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Most existing clutter metrics are proposed based on fixed structural features and experienced weight measures. In
this paper, we identify the clutter as selective visual attention effects and propose a type of clutter metric. First,
adaptive structural features are extracted from the blocks with an edge-structure similarity to the target. Next, the
confusing blocks are selected by the similarity threshold based on the attention guidance map. The clutter is
estimated by quantifying the effects of confusing blocks on target acquisition performance. The comparative
field experiments, with a Search_2 dataset, show that the proposed metric is consistent with the adaptability
of the human visual system (HVS) and outperforms other metrics. © 2016 Optical Society of America
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1. INTRODUCTION

Currently, models of target acquisition performance in viewing
images affected by background, such as ACQUIRE-LC or
Detect05 [1–3], have the experienced constant of N50 statistics
to determine the spectral natures of background and the effects
on the human detection process. However, this methodology
tends to have less than the desired accuracy. Background clutter,
that is, the similarity between the target and its background, is
the typical feature confusing observers and affecting target ac-
quisition performance [4]. However, in the present models, the
background clutter is not taken into consideration. Therefore,
it is fundamentally important to quantify the clutter and ex-
plore the relationship between its effect and target acquisition
performance.

Several metrics of background clutter have been proposed.
The statistical variance (SV) metric [5] and its derivations [6,7]
are a first class clutter metric. These metrics only rely on the
average variance of the whole scene and are too simple to assess
the clutter numerically. The most commonly used human vis-
ual system (HVS) based metric is the second class clutter metric
that outperforms the first class clutter. The probability of edge
(POE) metric [8], based on the high sensitivity of HVS to
edges, is inferior to the distribution of edge (DOE) metric
[9], which emphasizes the importance of structure and weakens
the influence of scene illumination on target detection. The
gradient features based edge strength similarity metric (ESSIM)
[10] measures the similarity of the background on the regional
gradient distribution and quantifies the clutter by the image

structure similarity metric. The target structure similarity mea-
sure (TSSIM) metric [11] quantifies the similarity of a target to
its background in terms of luminance, contrast, and structure,
and its performance is seriously affected by the selection of con-
stants. POE, DOE, ESSIM, and TSSIM quantify the clutter in
terms of fixed structural features and experienced weight mea-
sures, while they have limited success in predicting target ac-
quisition performance in a complex background. The contrast
sensitivity function based (CSFCMS) metric [12] weights the
visual differences between the target and its background in the
spatial frequency domain with the Mannos–Sakrison contrast
sensitivity function. The hidden Markov model (HMM)-based
(HMMC) metric [13] greatly describes the target and quanti-
fies the clutter by optimizing the HMM parameters of the
target sequence. The brain cognitive model based (BSD) metric
[14] obtains the similarity map by using the structural similarity
index [15] and weights the similarity of the blocks in the map
according to the brain cognitive characteristics. CSFCMS, BSD,
andHMMC introduce the cognitive characteristics [16] ofHVS
and quantify the clutter by weighting the similarity of the target
to its background in accordance to the fixed weight measure.

In detecting the desired target in a complex scene, it is
shown that HVS is highly adaptive for extracting structural
features and is automatic in selecting the blocks relevant to
the target [17,18]. None of the conventional clutter metrics
conform to the characteristics of HVS mentioned above. In this
paper, we introduce the widely accepted selective visual atten-
tion (SVA) [19,20] mechanisms and quantify the clutter by

7700 Vol. 55, No. 27 / September 20 2016 / Applied Optics Research Article

1559-128X/16/277700-07 Journal © 2016 Optical Society of America

mailto:2629164931@qq.com
mailto:2629164931@qq.com
http://dx.doi.org/10.1364/AO.55.007700


simulating the attention characteristics of HVS. Based on the
SVA research, we suppose that the features are extracted from
the higher salient background blocks rather than from the
entire scene by the top-down selective attention of HVS. In
addition, the similar background blocks confuse the observers
and affect the target acquisition performance only if the sim-
ilarity is beyond a certain threshold. Under these two assump-
tions, we further propose two thresholds—saliency threshold
(SAT) and similarity threshold (SIT)—for the selection of
salient blocks in feature extraction and similar blocks in target
detection, respectively. Next, we propose an adaptive method-
ology to determine the thresholds by the root-mean-square-
error (RMSE) surface, which takes the adaptability of HVS into
account. Introducing the proposed clutter metric into the target
detection probability prediction model and then applying the
model to the Search_2 dataset [21], we achieve a prediction
accuracy of 0.0507 in RMSE.

