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Double Selective Sparse Channel Estimation Based on the
Optimized Recovery Algorithm

MA Xiu<+ong CHEN Bingxue SHAN Yun-ong

( Department of Computer and Communication Engineering Tianjin University of Technology

Tianjin Key Laboratory of Film Electronic and Communication Devices Tianjin 300384 P. R. China)

Abstract  The wireless communication channels within orthogonal frequency-division multiplexing systems could
be modeled as time-frequency doubly selective channels introduced by high mobility. The application of compressed
sensing is considered as the sparse channel estimation because of its sparsity on delay-doppler domain. The com-
plexity of Regularized Orthogonal Matching Pursuit( ROMP) recovery algorithm increases with higher sparsity. To
reduce the complexity of atom selection and solving least squares problem in ROMP an optimized recovery algo—
rithm with a rigorous computational bound is proposed which identifies a fixed number of atoms to make the recov—
ery submatrix be a nonsingular matrix. In addition the recovery submatrix is renewed at the end of each iteration to
improve the precision. Simulation results demonstrate that compared with ROMP algorithm elapsed time in the op—
timized recovery algorithm is decreased evidently and the accuracy could be ensured with proper iteration times.

Key words  OFDM CS channel estimation doubly selective channel recovery algorithm
ROMP
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Adjustment and Test Method of Whiffletree Support Structure

WEI Xiang-tong' > ZHANG Jing=u' WANG Fu-guo'~ LIU Xiang-yi'
( Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Sciences' Changchun 130033 P. R. China;
University of Chinese Academy of Sciences? Beijing 100039 P. R. China)

Abstract  Based on kinematic principle Whiffletree structure is widely used in axial support system of large
aperture telescopes. In order to reach expected support effect and ensure the precision of the mirror surface figure
the balance of the Whiffletree structure is rigorously required. To meet this adjustment and test requirement ac—
cording to the structural features of Whiffletree structure the Load cells the dial indicator and other instruments
are used to test the balance of the Whiffletree structure and the balance of the Whiffletree structure is adjusted by
adding or subtracting the balance weight and adjusting the height of the balance weight. Firstly the principle of this
adjustment and test method is presented and then the experiment is processed on a Whiffletree structure which is
used in the primary mirror’ s axial support system of a certain telescope. Test results show after adjustment the
error of the support force in every support point is within limits of +0.25 N and meets the design requirement of
+0.5 N. This method is practicable and has certain reference significance for Whiffletree structure to be better
used for the large aperture telescope support in the future.

Key words  Whiffletree balance test balance adjustment load cell axial support



