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Based on the experimental phenomena of flexoelectric response at defect sites in nematic inversion walls conducted
by Kumar et al., we gave the theoretical analysis using the Frank elastic theory. When a direct-current electric field normal
to the plane of the substrate is applied to the parallel aligned nematic liquid crystal cell with weak anchoring, the rotation
of ±1 defects in the narrow inversion walls can be exhibited. The free energy of liquid crystal molecules around the +1 and
−1 defect sites in the nematic inversion walls under the electric field was formulated and the electric-field-driven structural
changes at the defect site characterized by polar and azimuthal angles of the local director were simulated. The results
reveal that the deviation of azimuthal angle induced by flexoelectric effect are consistent with the switching of extinction
brushes at the +1 and −1 defects obtained in the experiment conducted by Kumar et al.

Keywords: liquid crystal, flexoelectric effect, ±1 defects, Frank theory
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1. Introduction
The flexoelectric effect in nematic liquid crystal (NLC) is

a mechanoelectrical phenomenon analogous to piezoelectric-
ity in solids.[1,2] The direction of axial symmetry is given by
the director 𝑛 in uniaxial nematics which possess a long-range
orientational order but no translational order. A strain-free ne-
matic is invariant with respect to an inversion of its director,
from 𝑛 to −𝑛. The splay and bend deformation will break
this symmetry and polarize the material, and conversely an
electric field will induce a deformation.[3,4] As proposed by
Meyer in 1969,[5] the flexoelectric polarization is proportional
to the deformation and written by

𝑃 = e1(∇ ·𝑛)𝑛+ e3(∇×𝑛)×𝑛, (1)

where e1 and e3 are the flexoelectric coefficients correspond-
ing to splay and bend deformation, respectively. Research on
the flexoelectricity of NLC material has always been a hot
topic in LC field. Recent studies on the flexoelectric effect
attracted new interest of considering[8] exploring flexoelec-
tric coefficients,[9,10] stabilizing blue phases in chiral LC,[11]

and flexoelectric response at defect site in nematic inversion
walls.[12] In particular, Kumar et al. studied the electric field-
induced structural distortions at +1 and −1 defects in a pla-
narly aligned nematic phenyl benzoate.

Topological defects arise as a result of broken continuous
symmetry and are ubiquitous in nature.[13–15] Commonly ob-
served defects in the uniaxial nematic phase are typical point
defects with topological charge S = ±1 and line defects with
topological charge S = ±1/2.[16] The region where the pres-
ence of a defect causes apparent deviations from bulk order-
ing is referred to as the defect core.[17] Its linear dimension
is roughly given by the correlation length of the order param-
eter field employed to describe the phase transition.[18] Ne-
matic layers aligned planarly between unidirectionally rubbed
plates with weak anchoring often exhibit narrow inversion
walls containing several linear defects normal to the sample
plane.[19] In 2006, Kumar et al.[12] sandwiched butyl 4-(4-
ethoxyphenoxycarbonyl) phenyl carbonate (BEPC) between
glass plates coated with ITO, which were rubbed unidirection-
ally on silk prior to cell construction and no surfactant material
was used for securing a planar alignment. As seen between
crossed polarizers, the inversion surface walls containing lin-
ear defects of charge ±1 were exhibited. When the substrates
were applied a direct-current (DC) field, the extinction cross at
a given defect was observed to rotate clockwise or anticlock-
wise, depending on the field direction. The extent of rotation
was found to be linear with field, indicating its flexoelectric
origin.
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In a previous study, Tian et al.[20] investigated the inter-
action between a +1 defect whose nuclei is ‘circular’ nuclei
(i.e., the director flux lines around the defect nuclei are circu-
lar) and the surface wall and flexoelectric response at the de-
fect site, using the one-dimensional finite-difference iterative
method based on the Landau–de Gennes theory. They found
that the deviation of azimuthal angle of the director around the
defect nuclei increases gradually with the increase of the elec-
tric field intensity. Therein, they only considered cylindrically
symmetric solutions containing the +1 defect. However, the
cylindrical symmetry is broken in the case of −1 defect, in
which different phenomena need to be further researched.

