due to gravity, M1 structural deformation due to
temperature, azimuth, and elevation tape encoder errors,
etc.). The alignment and phasing system (APS) effectively cal-
ibrates the M1 edge sensors to realize alignment and phasing, so
that the telescope will be able to perform well at diffraction
limit. Keck is a 10 m large telescope. Its gravity deformation

of M1 cell assembly and edge sensor errors due to cross
coupling of motions and temperature will be calibrated by
bright stars with known locations in the observable sky.
Calibration of the dynamical characteristics is essential for
the prediction of the response under wind distributions, mount
slewing, and internal vibration from some translating and
rotating components. GEMINI’s resonance performance under
wind load was estimated and calibrated with a dummy mirror
and load cells [1–3].

Generally, when a telescope is pointing at a star with known
location, the position of the telescope is known with a high
degree of accuracy. However, the GSSM is a separately manu-
factured large plate, so additional equipment with adequate
accuracy is required to fill up the lack of star calibration.
The laser tracker is quite a convenient coordination metrology
machine (CMM). The Giant Magellan Telescope (GMT), the
24 m segmented large telescope, has widely utilized it to mea-
sure, to align, and to locate large components. With two laser
trackers, it is able to reach higher accuracy after cross calibra-
tion. VLTI and VISTA also processed metrology by laser track-
ers at the end of the 20th century to locate mirrors. For GSSM,
a laser tracker will be used for calibration in very complex
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working conditions where different zenith angles cross-coupled
with tipping of the mirror, and the traditional methods (tele-
scope, co-collimator, etc.) are not suitable [4–6].

Vibration may cause performance degradation. For large
telescopes, it is common to be relatively soft due to limitation
of mass, volume, and cost. GMT has flexible modes at just
above 4 Hz. The large size of TMT results in resonance fre-
quency as low as 2 Hz [7–9]. To cancel the effect of vibration,
dynamical characteristics need to be previously measured. The
731A seismic accelerometer was used to measure the dynamical
performance of GSSM. It incorporates an isolated piezoelectric
sensing element that minimizes the effects of transverse motion,
base strain, and thermal transients. After measurement, passive
or active damping means are designed as add-on treatment,
which has effectively reduced extremely tall buildings shaking
in wind and jitter of the air-based telescope, SOFIA [10,11].

The warping harness technique, based on the three local de-
grees of freedom (DoF) of the hard points in a passive support
system, introduces additional local DoFs through its own flex-
ibility. It is called semi-active support. The warping harness is to
be utilized in GSSM, correcting the gravity print, which is
mainly dominated by primary Zernike polynomials [12].

GSSM is an extremely large system. To learn and under-
stand, a 1/4-scale prototype will be under construction by
Changchun Institute of Optics, Fine Mechanics, and Physics,
Chinese Academy of Sciences. It is called the Giant Steerable
Science Mirror prototype (GSSMP) [13–18].

This paper is organized as follows. Section 2 describes the
GSSMP system, including the coordinate system and function
of GSSMP. Section 3 presents the procedure of calibration. In
Section 4, the added-on treatment is discussed after measure-
ment of GSSMP dynamical resonance. In Section 5, the warp-
ing harness combining Zernike mode and bend mode is
investigated.

2. DESCRIPTION OF GSSMP

The first thing that needs to be defined is the coordinate system
of the GSSMP. All motions are about the z axis of the elevation
coordinate system (ECRS) and the x axis of the M3 coordinate
system (M3CRS). For the calibration, the goal is to precisely
measure the difference between commanded and actual posi-
tions, and then to fine-tune the performance by means of con-
trol algorithms. In order to measure the actual position and
check that all the motion requirements are fulfilled, a calibra-
tion lookup table that lists encoder reading errors was
created [13,14].

For pointing and tracking, the M3 system (M3S) rotation
range about the ECRS z axis will be within two ranges: θ �
�14 to −28 deg for instruments on the �X Nasmyth
Platform and θ � �166 to �208 degrees for instruments on
the −X Nasmyth platform. For pointing and tracking, M3S will
tilt about the M3CRS x axis within the range Φ � 32 to
48 deg. Figure 1(a) shows the M3CRS.

