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ABSTRACT: Here we present metal−organic frameworks prepared by a one-step
synthesis method, possessing both architectural properties of MOF building and up-
conversion luminescence of rare earth Er3+ (hereafter denoted as Up-MOFs). Up-MOFs
have characteristic up-conversion emissions at 520, 540, and 651 nm under the excitation
of 980 nm owing to the multiple photon absorption. The up-conversion mechanism of
these Up-MOFs has been discussed, and it can be attributed to the excited state absorption
process. The design and synthesis of Up-MOF materials possessing near-infrared region
excitation and up-conversion luminescence are fully expected to be candidates for the
advancement of applications in bioimaging, sensors, optoelectronics, and energy
conversion/storage devices.
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excited state absorption (ESA)

■ INTRODUCTION

In the past decade, up-conversion materials which have
excitation at the near-infrared region (NIR) and emission at
the visible region via a sequential absorption process of multiple
photons have drawn wide attention among a growing body of
researchers.1−3 Benefitting from both the promising feature of
being excited by NIR which is generally deemed as the “optical
window in biological tissue” due to its reinforced light
penetration depth and minimized autofluorescent interference4

and intrinsic luminescent advantages such as sharp emission
lines, long lifetimes, and superior photostability,5 up-conversion
materials are extremely suitable for the applications in biological
imaging, photovoltaics, and photodynamical therapeutics.6−9

Thus, there have been extensive investigations aiming at
fabrication and exploitation of up-conversion materials. Among
these studies, most up-conversion material syntheses are usually
focused on nanocrystals which are composed of oxides (Y2O3,
ZnO, Yb3Al5O12, and so on) or fluorides (CaF2, NaYF4,
KMnF3, and so on) acting as an inorganic host matrix and
embedded lanthanide ions (such as Er3+, Tm3+, Ho3+) acting as
luminescence centers. Therefore, exploiting new up-conversion
systems such as inorganic−organic composite systems may
achieve property synergies of inorganic rare earth ion and
organic functional group targeting multiapplications.
Modern medical assay technologies mentioned above, where

near-infrared excitation plays a vital part, are usually based on
the photoluminescence method.10−12 The traditional carriers
for sensors or drugs, such as SiO2 and MOFs, always need to

offer extra space for luminescent materials which commonly
provide the optical signal and then act as the markers after
being excited, resulting in relatively poor luminescence
efficiency and the bulky size of the assay system. In response
to improve such medical applications, a novel porous material
with intrinsic luminescence arouses our great interest.
Metal organic frameworks (MOFs) are emerging porous

materials with hybrid inorganic−organic structure which comes
from an assembly of metal clusters and organic building
blocks.13−15 Benefitting from the well-organized porosity and
versatile chemical functionality, MOFs are of tremendous
attractiveness and have great value in many fields such as gas
storage and separation,16−18 catalysis,19 smart sensors,20−23 and
drug delivery.24,25 As a unique type of MOFs, the lanthanide
MOFs (Ln-MOFs) have drawn extensive attention due to their
excellent luminescent character coming from doped lanthanide.
Their intrinsic features of lanthanides together with the
advantages of MOF structure provide eminent expectation for
developing novel luminescent materials. By rational choices of
rare earth ion and organic ligands, the synthesis process of Ln-
MOFs has much flexibility of being elaborately controlled and
tailored for featured luminescence properties.26 Recently,
several luminescent MOFs have been put forward by
introducing various luminescent rare earth ions into basic
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frameworks, and these MOFs have been widely used as
fluorescence chemical sensors. However, the excitation wave-
lengths of these MOFs are mostly located at the ultraviolet
region, in which situation the disadvantages of weak
penetrability and autofluorescence interference from tissues
and organs still exist and limit their applications in biology to a
large extent. Undoubtedly, the fabrication of MOF materials
possessing up-conversion luminescence which have excitation
at the near-infrared region is becoming a promising candidate
for the advancement of applications in bioimaging, sensors,
optoelectronics, drug tracing, and energy conversion/storage
devices.
Given the favorable structure of MOFs which could be