The brief purpose of this paper is to give the theoretical
analysis of the influence of the flexoelectric effect on the ±1
defect sites in nematic inversion walls based on the Frank the-
ory. In Section 2, we first describe the structure of the de-
fect site in the nematic inversion wall and obtain the free en-
ergy of NLC molecules around the defect site with an external
DC electric field, and then deduce the equilibrium equations.
Based on the equilibrium equations, the numerical results of
the deviation of azimuthal and polar angles for the director
around the defects site are simulated in Section 3. Meanwhile,
we still analyze the influence of the surface anchoring strength
and the flexoelectric effect on the simulated results and explain
the experimental phenomenon conducted by Kumar et al. The
conclusion is given in Section 4.

2. Theory
Let us consider NLC BEPC in the defect site confined

between two plate substrates z = 0 and z = d with weak an-
choring. The ±1 defects and two plate substrates can exhibit a
cylinder-like structure (but generally without cylindrical sym-
metry), and the z axis of the cylinder is normal to the LC cell,
as shown in Fig. 1, where R is the radius of defect and d is the
thickness of NLC layer. A DC electric field E = Ez = U/d
is applied to the cell along the z axis, where U is the external
applied voltage. Following Ryschenkow and Kleman,[21] the
typical defects appear in such peculiar samples when d < b
(b is the extrapolation length). The experimental phenomenon
about the typical defects is certainly related to the weakness of
the anchoring and bulk energies, which practically forbid any
fluctuation of the director through the thickness (∂/∂ z ≈ 0),
except in the vicinity of disclinations.

To describe this cylindrical defect we introduce standard
cylindrical coordinate (ρ , α , z) and the corresponding local
frame (eρ , eα , ez). The director of NLC in cylindrical coor-
dinate can be written as 𝑛 = (nρ , nα , nz). On the other hand,
the director of NLC in rectangular coordinate system (x, y,
z) can be written as 𝑛 = (nx, ny, nz) and the polar and az-
imuthal angles defining the local director are θ and ϕ . The

coordinate transform can be done between rectangular coordi-
nate and cylindrical coordinate. The azimuthal angle between
the projection of director and x axis is ϕ = Sα +C, where S
is topological charge and C is the constant angle. We assume
that the deviation of azimuthal angle is β after applying the
electric field.[22]

z

y

x

n

E

θ
ϕ R

d

ez
eα

eρ

Fig. 1. Structure of defect site in nematic inversion wall.

From the elastic continuum theory of LC, the bulk free
energy density of the above system fbulk contains elastic, di-
electric, and flexoelectric contributions, but because the value
of dielectric anisotropy ∆ε for BEPC is very small,[12] the di-
electric contribution can be ignored. Therefore, the bulk free
energy density fbulk can be written as

fbulk = felas + fflexo

=
1
2

K11(∇ ·𝑛)2 +
1
2

K22(𝑛 ·∇×𝑛)2 +
1
2

K33(𝑛×∇×𝑛)2

− 1
2

K24∇ · (𝑛×∇×𝑛+𝑛∇ ·𝑛)

− [e1(∇ ·𝑛)𝑛+ e3(∇×𝑛)×𝑛] ·𝐸, (2)

where K11, K22, and K33 are the splay, twist, and bend elas-
tic constants, K24 is the elastic constant of a divergence term
which can be transformed to a surface integral by using
Gauss’s theorem.[23] Through the free energy density integral,
one can obtain the bulk free energy Fbulk as the following ex-
pression:

Fbulk =
∫ R

0

∫ 2π

0

∫ d

0
fbulkρ dρ dα dz. (3)

The surface energy density fs, describing the interaction
between the NLC molecules close to the substrate and the sub-
strate itself, is given by

fs =
1
2

Ws sin2(θ −θ 0), (4)

where Ws is surface anchoring energy strength, θ 0 is the polar
angle of NLC easy direction and supposed to be π/4.[21] The
surface energy can be read as

Fs = 2
∫ R

0

∫ 2π

0
fsρ dρ dα

=
∫ R

0

∫ 2π

0
Ws sin2(θ −θ0)ρ dρ dα. (5)
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Taking into account the bulk free energy and the surface
energy, the total energy of defect system Ftotal can be given by

Ftotal =
∫ R

0

∫ 2π

0
[d fbulk +Ws sin2(θ −θ 0)]ρ dρ dα

=
∫ R

0

∫ 2π

0
ftotalρ dρ dα, (6)

where the total free energy density ftotal is

ftotal = d fbulk +Ws sin2(θ −θ0). (7)