The M3S will be able to rotate the M3 Mirror about the
ECRS z axis to any angle within the ranges with a repeatable
residual M3 rotation error (after telescope calibration) that is
less than 3.5 arcsec RMS. The M3S will be able to tilt the
M3 mirror about the M3CRS x axis to any angle within

the range with a repeatable residual M3 tilt error (after telescope
calibration) that is less than 3.5 arcsec RMS. The residual po-
sition error of the M3 mirror surface in the M3CRS z-axis di-
rection will be less than 120 μm RMS (after telescope
calibration) as the M3S rotates and tilts the M3 mirror to any
position within the ranges defined before.

If possible, the following characteristics of the GSSMP
system need calibration, including deformations due to gravity,
encoder geometric errors after controlling of the encoder
mounting surface quality to a good level, thermal effects after
dome thermal control, structural repeatability under a changing
thermal and gravitational environment, and cross-coupling
between the rotation and tilt axes after alignment of orthogo-
nality between tilt and rotation axes.

The tracking performance relates to the resonance of the
GSSMP system and the control algorithm. The jitter require-
ment is easier to meet, when the added-on treatment is inves-
tigated. It will minimize the influence of jitter on the system
performance. The location for these is on the yoke and the cell
assembly, if necessary.

The warping harness will be rooted on the whiffletrees,
which support the planar mirror. The mirror is sensitive to

Fig. 1. GSSMP calibration, for (a) showing coordinate system and
details of the assembly and for (b) results achieved by two SMRs and
three SMRs.
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bending, which can be used to adjust deflection due to gravity
and thermal load.

3. GSSMP CALIBRATION

Motion calibration is mainly focused on pointing error. It will
allow us to achieve the pointing performance with high accu-
racy, even though the encoder is imperfectly mounted or the
control system is imperfectly tuned. It might be impossible
to meet the requirement without calibration at a relatively
low cost. Calibration is trying to figure out, mostly, how to
remove the systematic error, which is stable over the timescale
between calibrations. The temporal and/or spatial frequencies
of the error components decide the type of calibration model.
A suitable calibration model will help to predict the values of
the error between sampled points using polynomial fit or sum
of sines/cosines, etc.

The calibration is processed by a laser tracker and sphere-
mounted retro-reflector (SMR). The SMR will feed back its
location to the laser tracker. As shown in Fig. 1(a), the residual
error curves of three SMRs and two SMRs are presented. The
averaging of three and two SMRs is better than both of them.
Analytically, three SMRs will constrain errors except compo-
nents of three orders and their multiples. Averaging two and
three SMRs will leave only t6 orders and their multiples. As
shown in Fig. 1(b), the GSSMP will be calibrated at different
Zenith angles, and the SMRs will be located on the dummy
mirror.

The plot presents the pointing error of GSSMP. The bear-
ing for the rotation axis was mounted correctly, and measure-
ments of rotation were made with four SMRs. The data show
that four read heads/SMRs cancelled run-out almost entirely.
The residual error represents the true bearing error, which
can be corrected in an algorithm to get extremely accurate read-
ings. Angles tested at points T 1 ∼ T 4 by four read heads/SMRs
are set as T 1 ∼ T 4. Rotation angle θrot is shown in Eq. (1):

θrot �
1

2

R2

R1 � R2

�T 1 � T 3� �
1

2

R1

R1 � R2

�T 2 � T 4�; (1)

where r1 � r3 � R1, and r2 � r4 � R2. The accuracy is equal
to the two reading heads case.

Here we chose the weights as R2

R1�R2
for the test points

T 1; T 3, and
R1

R1�R2
for the points T 2; T 4. Figure 2 shows sche-

matically the principle of calibration. The bottom panel shows
the raw data of four SMRs.