2. SELECTIVE VISUAL ATTENTION BASED
CLUTTER METRIC

Similar to acquiring the information from a scene, observers
will extract features to reduce the amount of incoming visual
data for higher-lever cognitive processing. In the target acquis-
ition performance experiment, the observers detect the target in
a complex background, which is identified as a task-dependent
process with top-down SVA. The important features related to
the target will attract the observers’ attention more and be
extracted in the experiment [22–24]. Based on this fact, we
propose a new feature extraction model. First, the intensity map
and orientation map of the image edge points are combined
into edge-structure information. Second, the edge-structure
information of each background block is calculated, and the
similarity to the target is quantified. Finally, the edge-structure
similarity map is generated. This map indicates the saliency of
each background block for top-down selective attention and
guides the defined SAT to select the background blocks. The
features are extracted from the target and the selected blocks
are extracted by principal component analysis [25,26].

The sparse representation based clutter metric (SRC) pro-
posed by Yang et al. quantifies the background clutter by finding
the sparsest representation of the target against the background
in the feature domain [27]. First of all, the background is divided
into blocks twice the size of the target. Next, the similarity be-
tween the background blocks and the target is described by
sparse representation [28], which goes well with the nature of
capturing the sparse functions of the input signal of HVS.
Finally, the clutter is quantified by summing up the absolute
value of the nonzero elements of the sparse representation.

Our work originates from this research. Most of the coef-
ficients of the sparsest target representation are zero except
those corresponding to the similar background blocks, and
the bigger the coefficient is, the higher the similarity of the
block [29]. The sparsest vector is the attention guidance
map that directs attention to shift among the background
blocks while detecting the target. Previous metrics take all
the similar blocks as the confusing blocks that will attract at-
traction and affect target acquisition performance, therefore
quantifying the clutter by summing up and weighting all

the similar blocks. However, they are not consistent with
the selective characteristic of the HVS. In this paper, we sup-
pose that only the blocks with similarity beyond a particular
level will obscure the observers’ view and affect the target ac-
quisition performance. Thus, in our clutter metric, the confus-
ing blocks are selected by the defined SIT, and the clutter is
quantified by summing up their effects on the target acquisition
performance.

The flow chart of the process is presented in Fig. 1, and the
main steps are as follows:

1. All of the target and background images are transferred
from gray space to illumination space by the following formula:

Y � k
�

g − gt
c � g − gt

�
r
; (1)

where g and Y are the gray-level value and display-luminance
value of the image, respectively; k is a proportion constant; gt is
the gray-level value corresponding to the dark current; c is the
half saturation level; and r is the display gamma coefficient. The
background image is divided into N overlapping blocks with
the same size as the target.

2. By filtering the target image with vertical and horizontal
Sobel operators, we get the edge intensity and orientation maps.
We obtain the total number (TN) of edge points with intensity
above half of the averaged intensity in the intensity map and the

Fig. 1. Flow chart of the model.
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orientation vector (TO) composed of the orientation values at
the corresponding positions in the orientation map. Next,
we mark the number of orientation values in TO lying in
six equidistant orientation spaces from 0° to 180° as TONk.
The target edge-structure information of Dt is defined as

Dt � �TONk∕TN�; k � 1; 2; 3…; 6: (2)

With the same procedure for the background blocks, the
background edge-structure information of Dr is obtained
where r denotes the rth background block.

3. The edge-structure similarity measure [9] of Cr of the
rth background block is given by

Cr � ‖Dr − Dt‖2; (3)

where ‖ · ‖2 is the L2 norm and Cr represents the similarity of
the rth background block. Depending on the definition above,
we can draw the inference that the smaller the C is, the higher
the similarity of the corresponding block. Crs of all blocks
compose the edge-structure similarity map of the entire
background.

4. The target image and the background blocks with Cr
values below the defined CT in the edge-structure similarity
map are arranged as columns to compose the data space of
X ⊂ RM×N for the principle component analysis.

5. The observation matrix of X ⊂ RM×N is as the feature
domain, and the principal component of y ⊂ RD×N (D ≪ M )
is extracted from X ⊂ RM×N with the feature domain. The tar-
get projection of t ⊂ RD×1 and the background projection of
b ⊂ RD×N to the feature domain are preserved in y ⊂ RD×N .