For the +1 defect, the NLC texture exhibits a cylindri-
cal symmetry, so the director is independent of α and z and
is just a function of radius ρ . The value of S is +1 and
the value of C is 0 or π/2. Here, we choose C = π/2, then
ϕ = Sα +C = α +π/2. Hence, the director profile in the mid-
plane z = d/2 with E = 0 is shown in Fig. 2, which is similar
to that shown in Fig. 5 of Ref. [12]. Then the director of NLC
in cylindrical coordinate can be written as

𝑛 = (nρ ,nα ,nz)

= [−sinβ (ρ)sinθ(ρ),cosβ (ρ)sinθ(ρ),cosθ(ρ)]. (8)

eα

eρ

Fig. 2. The director profile in the mid-plane z = d/2 for +1 defect
without applied voltage.

Considering the effect of an applied electric field, the total
free energy density ftotal can be given by

ftotal =
1
2

d(K11 sin2
β cos2

θ +K22 cos2
β

+K33 sin2
β sin2

θ)

(
dθ

dρ

)2

+d
[
(K11 sin2

β +K22 cos2
β −2K24)

sinθ cosθ

ρ

+(e1 cos2
θ − e3 sin2

θ)sinβE
]

dθ

dρ

+d(K11 −K22)sinβ cosβ sinθ cosθ
dθ

dρ

dβ

dρ

+
1
2

d(K11 cos2
β sin2

θ +K22 sin2
β sin2

θ cos2
θ

+K33 sin2
β sin4

θ)

(
dβ

dρ

)2

+d
[
(K11 sin2

θ −K22 sin2
θ cos2

θ −K33 sin4
θ)

× sinβ cosβ

ρ
+ e1 cosβ sinθ cosθE

]
dβ

dρ

+
1
2

dK11
sin2

β sin2
θ

ρ2 +
1
2

dK22
cos2 β sin2

θ cos2 θ

ρ2

+
1
2

dK33
cos2 β sin4

θ

ρ2

+de1
sinβ sinθ cosθ

ρ
E +Ws sin2 (θ −θ 0) . (9)

For the −1 defect, the cylindrical symmetry is broken.
The director is the function of both α and ρ . The value of S is
−1 and C = 0 is chosen, then ϕ = Sα +C = −α . Hence, the
director profile in the mid-plane z = d/2 with E = 0 is shown
in Fig. 3, which is also similar to the −1 defect in a wall nor-
mal to the easy axis given in Ref. [12]. Then the director of
NLC in cylindrical coordinate can be written as

𝑛 = (nρ ,nα ,nz)

= [sinθ cos(−2α +β ),sinθ sin(−2α +β ),cosθ ], (10)

where θ = θ(ρ,α), β = β (ρ,α). Considering the effect of an
applied electric field, the total free energy density ftotal can be
calculated similarly to the +1 defect and given by

eα

eρ

Fig. 3. The director profile in the mid-plane z = d/2 for −1 defect
without applied voltage.

ftotal = A1

(
∂θ

∂ρ

)2

+A2

(
∂θ

∂α

)2

+A3

(
∂β

∂ρ

)2

+A4

(
∂β

∂α

)2

+A5
∂θ

∂ρ

∂θ

∂α
−A6

∂θ

∂ρ

∂β

∂ρ
+A7

∂θ

∂ρ

∂β

∂α

−A8
∂θ

∂α

∂β

∂ρ
+

1
ρ2 A6

∂θ

∂α

∂β

∂α
−A9

∂β

∂ρ

∂β

∂α

−(A7 −A10)
∂θ

∂ρ
−
(

1
ρ2 A6 −

1
ρ

A11

)
∂θ

∂α

+(A9 +A12)
∂β

∂ρ
− (2A4 +

1
ρ

A13)
∂β

∂α
+A4

+
1
ρ

A13 +Ws sin2 (θ −θ 0) , (11)

where

A1 =
d
2
[(K11 cos2

θ +K33 sin2
θ)cos2(−2α +β )
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+K22 sin2(−2α +β )],

A2 =
d

2ρ2 [(K11 cos2
θ +K33 sin2

θ)sin2(−2α +β )

+K22 cos2(−2α +β )],

A3 =
d
2
[K11 sin2

θ sin2(−2α +β )+K22 sin2
θ cos2

θ

× cos2(−2α +β )+K33 sin4
θ cos2(−2α +β )],

A4 =
d

2ρ2 [K11 sin2
θ cos2(−2α +β )+K22 sin2

θ cos2
θ

× sin2(−2α +β )+K33 sin4
θ sin2(−2α +β )],

A5 =
d
ρ
(K11 cos2

θ −K22 +K33 sin2
θ)