modulated to finely optimize the photoluminescence perform-
ance of lanthanide ions, there is an ever-increasing interest in
design and synthesis of porous MOF material with intrinsic up-
conversion luminescence.27,28 Here we report the study on a
one-step strategy to prepare Er-doped Ln-MOFs with up-
conversion luminescence (hereafter denoted as Up-MOFs)
with uniform shape and tunable size. The Up-MOFs doped
with Er3+ have characteristic up-conversion emissions at 520,
540, and 651 nm under the excitation at 980 nm owing to the
multiple photon absorption process. Furthermore, the up-
conversion mechanism of these Up-MOFs has been deeply
discussed and attributed to excited state absorption (ESA). The
fine-organized porosity and attractive luminescent properties of
Up-MOF make it feasible for us to exploit the carrier suitable
for detectable drug release or chemical sensing under near-
infrared excitation. Furthermore, we also speculate the potential
utility of such Up-MOF in energy and environment
applications by virtue of its superior physical, chemical, and
optical properties.

■ EXPERIMENTAL SECTION
Procedure for Synthesis of Standard Up-MOF. A homoge-

neous mixture of ErCl3·6H2O (0.006 mmol), YCl3·6H2O (0.094
mmol), H3BTC (0.1 mmol), NaAc·3H2O (0.1 mmol), N,N-
dimethylformamide (8 mL), and deionized water (4 mL) was added
into a sealed vial. Then the reaction vessel was heated at 60 °C for 1
day. The samples were washed with N,N-dimethylformamide several
times. The above products were activated by being soaked in methanol
lasting 1 day (each time using 50 mL of methanol and fresh methanol
every 6 h). The final products were separated by filtering and dried
under vacuum at 80 °C for 12 h.
Procedure for Synthesis of Other Types of Up-MOF. Y3+

could be replaced by other rare earth ions such as Yb3+, Gd3+, or Lu3+.
Given the same coordination numbers and modes, the concentration
ratio between Er3+ and other diluent RE3+ could be adjusted by need
on the premise that the total RE3+ was 0.1 mmol. White crystalline
powder was obtained following the identical means of preparation of
standard Up-MOF mentioned previously.

■ RESULTS AND DISCUSSION

Morphology and Structure of Up-MOFs. Different from
the conventional postsynthetic modification (PSM)29 of MOFs
in which situation chemical modifications are performed after
the preparation of MOFs, Up-MOFs of RE(BTC)(H2O)·DMF,
where RE could be Er3+, Y3+, Lu3+, Gd3+, or Yb3+ and BTC =
1,3,5-benzenetricarboxylic acid, were one-step synthesized
through a solvothermal method similar to the study reported
previously.30 Sodium acetate is selected as a capping reagent in
order to modulate crystal morphology and size. The resultant
Up-MOF is a 3D porous framework crystallized in the P4322
space group. Every building unit includes one rare earth ion

(such as Er3+, Y3+) with seven coordination sites, bonding with
one BTC ligand and one coordinated water molecule. As
depicted in Scheme 1(a), the special connection mode of rare

earth ions results in a one-dimensional helical chain along the
[001] direction, and then, inorganic chains in one dimension
connected by phenyl groups along [100] and [010] directions
give rise to a framework in three dimensions (as depicted in
Scheme 1(b)).31

The structures of the as-synthesized samples are demon-
strated by powder XRD pattern and presented in Figure 1. The

PXRD patterns which are well conformed to previous literature
suggest that Up-MOFs are isostructural and well-indexed to the
known bulk phase of JUC-32.32 As depicted in Figure 1, PXRD
patterns of Up-MOF-Y/Er (black line, d) and other Up-MOFs
doped with different rare earth ions at the same concentration
ratio of rare earth to H3BTC are almost identical, indicating the
unchanged crystal structure after ion replacement because of
the same coordination numbers and modes of diverse rare earth
ions of Er3+, Y3+, Gd3+, Lu3+, or Yb3+. The slight shift of
diffraction peaks of Up-MOFs in our case can be explained by
the lanthanide contraction.15

Scheme 1. (a) 1D Chains Views in Up-MOFs along [001]
the Direction and (b) 3D Structure Images of (001) Faces in
Up-MOFs with 1D Channelsa

aC atom: gray; O atom: red; rare earth ions: bright blue; H atoms are
omitted for clarity.