The purpose is to measure the pointing errors, testing used
angle measurements from all four SMRs. However, only one
read head is used to feed back to the control system.
Residual run-out in the bearing is likely much larger than
the four SMRs measurement, relatively. Here we note the aver-

aging error as Δ̄i �
P

Δi

N − δai, and the difference between
GSSMP encoder and reference encoder as Δi � δbi − δai, set-

ting μi � Δ1 − Δ̄i � δbi −
P

δbi
N . Because

P
δbi

N is very close to
being dominated by random error when N is large enough, μi
is the asymptotic estimation of δbi.

The residual error of ration at 0 zenith is shown in Fig. 3(a).
The residual error of tilt at 0 zenith is shown in Fig. 3(b).

This can work with a large correction table to include the
run-out measurement for only one read head, but the correc-
tion values at any point are likely to be much larger than the
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Fig. 2. Configuration of the calibration with a laser tracker for
(a) basic principles and (b) raw data.
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Fig. 3. Residual error of the calibration with a laser tracker for
(a) rotation axis and (b) tilt axis.
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errors that the table is trying to eliminate. Static alignment
terms (rotation offset, tilt offset, non-orthogonality between ro-
tation axis and tilt axis, non-orthogonality between tilt axis and
ECRS-z, etc.) are then discussed. As shown in Eq. (2), the ro-
tation deviation Δθ and tilt deviation Δϕ are presented:

Δθ � −�b1 sin θ − b0 cos θ� cot ϕ − b3 csc ϕ

Δϕ � −b1 cos θ − b2 sin θ; (2)

where b0 stands for rotation offset, b1 stands for tilt offset, b2
stands for non-orthogonal tilt and ECRS-z, and b3 stands for
non-orthogonal rotation-tilt.

By least squares estimation (LSE) estimation, the coefficient
is rotation offset jb0j � 27.5 0 0, tilt offset jb1j � 26.31 0 0,
non-orthogonal tilt and ECRS-z jb2j � 110.05 0 0, and non-
orthogonal rotation-tilt jb3j � 102.91 0 0. The accuracy is better
than 8 0 0. When it comes to the full-sized GSSM, the accuracy
will be higher due to larger measurement diameter.

4. GSSMP TMD ANALYSIS

The input–output model is able to be evaluated in frequency or
time domains. In time domain, it is evaluated by setting time,
which is a one-dimension metric not enabling to specify the
different components in the responses. In frequency domain,
frequency response function (FRF) between input excitation
and dummy mirror responses is investigated. In general,
the lowest modes will dominate the responses. However, con-
sidering the coupling of telescope components, the higher-
frequency modes may also become fundamental modes.

For GSSMP, the fundamental mode is a translation along
tilt axis, as shown in Fig. 4. To modify the FRF of GSSMP, an

additional treatment is set to the GSSMP, as shown in the far
right panel of Fig. 4.

Tuned mass damping (TMD) is very effective for single-
resonance modal shape. The very first step is the selection
of potential mounting locations. The candidate principle is
physical mounting restriction. On the top of the yoke, the light

transition will not be influenced. Furthermore, it is easy to be
assessed to replace and repair. By FRF measurement, the basic
resonance characteristics of GSSMP will be illustrated. After
that, based on FRF, the TMD is able to be designed to improve
the dynamical performance of GSSMP.

The dynamical equation is shown in Eq. (3):�
IG 0

0 IB

��
α̈

θ̈

�
�
�

2k1lG −2 cos�φ�k1lG
−2 cos�φ�k1lG 2 cos�φ�k1lG �2klB

��
α

θ

�

�
�
2lGmTMDẍTMD

0

�
; (3)

where IG is the moment of inertia of GSSMP; IB is the mo-
ment of inertia of GSSMP base; α is the angular displacement
of GSSMP tipping; θ is the angular displacement of GSSMP
base tipping; k1 is the stiffness of GSSMP tipping; lG is the arm
of force in GSSMP; φ is the rotation angle of GSSMP; k is the
stiffness of GSSMP base; l B is the arm of force in GSSMP base;
mTMD is the mass of TMD; and xTMD is the displacement
of TMD.