× sin(−2α +β )cos(−2α +β ),

A6 = d(K11 −K22)sinθ cosθ sin(−2α +β )cos(−2α +β ),

A7 =
d
ρ
[K11 cos2(−2α +β )

+K22 sin2(−2α +β )−2K24]sinθ cosθ ,

A8 =
d
ρ
[K11 sin2(−2α +β )

+K22 cos2(−2α +β )−2K24]sinθ cosθ ,

A9 =
d
ρ
(K11 sin2

θ −K22 sin2
θ cos2

θ −K33 sin4
θ)

× sin(−2α +β )cos(−2α +β ),

A10 = d(e3 sin2
θ − e1 cos2

θ)cos(−2α +β )E,

A11 = d(e3 sin2
θ − e1 cos2

θ)sin(−2α +β )E,

A12 = de1 sinθ cosθ sin(−2α +β )E,

A13 = de1 sinθ cosθ cos(−2α +β )E. (12)

For a given applied voltage, the equilibrium configu-
ration of NLC should make the total free energy density
ftotal minimization, satisfying the following Euler–Lagrange
equations:[1]

∂ ftotal

∂θ
− ∂

∂ρ

[
∂ ftotal

∂ (∂θ/∂ρ)

]
− 1

ρ

∂ ftotal

∂ (∂θ/∂ρ)

− ∂

∂α

[
∂ ftotal

∂ (∂θ/∂α)

]
= 0, (13)

∂ ftotal

∂β
− ∂

∂ρ

[
∂ ftotal

∂ (∂β/∂ρ)

]
− 1

ρ

∂ ftotal

∂ (∂β/∂ρ)

− ∂

∂α

[
∂ ftotal

∂ (∂β/∂α)

]
= 0. (14)

The boundary conditions for ±1 defects on the core of the
defect (ρ = 0) and the lateral walls (ρ = R) are described as

θ(ρ = 0) = 0, (∂θ/∂ρ)
∣∣
ρ=R = 0 , (15)

β (ρ = 0) = 0, (∂β/∂ρ)
∣∣
ρ=R = 0 , (16)

and the variable α for −1 defect satisfies the periodic condi-
tion, namely θ(α +2π) = θ(α).

Inserting the total energy density ftotal of +1 and −1
defect systems, Eqs. (9) and (11), into the Euler–Lagrange

Eqs. (13) and (14) subjected to the boundary conditions, the
equilibrium equations of θ and β for the +1 and −1 defects
can be obtained. It is noted that the surface elastic K24 term
does not appear in the theoretical frame under the boundary
conditions (Eqs. (15) and (16)).

3. Simulation results and discussion
The change of NLC director is described by angles θ and

β . In the numerical relaxation method,[24–27] the angles θ and
β can be calculated by the following expressions respectively:

γ1
∂θ

∂ t
=−δ ftotal

δθ
, (17)

γ1
∂β

∂ t
=−δ ftotal

δβ
, (18)

where

δ ftotal

δθ
=

∂ ftotal

∂θ
− ∂

∂ρ

[
∂ ftotal

∂ (∂θ/∂ρ)

]
− 1

ρ

[
∂ ftotal

∂ (∂θ/∂ρ)

]
− ∂

∂α

[
∂ ftotal

∂ (∂θ/∂α)

]
, (19)

δ ftotal

δβ
=

∂ ftotal

∂β
− ∂

∂ρ

[
∂ ftotal

∂ (∂β/∂ρ)

]
− 1

ρ

[
∂ ftotal

∂ (∂β/∂ρ)

]
− ∂

∂α

[
∂ ftotal

∂ (∂β/∂α)

]
, (20)

and γ1 is rotational viscosity coefficient for the NLC.
The stable solution of the angles θ and β must satisfy

Eqs. (18) and (19). In the numerical calculations, a discretiza-
tion with a time step is sufficient to guarantee the stability of
the numerical procedure and equilibration times run enough
to confirm the system to reach an equilibrium state. The pa-
rameters for LC and defect used in the numerical calculations
are given as follows:[12,21] K11 = 15.8×10−12 N, K22 = 6.0×
10−12 N, K33 = 17.9× 10−12 N, e1 − e3 = 5.0× 10−12 C/m,
θ 0 = π/4, d = 4.6 µm, R = 15.0 µm, γ1 = 0.1.

