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Abstract: As structure buckling problems easily arise when supercavitating projectiles operate with high un-

derwater velocity, it is necessary to perform structure buckling reliability analysis. Now it is widely known that

probabilistic and non-probabilistic uncertain information exists in engineering analysis. Based on reliability com-

prehensive index of multi-ellipsoid convex set, probabilistic uncertain information is added and transferred into

non-probabilistic interval variable. The hybrid reliability is calculated by a combined method of modified limit

step length iteration algorithm (MLSLIA) and Monte-Carlo method. The results of engineering examples show

that the convergence of MLSLIA is better than that of limit step length iteration algorithm (LSLIA). Structure

buckling hybrid reliability increases with the increase of ratio of base diameter to cavitator diameter, and de-

creases with the increase of initial launch velocity. Also the changes of uncertain degree of projectile velocity and

cavitator drag coefficient affect structure buckling hybrid reliability index obviously. Therefore, uncertain degree

of projectile velocity and cavitator drag coefficient should be controlled in project for high structure buckling

reliability.
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0 Introduction

There are different forms of uncertain information in
engineering structure system analysis, such as random
or uncertain-but-bounded information. When sample
data of structure are sufficient, accurate probability
distribution can be obtained and uncertain variables
are described as random variable reasonably. Other-
wise, there are large difference results of probabilis-
tic reliability between few differences of probability
distribution[1]. Because exact probability distribution
cannot be obtained when sample data of structure are
insufficient, probabilistic reliability analysis results are
not satisfactory. Boundary of uncertain variable is
easy determined, so it is more appropriate to use non-
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probabilistic variable to describe uncertain information
at this time. However, there are widely probabilistic
and non-probabilistic variables at the same time in en-
gineering. Therefore, it is necessary to perform proba-
bilistic and non-probabilistic hybrid reliability analysis
of structure. Different definitions and solving methods
of hybrid reliability index were proposed[2-4].

Structure buckling problems arise easily when super-
cavitating projectiles, whose slenderness ratio is high,
undergo high longitudinal force caused by high veloc-
ity in the submarine. Gu et al.[5] investigated struc-
ture buckling probabilistic reliability of supercavitating
projectile which was simplified as variable cross-section
beam. Under different ratios of base diameter to cavi-
tator diameter, An et al.[6] investigated the change ten-
dency of buckling non-probabilistic failure degree along
with the variety of speed. Zhou et al.[7-8] performed
structure buckling probabilistic reliability analysis and
buckling load non-probabilistic interval analysis of su-
percavitating projectiles.

In the early stage of product development, there are
both of probabilistic and non-probabilistic variables.
Because data samples of some variables are not enough,
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it is necessary to perform structural buckling proba-
bilistic and non-probabilistic hybrid reliability analysis.

1 Probabilistic and Non-Probabilistic
Hybrid Reliability

Structural reliability is defined as the capacity of
structure which completes the required performance
under specified conditions and time. Probabilistic mea-
sure of reliability is called probabilistic reliability Pr and
is expressed as

Pr = P{M > 0} ≈ Φ(β), (1)

where M is safety margin function, β is probabilistic re-
liability index, and Φ(·) is standard normal distribution
function. When accurate probabilistic distribution of
uncertain variables can be obtained, probabilistic reli-
ability method can be used. Probabilistic reliability in-
dex β can be solved by advanced first order second mo-
ment (AFOSM), second order second moment (SOSM)
and Monte-Carlo method[9].

When accurate probabilistic distribution of uncer-
tain variables cannot be obtained but their boundaries
are known, non-probabilistic reliability method can be
used. A new non-probabilistic reliability comprehen-
sive index and the corresponding solving algorithm are
presented in Ref. [10]. The new multi-ellipsoid convex
set non-probabilistic reliability comprehensive index κ
is expressed as[10]

κ =

{
η, η > 1

Rset, 0 � η � 1
, (2)

where Rset is non-probabilistic degree, and η is non-
probabilistic reliability index. The non-probabilistic re-
liability index is expressed as

η =

sgn(g′(0))min
Δv

[
max

i=1,2,··· ,k
δi =

√
(Δvi)TΔvi

]
, (3)

s.t. g′(ΔV ) = g(Y ) = 0,

where sgn(·) is sign function; Δvi is the ith stan-
dard super-sphere space vector; ΔV is standard super-
sphere space vector; Y is multi-ellipsoid space vector;
g′(ΔV ) is limit state function in standard super-sphere
space, g′(0) is limit state function when ΔV = 0; g(Y )
is limit state function in super-ellipsoid space; δi is the
ith equivalent interval variable.