Rewrite Eq. (3) in frequency domain, as shown in Eq. (4):

�IGω2 � 2k1lG�A�ω�
� 2 cos�φ�k1lGΘ�ω� � 2lGmTMDω

2X TMD�ω�
�IBω2 � 2 cos�φ�k1lG � 2kl �Θ�ω�

� −2 cos�φ�k1lGA�ω�; (4)

where A�ω� is the Fourier transform of α; Θ�ω� is the Fourier
transform of θ; and X TMD�ω� is the Fourier transform of xTMD.

The FRF between the angular displacement of GSSMP
tipping and TMD force is shown in Eq. (5):

H � A�ω�
mTMDω

2X TMD�ω�
� 2lG�IBω2 � 2 cos�φ�k1lG � 2klB�

�IGω2 � 2k1lG��IBω2 � 2 cos�φ�k1lG � 2kl� � 4�cos�φ�k1lG �2
: (5)

The derivative of FRF between the angular displacement of
GSSMP tipping and TMD force is shown in Eq. (6). The
derivative is positive; when φ � 0, GSSMP tipping is easier
to be influenced by TMD:

∂H
∂ cos�φ� �

∂ A�ω�
mTMDω

2X TMD�ω�
∂ cos�φ� ≥ 0: (6)

The FRF will be tested by hammer impact or a mini actua-
tor at φ � 0. The imaginary part of FRFH � HREA � iH IMA

is presented by stiffness, mass, and damping, as shown in
Eq. (7):

H IMA � −1

2kmainξmain

� −1

2mmainω
2
0ξmain

; (7)

where mmain is the mass of the main vibration model. ω0 is the
resonance frequency of the main vibration model. kmain is the
stiffness of the main vibration model. ξmain is the damping ratio
of the main vibration model. Re-write the Eq. (7) as Eq. (8):Fig. 4. GSSMP model and the sketch of TMD.
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mmain �
−1

2H IMAω2
0ξmain

: (8)

Considering the output is acceleration, H IMA
A � ω2

0H
IMA.

The main mass is shown in Eq. (9); the mass of TMD is
set as 2–5% of the main mass:

mmain �
−1

2H IMA
A ξmain

: (9)

By this, the slewing setting time will be constrained. The
FRF of GSSMP is shown in the left panel of Fig. 5. The res-
onance frequency of 12.9 Hz is according to rigid body motion.
The peak of 42.1 Hz is the arm swinging from side to side.
According to this model whose main mass is 210 kg, the TMD
is designed. As shown in the left panel of Fig. 5, the mass of
TMD is about 4 kg. What is more, the frequency is set as
42 Hz. The dynamical response was reduced by at least 20%
in a previous testing, as shown in the right panel of 5. A mini
actuator is shown in the right panel (lower), and it can be used
in the reaching of FRF, but also as active mass damping items.

5. WARPING HARNESS

The biggest advantage of the stitching algorithm is the expansion
of themeasurement aperture.However, with the telescope diam-
eter increasing, the number of subapertures will also increase.
What is more, because subapertures are stitched together after
extraction of low-order aberration (power, astigmatism, etc.), the
measuring sensitivity is low for the lower frequencies. At the
same time, the cost will be difficult to control, if a larger plane
interferometer is used to increase the estimated accuracy.
Additionally, measuring lots of apertures is a huge waste of time
and staff. The sparse apertures were proposed to test the large flat
mirror, combined with the theory of Fourier optics, and normal-
ized point source sensitivity (PSSn). PSSn is an advanced large
telescope error evaluation index proposed by the TMT team in
the United States. Using point spread function (PSF) or optical
transfer function (OTF), PSSn can be obtained under different
seeing conditions. According to the Fourier optics theory, the
difference between a sparse aperture and full aperture can be
theoretically analyzed by PSSn.