3.1. The effect of surface anchoring strength on ±1 defects

Similar to the parallel aligned cell, the surface anchor-
ing strength of the substrate has an important influence on the
orientation of LC molecules in ±1 defects. Figures 4 and
5 show the dependence of polar angle θ on radius ρ inside
the +1 defect and −1 defect in 0◦ direction without exter-
nal electric field. The values of surface anchoring strength
are Ws = 1.0 × 10−4, 1.0 × 10−5, 1.0 × 10−6, 2.5 × 10−7,
1.0× 10−7, 5.0× 10−8, 0.0 J/m2. It is quite clear that the di-
rector near the defect nuclei tends to be along the direction of z
axis and the angle θ will decrease with the surface anchoring
strength Ws decreasing in a certain region in the ±1 defects.
The director around the defect nuclei rotates clockwise around
the ρ axis on their respective αz-plane with the increase of
the surface anchoring strength Ws. In particular, polar angle θ
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tends to be close to π/4 which is the boundary conditions at
z = 0 and z = d when the value of Ws is 10−4 J/m2.
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)

Fig. 4. (color online) Polar angle θ versus radius ρ inside the +1 defect
for different surface anchoring strengths Ws.

ρ/mm

θ/
(Ο
)

0 5 10 15

0

10

20

30

40

50
Ws=1.0T10-4 J/m2

Ws=1.0T10-5 J/m2

Ws=1.0T10-6 J/m2

Ws=2.5T10-7 J/m2

Ws=1.0T10-7 J/m2

Ws=5.0T10-8 J/m2

Ws=0 J/m2

Fig. 5. (color online) Polar angle θ versus radius ρ in 0◦ direction inside
the −1 defect for different surface anchoring strengths Ws.

3.2. The influence of flexoelectric effect on the ±1 defects

We simulate angles θ and β as functions of radius ρ in-
side the +1 defect for different external applied voltages. The
typical director profiles of θ and β inside the +1 defect are
given in Figs. 6 and 7, respectively. However, the phenomenon
of switching of extinction brushes at −1 defect is significantly
different from that at +1 defect.[12] The reason is that the an-
gles of θ and β are not only the functions of radius ρ but also
the functions of angle α at −1 defect. In order to display the
director in different directions around the core of the −1 de-
fect with different external applied voltages, we simulate an-
gles θ and β as functions of radius ρ and angle α inside the
−1 defect for different external applied voltages. Polar angle
θ versus radius ρ in 45◦ direction and angle β versus radius ρ

(except ρ = 0) in 45◦ and 135◦ directions inside the −1 defect
are given in Figs. 8 and 9, respectively. Dependence of angle
β on angle α at the lateral walls (ρ = R) for different exter-
nal applied voltages are given in Fig. 10. The value of surface
anchoring strength Ws is 1.0×10−7 J/m2 in these simulations.
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Fig. 6. (color online) Polar angle θ versus radius ρ inside the +1 defect
for different external applied voltages.
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Fig. 7. (color online) Deviation of azimuthal angle β versus radius ρ

inside the +1 defect for different external applied voltages.

ρ/mm

θ/
(Ο
)

U=1.0 V
U=2.0 V
U=3.0 V
U=4.0 V
U=5.0 V

0 5 10 15

0

2

4

6

8

10

12

Fig. 8. (color online) Polar angle θ versus radius ρ inside the −1 defect
in 45◦ directions for different external applied voltages.

For the +1 defect, figure 6 shows that polar angle θ de-
creases gradually with the increase of the external applied volt-
age, which illustrates the director tends to be along the direc-
tion of the z axis under the applied voltage. Figure 7 shows that
the deviation of azimuthal angle β increases gradually with
the increase of the external applied voltage, with β ≈ 20◦ for
U = 5.0 V. However, the value of the angle β at the lateral
boundary is smaller than it near the core of the defect. This is
caused by the role of the surface wall. These simulated results
can illustrate that the role of the surface wall will be enhanced
with the increase of the radius, and the sense of rotation for
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the angle β will reverse when the field is reversed. Similar
results were obtained in the previous research[17] based on the
Landau–de Gennes theory.
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Fig. 9. (color online) Deviation of azimuthal angle β versus radius ρ

inside the −1 defect in 45◦ and 135◦ directions for different external
applied voltages.
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Fig. 10. (color online) Deviation of azimuthal angle β versus angle α

inside the −1 defect at the lateral walls (ρ = R) for different external
applied voltages.