When structure uncertain parameters are described
by multi-ellipsoid convex set, non-probabilistic relia-
bility index η is a min-max value problem. However,
sample data of some variables are sufficient and oth-
ers are lack in engineering. Therefore, it is more com-
mon that probabilistic and non-probabilistic variables

exist at the same time in engineering. When there are
both probabilistic variables and multi-ellipsoid convex
set non-probabilistic variables, safety margin function
is expressed as

M = g(X, Y ) =
g(X1, · · · , Xi, · · · , Xm, Y1, · · · , Yj, · · · , Yn), (4)

where X is probabilistic vector, Xi is the ith proba-
bilistic variable, and Yj is the jth super-ellipsoid space
vector. Generally random variables can be truncated
according to 3σ principle in engineering, namely ran-
dom variable xi can be transferred into interval variable
y′

i as follows:

y′
i ∈ [μi − 3σi, μi + 3σi], (5)

where μi is mean value of random variables, and σi is
standard deviation of random variables. After random
vector X is transferred into equivalent interval vector
Y ′, safety margin function is transferred as

M = g(Y ′, Y ) =
g(Y ′

1 , · · · , Y ′
i , · · · , Y ′

m, Y1, · · · , Yj , · · · , Yn). (6)

In summary, hybrid reliability of probabilistic and
non-probabilistic, ϕ, can be expressed as

ϕ =

{
η′(X, Y ), η′ > 1

Rset(X, Y ), 0 � η′ � 1
. (7)

And hybrid reliability index η′ can be expressed as

η′ = sgn(g(0)) min
(Δv′,Δv)

max
i=1,2,···m
j=1,2,···n

(δi, δj), (8)

s.t. g(ΔV ′, ΔV ) = g(Y ′, Y ) = 0,

δi =
√

(Δv′
i)TΔv′

i,

δj =
√

(Δvj)TΔvj ,

where ΔV ′ is equivalent standard super-sphere space
vector which is transformed from random vector X.

2 Solving Method of Hybrid Reliability
Index

Before calculating hybrid reliability ϕ, hybrid relia-
bility index η′ should be obtained. And the min-max
value problem of η′ which is expressed in Eq. (8) can
be converted to the shortest distance problem from ori-
gin to limit state surface in the standard super-sphere
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space, namely

η′ = sgn(g(0))
1√

m+n
min

(Δv′,Δv)

√√√√ m∑
i=1

δ
′2
i +

n∑
j=1

δ2
j , (9)

s.t. G(ΔV ′, ΔV ) =
1
2

{
g2(ΔV ′, ΔV )+

C
[ m−1∑

i=1

(δ′i − δ′i+1)
2 + (δ1 − δ′m)2+

n−1∑
j=1

(δj − δj+1)2 + (δn − δ′1)
2
]}

= 0.

We can see that η′ can be obtained by similar iter-
ation method such as AFOSM which is used to solve
probabilistic reliability index. There are only the dif-
ferences of iteration space and constraint function of
limit state equation. Considering iterative convergence
problem, modified limit step length iteration algorithm
(MLSLIA) is used to guarantee convergence.

The solving steps of hybrid reliability ϕ are as follows.
Step 1 Firstly normal random variable Xi is con-

verted into interval variable Y ′
i by Eq. (5), and then Y ′

i

is converted into standard super-sphere space Δv′i:

Δv′i =
Y ′

i − μi

3σi
. (10)

Step 2 Multi-ellipsoid convex set vector Y ′ is con-
verted into standard super-sphere space ΔV :

Δvj =
1
αj

Λ
1
2
j Pj(Yj − Yj0), (11)

where αj is a known positive real number that deter-
mines the size of the jth super-ellipsoid convex set, Λj

is a diagonal matrix, and Pj is an orthogonal matrix,
also Wj = P T

j ΛjPj .
Step 3 The shortest distance problem in the stan-

dard super-sphere space can be solved by MLSLIA and
its iterative formulae are

α(k+1) =
ΔV (k) − λ(k)∇gΔV (ΔV (k))