The power spectral density (PSD) evaluation method is in-
vestigated by the National Ignition Facility (NIF) [19,20].
Armed with the fast Fourier transform, the PSD can be

obtained rapidly. It is possible to estimate the low-order
Zernike polynomials from the data of the sparse apertures.

The Zernike polynomial is the commonly used orthogonal
basis optical surface expression. As Noll pointed out [21], in
Eq. (10), it has a relationship between the Zernike coefficient
and PSD:

hᾱiαj 0 iΦsub

�

8>>><
>>>:

2
ffiffiffiffiffiffiffi
n�1

p ffiffiffiffiffiffiffiffi
n 0�1

p
πR2 �−1��n�n 0−m 0−m�∕2

×
R
∞
~f
PSDs�~f ∕R� Jn�1�2π ~f �Jn 0�1�2π ~f �

~f
d~f i − j 0 � even

0 i − j 0 � odd.

(10)

Noting Jn�2π ~f � as the n 0th-order Bessel function of the first
kind, n is the axial symmetry number, and m is the number of
symmetry. ai is the Zernike coefficient. m, n is integration.
PSDs is the power spectrum density achieved by sparse
apertures. ~f is spatial frequency.

The power spectrum is a characterization method with
statistical information that combines the frequency domain
expression of Zernike polynomials to realize low-order face es-
timation. According to the continuity of functions, noting αϕ
as the fitting coefficient, the RMS of the standard Zernike pol-
ynomial is 1, so the PSSn brought by a single Zernike is [22]

PSSn � 1 − αϕk2α2i :

And when only the first few orders are under consideration,
it shown in Eq. (11):

PSSn ≈
YN
i�2

�1 − 2k2α2i �: (11)

k � 2π
λ is the wave number, which is used for the optical path

and phase transformation.
Combined with Zernike polynomials and minimum energy

modes, the mirror figure can be expressed. The Zernike poly-
nomial’s biggest advantage is its direct meaning. At the same
time, for a different system, its expression is unified. The mini-
mum energy modes are obtained by modal calibration where
the correction forces or torques are minimum. For different
systems, due to the different free resonant modes, the bases will
be different. TMT used the plate scale error to specify the low-
order aberration. The definition and calculation method of the
plate scale error are shown below:

EPA � Cpower

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hα24ifull

q
� C astigmatisms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hα25ifull � hα26ifull

q
;

where�
Cpower � jc4@45° − c4@32°j � 1.97 mas∕μmRMS
C astigmatisms � 2jc5@45°j � 63.70 mas∕μmRMS

:

The advantage of combining Zernike modes with bending
modes can be highlighted by the Zernike polynomial’s aberra-
tion expression (plate scale error, etc.) and the bending mode’s
convenience in controlling.

Suppose the system wavefront isW �θ; ρ�, and it is presented
by Zernike polynomials Z j�θ; ρ�j�2∼6, which characterize the

Fig. 5. GSSMP FRF and the TMD frequency performance.
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system performance. Another base is obtained by bending
modes Bi�θ; ρ�i�1∼N ·βi is its coefficient.

Note that θ, ρ are the polar angle and polar radius under the
polar coordinate.

W �θ; ρ� is expressed in Eq. (10). W res�θ; ρ� is the residual
wavefront error:

W �θ; ρ� �
X6
j�2

αjZ j�θ; ρ� �
XN
i�1

βiBi�θ; ρ� �W res�θ; ρ�:

(12)

System wavefronts W �θ; ρ� and Bi�θ; ρ�i�1∼N can both be
represented by Zernike polynomials:

W �θ; ρ� �
XK
k�2

ηkZ k�θ; ρ�;

and

βi�θ; ρ� �
XL
l�2

γkZ l �θ; ρ�:

Combine with the previous equations:
XM
k�2

ηkZ k�θ; ρ� �
X7
j�2

αjZ �θ; ρ� �
XN
i�1

βi
XL
l�2

γl Z l �θ; ρ�:

(13)

Since Zernike polynomials are linearly independent, the cor-
responding coefficients are equal to Eq. (14):

ηk � αk �
XN
i�1

βiγk k � 2…7; (14)

and

ηk �
XN
i�1

βiγk k ≥ 8:

Reforming Eq. (14), it is Eq. (15):

A �

2
64
α1

..