For the −1 defect, polar angle θ decreases gradually in
the direction α = 0◦ and increases gradually in the directions
α = 45◦ and 90◦ with the increase of the external voltage, the
angle θ versus radius ρ in 45◦ directions for different external
applied voltages are shown in Fig. 8. Figure 9 shows that the
deviation of azimuthal angle β in the directions α = 45◦, 135◦

increases gradually in opposite senses, and the angle β is ap-
proximately 15◦ under external voltage with 5.0 V. However,
the angle β in the directions α = 0◦, 90◦ have no evident ro-
tational motion with the increase of the external voltage. The
results are consistent with the experimental phenomena pro-
duced by Kumar et al., where the brushes in the directions
α = 45◦, 135◦ were observed to rotate in opposite senses.[9]

Also, for the angle β in the directions α = 45◦, 135◦, the sense
of rotation reverses when the external applied electric field is
reversed, which is essentially according with the experimental

results of Kumar et al. However, a subtle difference between
simulation results and experimental results of Kumar et al. ex-
ists for angle β with a given voltage and reversed one, which
is induced by an approximate 1◦–2◦ compensation with no ex-
ternal applied voltage as shown in Fig. 9.

We still took out the angle β of the director for ρ = 3 µm,
ρ = 6 µm, ρ = 9 µm, ρ = 12 µm, and ρ = 15 µm with differ-
ent external voltages inside the +1 defect, as shown in Fig. 11.
It illustrates that β is almost linear with the external applied
voltage U . For a given voltage, the greater the radius, the
smaller the angle β , and the difference is obvious with the
increase of the voltage. Figure 12 shows the deviation of az-
imuthal angle β versus external applied voltages U inside the
−1 defect with ρ = 15 µm in directions 45◦ and 135◦. It also
illustrates that β in directions α = 45◦ and α = 135◦ are linear
with the external voltage, which is the same as the −1 defect
in a wall along the easy axis given in the Fig. 13 of Ref. [12].
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Fig. 11. (color online) Deviation of azimuthal angle β versus exter-
nal applied voltage U inside the +1 defect with ρ = 3 µm, ρ = 6 µm,
ρ = 9 µm, ρ = 12 µm, and ρ = 15 µm.
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Fig. 12. (color online) Deviation of azimuthal angle β versus external
applied voltage U inside the −1 defect with ρ = 15 µm in directions
45◦ and 135◦.

4. Conclusion
In 2006, the experiment of flexoelectric response at de-

fect sites in nematic inversion walls was conducted by Kumar
et al. The corresponding theoretical analysis of the influence
of flexoelectric effect on +1 defect has been done based on the
Landau-de Gennes theory by Tian et al. However, no one has
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done a theoretical analysis of −1 defect because the cylindri-
cal symmetry is broken in the −1 defect and the correspond-
ing calculation process is more complicated than +1 defect
regardless of the application of Landau–de Gennes theory and
Frank theory. In this paper, the influence of flexoelectric ef-
fect on the ±1 defect sites in nematic inversion walls is in-
vestigated based on the Frank theory. On application of a DC
electric field normal to the LC cell, which exhibits narrow in-
version walls containing defects of charge ±1, the polar angle
θ and the deviation of azimuthal angle β influenced by flexo-
electric effect have been simulated for illustrative purpose. In
this way, we characterize the field-driven structural changes
at ±1 defect sites. For +1 defect, the deviation of azimuthal
angle β increases gradually with the increase of the external
applied voltage and the sense of rotation for the angle β will
reverse when the electric field is reversed. For −1 defect, the
deviation of azimuthal angle β in the directions α = 45◦, 135◦

increases gradually in opposite senses, in a scissoring fashion,
and deviation of azimuthal angle β in the directions α = 0◦,
90◦ have no evident rotational motion with the increase of the
external voltage. The angle β is linear with the external volt-
age U for the ±1 defects. These conclusions are consistent
with the experimental results of Kumar et al. In a word, the
influence of the flexoelectric effect on the ±1 defect sites in
nematic inversion walls seems to account for the experimental
results of Kumar et al., i.e., clockwise or anticlockwise rota-
tion of extinction cross at ±1 defects. The theory model has
a certain theoretical significance to research defects in liquid
crystal.
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