‖ΔV (k) − λ(k)∇gΔV (ΔV (k))‖ , (12)

η
′(k+1) =

− gΔV (ΔV (k)) − (∇gΔV (ΔV (k)))TΔV (k)

(α(k+1)
ΔV )T∇gΔV (ΔV (k))

, (13)

ΔV (k+1) = α
(k+1)
ΔV η

′(k), (14)

where the superscript k indicates the number of iter-
ation steps. In the iteration process, the optimal step
length λ(k) can be searched through the golden section
method. Evaluation standard is determined by con-
structing a new evaluation function m(ΔV ) which is

based on the extreme value conditions of augmented
Lagrange function[10].

Step 4 If η′ > 1, then ϕ = η′. If 0 � η′ � 1, then
ϕ = Rset, and Rset can be calculated by Monte-Carlo
method[10].

3 Structure Buckling Hybrid Reliability
of Supercavitating Projectile

3.1 Safety Margin Equation and Partial
Derivatives Formula

A sketch of supercavitating projectile is shown in
Fig. 1, where dn is cavitator diameter, dB is base di-
ameter, L is projectile length, υ is projectile velocity,
and FD is cavitator drag.

Fig. 1 Supercavitating projectile

Set structural critical buckling load FDcr as strength,
and cavitator drag FD as stress. Safety margin equation
of structure buckling of supercavitating projectile is

M = g(X, Y ) = FDcr(E, dn, L) − FD(Cx, υ, dn), (15)

where E is elasticity modulus, and Cx is cavitator drag
coefficient. Reference [11] provides solving method of
FDcr and FD in details.

First order partial derivatives of structure buckling
performance function to uncertain variables will be used
by MLSLIA, namely

∂g(ΔV ′, ΔV )
∂Δv′i

=
∂g(X, Y )

∂Δv′i
=

(∂FDcr

∂Y ′
i

− ∂FD

∂Y ′
i

) ∂Y ′
i

∂Δv′i
, (16)

∂g(ΔV ′, ΔV )
∂Δvj

=
∂g(X, Y )

∂Δvj
=

(∂FDcr

∂Yj
− ∂FD

∂Yj

) ∂Yj

∂Δvj
. (17)
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The partial derivatives of FD to Y ′
i and Yj are simple.

But FDcr is a complex implicit function, and the par-
tial derivatives of FDcr to Y ′

i and Yj can be expressed
respectively as

∂FDcr

∂Y ′
i

=
CT

( ∂Q

∂Y ′
i

FDcr − ∂P

∂Y ′
i

FDcr − ∂A

∂Y ′
i

)
C

CT(P − Q)C
, (18)

∂FDcr

∂Yj
=

CT
( ∂Q

∂Yj
FDcr − ∂P

∂Yj
FDcr − ∂A

∂Yj

)
C

CT(P − Q)C
, (19)

where vector C and the partial matrix of A, P , Q to
E, dn, L, Cx, υ will be used and its expression can be
obtained in Ref. [11].
3.2 Numerical Example

For uncertain variables of supercavitating projectile,
there are sufficient sample data of material elasticity
modulus; then E can be treated as a normal distribu-
tion random variable with mean value μE = 210GPa
and standard deviation σE = 3.3GPa. There are insuf-
ficient sample data of geometric dimension L and dn,
but the tolerance of them can be provided by designer.
Therefore, L and dn can be treated as non-probabilistic
variables, and their expressions are

(L − 0.160
0.005γ

)2

+
(dn − 0.002 5

0.000 1γ

)2

� 1, (20)

where γ is degree of uncertainty.
Uncertain degree of cavitator drag coefficient and

projectile velocity should be determined by experiment
data. Due to the strong correlation and the limit of test
data, Cx and υ are described by super-ellipsoid convex
set:

(Y − Y0)TW (Y − Y0) � 0.2γ, (21)

where

Y =

[
Cx

υ

]
, Y0 =

[
1.0

1 200

]
, W =

[
1 0.2

0.2 1

]
.