.

α7

3
75

2
666664

1 0 � � � 0 −γ1 … −γ1

0 1 � � � 0 −γ2 … −γ2

..

. ..
.

1 0 ..
.

… ..
.

0 0 … 1 −γ7 … −γ7

3
777775

2
66666666664

η1

..

.

ηK

β1

..

.

βL

3
77777777775
� GB:

(15)

Using the LSE method, the correction torques can be
obtained:

B � G�A:
The aberration is presented in the form of PSSn by Eq. (11).

The complex amplitude distribution of a multi-aperture system
is shown in Eq. (16):

IA �
���� πD�1� cos θ�

λ

����
2
���� J1�

πD sin θ
λ �

πD sin θ
λ

����A; (16)

where tan θ �
ffiffiffiffiffiffiffiffiffi
ξ2�η2

p
z , and �ρi ; δi� are the polar coordinates of

the subaperture array. A � jPN
i�1 e

j2π�ρiθ∕λ� cos�δi�ejϕi j2ϕi is the

phase deviation of the ith subaperture. The complex amplitude
at different locations is PSF. PSF gained by sparse aperture is
similar to the single diameter case, but its internal part has more
ripples. It can be seen from Eq. (16) that PSSn of the system
can also change with the optics aperture. In the most extreme
case, PSSn will reduce to 0, when the light no longer passes, and
PSSn is limited by the optical pupil’s shape. By estimating the
upper limit, it is of great significance for the installation of
PSSn. In order to demonstrate the universality of the conclu-
sion for the limits of the sparse aperture’s PSSn, we have calcu-
lated the surface data of various vendors. Considering different
vendors, the PSSn limit is shown in Fig. 6(a). With a smaller
filling ratio, due to the shrinking of effective information, PSSn
will responsibly reduce, as shown in Fig. 6(b).

Using PSSn and sparse apertures as the feedback of warping
harness correction is shown in Fig. 7. The first few Zernike
polynomials were estimated in the frequency domain, and then
PSSn was calculated. The warping harness was driven by the
bending modes. The previous process was repeated until the
PSSn was raised to the expected value. Last, PSSn increased
from 0.1654 to 0.2548. The RMS value was improved from
78.9 nm to 23.4 nm. The correction rate reached 60%.

6. CONCLUSIONS

Calibration is a method for improving telescope pointing per-
formance. At the same time, damping treatment is employed as
an added-on solution for dynamical resonance improvement.
Calibration by a laser tracker and non-uniformly located
SMRs will reduce the systematic ration/tilt error, and feed back
to the control system. The accuracy was better than 8 0 0. When
it comes to the full-sized GSSM, the accuracy will be higher due

Fig. 6. PSSn limit showing for (a) PSSn with samples of different
vendors, and for (b) PSSn for different sampling forms.

Fig. 7. Warping harness working process for GSSMP.

10014 Vol. 56, No. 36 / December 20 2017 / Applied Optics Research Article



to a larger measurement diameter. Dynamical performance
depends on damping of the telescope very much. However,
the main material of a large telescope is always lightly damped,
such as steel. The added-on treatment is necessary not only
for the design of future telescopes but also valuable for the
reconstruction of current telescopes. The dynamical response
was reduced by at least 20% in a previous testing. Using
the figures in sparse apertures, we can obtain a system’s partial
information, which is needed for the system installation and the
controlling of the warping harness. The sparse apertures were
used to measure the non-overlapping figure, and then PSSn was
estimated. With the warping harness, PSSn was increased from
0.1654 to 0.2548. The RMS value of the GSSMP mirror figure
was improved from 78.9 nm to 23.4 nm. The correction rate
reached 60%.
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