6. The sparsest representation of t ⊂ RD×1s is calculated by

arg min ‖s‖1 subject to t � bs: (4)

Because of the low rank of the background and D ≪ N , s
can be solved by the minimum l 1 norm. The solved s is the
attention guidance map for observers.

7. The SVA metric is defined as the sum of the absolute
values of the elements in the sparse vector of s that are beyond
the defined SIT:

SVA �
XI
j�1

jsjj �sj > SIT�; (5)

where I is the number of the elements.

3. THRESHOLD DETERMINATION

The edge-structure similarity map indicates the attraction of
each block, and the blocks for feature extraction are selected
by the SAT. The attention guidance map directs the attention
to shift among the blocks, and the blocks affecting target ac-
quisition performance are selected by the SIT. We propose an
adaptive method to determine the thresholds by pursuing the
lowest point in the RMSE surface.

The target detection probability prediction model [30] is as
follows:

PDpred �
�X∕X 50�E

1� �X∕X 50�E
; (6)

where PDpred and X are the detection probability and clutter
metric value, respectively. X 50 and E are constants assigned by
least square fitting of Eq. (6).

The similarity threshold is defined as dynamic values from 0
to maximum in the edge-structure similarity maps, and the
saliency threshold is defined as the dynamic values from 0 to
the maximum in the attention guidance maps. Introducing a
pair of the thresholds into the SVA metric, we obtain the cor-
responding clutter metric value and the detection probability
prediction. Then the RMSE between the prediction and the
subjective detection probability is acquired. We create a
diagram of a two-dimensional RMSE surface where x and y
coordinates represent saliency and SIT, respectively, and the
z coordinate represents the RMSE value.

Figures 2 and 3 shows the RMSE surface and its contour
plot, respectively. The thresholds corresponding to the lowest
RMSE value conform to the adaptability of HVS. The lower
ridge is along the SAT coordinate and at the SIT coordinate of
0.40, which indicates that HVS cannot distinguish the target
from the background. The lowest point on the ridge is at the
SAT coordinate of 0.23, indicating that HVS is sensitive to the
blocks. According to the above discussion, the SAT and the SIT
are determined as 0.23 and 0.40, respectively.

Fig. 2. Two-dimensional root-mean-square-error surface.

Fig. 3. Contour plot of the root-mean-square surface.
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Fig. 4. Scatter plots of experimental target detection probability versus clutter metric values. Each sample point represents one target image in the
Search_2 dataset: (a) BSD, (b) HMMC, (c) SRC, (d) TSSIM1, (e) TSSIM2, (f ) POE, (g) SVA.
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4. EXPERIMENTAL RESULT AND ANALYSIS

Similar to [13,14], the Search_2 database is used to validate the
clutter metric. Thirty-nine original images with only one search
target are used to assess the clutter metrics of BSD, HMMC,
TSSIM1, TSSIM2, SRC, and POE; Eq. (6) is used to predict
the detection probability by clutter metrics. For TSSIM1,
C1 � �0.01L�2 and C2 � �0.03L�2, where L is the dynamic
range of the pixel values (255 for 8-bit grayscale images) [31].
For TSSIM2, both C1 and C2 were selected to be a very small
constant of 2 × 10−16 (eps in Matlab). We define the threshold
in POE to be 0.7 for experience.

The scatter plots in Figs. 4(a)–4(g) display the relationship
between the subjective experiment results and clutter metric
values, with the solid curves being the regression curves of
the detection probability prediction. To assess the extent of
the agreement between the prediction and the subjective data,
the adopted measures contain RMSE, Pearson linear correla-
tion coefficient (PLCC), and Spearman’s rank correlation coef-
ficient (SRCC). The detailed results as well as the curve fitting
parameters are given in Table 1.

From Figs. 4(a)–4(g), we can find that SVA, BSD, and
HMMC congregate around the regression’s solid lines more
closely than do SRC, TSSIM1, TSSIM2, and POE. This
can be also found in Table 1, where both correlation coeffi-
cients and RMSE of the three metrics correlate better with the
subjective experiment data. These metrics illustrate their supe-
rior performance. The test results of SVA show that SVA out-
performs BSD and HMMC in RMSE value, while it does not
perform the best in other two correlation coefficients.