Random variable E and multi-ellipsoid convex set
variables L, dn, Cx and υ are converted into standard
super-sphere space ΔV :

E = 3Δv′1σγ + μE , (22)
L = 0.160 + 0.005Δv1γ, (23)
dn = 0.002 5 + 0.000 1Δv2γ. (24)

Diagonal matrix Λ and orthogonal matrix P can be
obtained through eigenvalue decomposition:

Λ =

[
0.8 0

0 1.2

]
, P =

[
−0.707 1 0.707 1

0.707 1 0.707 1

]
. (25)

And Y can be expressed by ΔV = [Δv3 Δv4]:

Y = 0.2γP−1Λ− 1
2

(
ΔV +

1
0.2γ

Λ
1
2 PY 0

)
. (26)

Limit state equation in standard super-sphere space
can be obtained by substituting Eqs. (22)—(24) and
Eq. (26) into Eq. (15). And then hybrid reliability in-
dex η′ can be solved by MLSLIA.

The iterative solving process of η′ is compared by
MLSLIA and limit step length iteration algorithm
(LSLIA)[12] in Fig. 2 (the ratio of base diameter to
cavitator diameter α = 2.5). The iteration results of
two methods are the same and the hybrid reliability in-
dexes η′ are both equal to 1.888. There is oscillation
phenomenon in the LSLIA iterative process and con-
vergence point arises after 25 iteration steps. Whereas
convergence point arises only after 10 iteration steps
and there is no oscillation phenomenon in the MLSLIA
iteration process. It shows that MLSLIA has better
and fast iterative convergence.

0 5 10 15 20 25 30 35 40

0.4

0.8

1.2

1.6

2.0

Iterative step

LSLIA
MLSLIA

η '

Fig. 2 Iterative solving process

Table 1 shows the change of structure critical buck-
ling load FDcr, hybrid reliability ϕ, and hybrid reliabil-
ity index η′ with the change of α (υ = 1.2 km/s). Table
2 shows the change of cavitator drag FD, hybrid relia-
bility ϕ and hybrid reliability index η′ with the change
of projectile velocity υ (α = 2.5). When υ is fixed,
nominal value of structure critical buckling load FDcr

Table 1 The change of FDcr, ϕ and η′ with α

α Nominal value of FDcr/kN ϕ η′

2.0 3.842 0.752 2 0.238 8

2.5 6.534 1.888 4 1.888 4

3.0 10.63 1 3.551 3 3.551 3

3.5 16.571 5.142 2 5.142 2

4.0 24.859 6.623 1 6.623 1

4.5 36.066 7.978 5 7.978 5

5.0 50.831 9.200 5 9.200 5
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Table 2 The change of FD, ϕ and η′ with υ

υ/(km · s−1) Nominal value of FD/kN ϕ η′

1.0 2.454 3.126 7 3.126 7

1.1 2.970 2.469 8 2.469 8

1.2 3.534 1.888 4 1.888 4

1.3 4.148 1.369 9 1.369 9

1.4 4.811 0.999 9 0.905 4

1.5 5.522 0.935 9 0.490 0

increases with the increase of α, and hybrid reliability
ϕ and hybrid reliability index η′ also increase. When α
is fixed, cavitator drag FD increases with the increase of
υ, but hybrid reliability ϕ and hybrid reliability index
η′ decrease.

Figure 3 shows that hybrid reliability index η′

changes with the change of uncertain degree factor γ
of each variable. When uncertain degree factor γ of
each variable increases, hybrid reliability indexes η′ are
all declining. The change of uncertain degree factor γ
of Cx and υ affects the change of η′ greatly, and then
uncertain degree factor γ of dn, E, L in turn.

0 0.4 0.8 1.2 1.6 2.0
1.2

1.6

2.0

2.4

2.8

3.2

η'

η' of E
η' of L
η' of dn
η' of Cx and υ

γ

Fig. 3 The change of η′ with γ

4 Conclusion

Hybrid reliability definition and solving method are
presented in this paper when both probabilistic and
non-probabilistic variables are present.

Iteration step number of MLSLIA is less than that of
LSLIA, and convergence of MLSLIA is better.

Structure critical buckling load FDcr, hybrid reliabil-
ity ϕ and hybrid reliability index η′ increase with the
increase of α. Cavitator drag FD increases with the
increase of υ, but hybrid reliability ϕ and hybrid relia-
bility index η′ decrease.

The change of uncertain degree factor γ of Cx and
υ affects the change of η′ greatly. Therefore, uncertain

degree of Cx and υ should be controlled in project for
high structure buckling reliability.
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