SVA introduces SVA and takes the HVS adaptability into
consideration in the threshold determination. TSSIM1 and
TSSIM2 quantify the clutter in terms of luminance, contrast,
and structure, and POE is based on the structure of edge and
experienced threshold. Their lower performance indicates that
clutter metrics with fixed structure and thresholds have limited
success in predicting target acquisition performance. Both SVA
and SRC introduce sparse representation of the target against

the background. SRC finds the sparsest representation in a no-
target-defined feature domain and sums up all similarity vector
elements as the clutter. Meanwhile, SVA acquires the sparsest
representation in the target-defined feature domain and only
sums up the vector elements beyond the SIT. BSD quantifies
the clutter by weighting the structural similarity according to
the information content weight measure, and HMMC auto-
matically searches the most desired information of the target
by optimizing the HMM parameters. Both of them introduce
the adaptability of HVS and so possess advantages over other
metrics except for SVA. The test results show that the two as-
sumptions conform to the perception characteristics of HVS,
and the adaptive threshold determination method is effective.

SVA with the lowest RMSE can be thought superior to
others in precision, while it does not perform the best in
the correlation coefficients of PLCC and SRCC. The reason
is explained by analyzing the vertex positions of PLCC and
SRCC surfaces. By the adaptive threshold determination
method, we can also get the PLCC and SRCC surfaces. As
is shown in Figs. 5 and 6, the vertices of the PLCC and
SRCC surfaces correspond to the highest correlation coeffi-
cients, which are, respectively, 0.9280 and 0.9306, much
higher than that of BSD and HMMC. Table 2 lists the vertex
positions of RMSE, PLCC, and SRCC surfaces. We find that
they are not coincident, which can be explained by the effect of
target local contrast on the standard deviations of SAT and SIT
of vertices. First of all, images of the Search_2 dataset are di-
vided into four groups according to the target local contrast.
Then the RMSE, PLCC, and SRCC vertices of each group
are obtained by the proposed threshold determination method.
Finally, diagrams of the standard deviation of SIT and SAT are
given in Figs. 7 and 8, respectively, where the x coordinate rep-
resents the target local contrast and the y coordinate represents
the standard deviation. It can be seen that the deviations
gradually decrease as target local contrast increases, implying
that the vertex positions get closer. Thus, we can conclude
that the contrast affects the vertex positions and separates them.
It is our future work to take the target local contrast into
the model.

Table 2. Vertices of Different Surfaces

TEST SIT SAT VALUE

RMSE 0.40 0.23 0.0507
PLCC 0.44 0.24 0.9280
SRCC 0.82 0.33 0.9306 Fig. 5. Two-dimensional PLCC surface.

Table 1. Performance Comparison among Different
Metrics

METRICS X 50 E RMSE PLCC SRCC

BSD 0.8087 45.8438 0.0557 0.879 0.805
HMMC 0.7649 −2.7066 0.0665 0.8223 0.7145
SRC 0.9429 14.4091 0.1283 0.5796 0.7003
TSSIM1 0.2529 −3.9987 0.1357 0.5799 0.7100
TSSIM2 0.24848 −3.0253 0.1541 0.3771 0.3675
POE 121.3247 0.7772 0.1387 0.4446 0.6398
SVA 0.09152 1.766 0.0507 0.7951 0.7125
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5. CONCLUSION

The selective visual attention mechanisms are introduced into
clutter metrics, and two assumptions are presented in this pa-
per. According to these assumptions, two thresholds for feature
extraction and confusing block determination adaptively are
further put forward. Next, we propose the adaptive threshold
determination method, which simulates the adaptability of
HVS. The high performance of the proposed clutter metric
shows that the assumptions are consistent with the selective
characteristics of HVS to some extent.

The SVA metric and the assumptions can be helpful in
(1) establishing a HVS-based target acquisition model to find
out the sensitive parameters and to guide the optimization de-
sign of an optoelectronic imaging system, (2) guiding the clut-
ter suppression algorithm by quantifying the image clutter after
suppression, and (3) assessing image quality by quantifying the
similarity to the complete reference image based on the char-
acteristic of HVS.

However, the analysis of misalignment of the vertices of the
three surfaces suggests that local contrast is a very important
clue toward improving the target acquisition model, and we
are continuing efforts to integrate it with the clutter metric.
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