Figure 1. PXRD patterns of Up-MOFs (a) simulated, (b) doped with
Gd/Er, (c) doped with Lu/Er, (d) doped with Y/Er, (e) doped with
Yb/Er, and (f) totally doped with Er.
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The morphologies of the standard Up-MOF are monitored
by scanning electron microscopy. The SEM images (Figure 2)

exhibit that rod-like standard Up-MOFs are highly uniform
crystals with the width of 0.4 μm and the length of 2 μm. Here,
sodium acetate acting as a capping reagent in the process of
MOF formation besides BTC provides positive effects on the
crystal quality and size. The influence of sodium acetate on
controlling the MOF size and then generating relatively
uniform morphology comes from its improvements in
coordinating interactions between the rare earth ions and
organic ligands. In the preliminary stage of crystal formation,
the RE3+ bonds with the carboxylic groups from both the
organic linker of BTC and sodium acetate added. Therefore,
the crystal growth is hindered in this period, resulting in more
nuclei processes. Moreover, the competitive bonding between
capping reagents and BTC is speculated to regulate the rate of
MOF formation.33 When no sodium acetate was added, we
observe the rod-like crystals with nonuniform phase from SEM
images (Figure 2c and 2d). Furthermore, the elemental analysis
characterization of Up-MOF-Y/Er is investigated by EDX. As
shown in Figure S1, representative peaks associated with Y, Er,
C, and O elements which consist of standard Up-MOF
together are clearly identified.
The permanent porosity of Up-MOFs-Y/Er is demonstrated

by measuring N2 adsorption at 77 K. Before the measurement,
the samples were treated with degassing at 200 °C overnight.
As depicted in Figure S2, Up-MOFs display a typical
characteristic of microporous materials which has been widely
used as a drug carrier.31,34 The calculated BET surface area is
59.28 m2/g, and the Langmuir surface area is 72.87 m2/g. In
order to investigate the feasibility of Up-MOF in drug release,
we design primary measurement of drug release by using
ibuprofen (IBU), which has been widely utilized as a model
drug in research of drug delivery and tracing. We monitor the
absorption spectra of supernatant after the IBU-loaded Up-
MOFs were placed into PBS solution which is widely used for
diluting biologicals. The absorption spectra and corresponding
profiles versus release time are shown in Figure S3, exhibiting
the capability of Up-MOFs in sustained drug release. These
results demonstrate that such an Up-MOF system which
benefits from up-conversion characteristic and MOF structure
is promising as a candidate of the carrier used for detectable

drug release. Next, we desire to fully examine the
biocompatibility of such Up-MOFs for the further biological
applications.

Photoluminescence Properties of Up-MOFs. In our
case, the Y3+ ion which lacks 4f orbitals is relatively inert to be a
luminescent center; therefore, it just acts as the ion diluent and
has negligible interaction with emitting dopant of Er3+. The up-
conversion luminescence (UCL) spectra of the Up-MOF-Y1−χ/
Erχ (χ is the mole fraction of Er3+ in total RE3+) are tested
under the 980 nm excitation. As shown in Figure 3, Up-MOF-

Y/Er with different Er3+ concentration all exhibit characteristic
emissions at 520, 540, and 651 nm, respectively, ascribed to the
allowed electronic transition from 2H11/2 to

4I15/2, from
4S3/2 to

4I15/2, and from 4F9/2 to 4I15/2.
35 Along with increasing

concentrations of Er3+ ions from 2% to 100% in mole fraction,
the UCL intensity especially at 540 nm elevates at low Er3+

concentration and reaches maxima at 6% Er3+ content,
corresponding to the maximum of quantum yield of 0.1312%.
Due to the concentration quenching effect, the UCL intensity
of Up-MOF-Y/Er drastically decreases when the Er3+

concentration is more than 10%. The optimal concentration
of doped Er3+ ions is demonstrated to be 6%, beyond which the
concentration quenching effect will dominate over the increase
of activator centers. The concentration quenching originates
from the larger probability of energy loss at a killer center due
to excitation energy migration among activators of Er3+ at
higher concentration.36

Photoluminescence Mechanism of Up-MOFs. Based on
the understanding of traditional up-conversion materials with
inorganic matrix such as NaYF4:Yb

3+/Er3+, the ion of Yb has
always been selected as a sensitizer by providing the 2F5/2
energy level in the energy transfer up-conversion (ETU)
process.37 We fabricated the Up-MOFs codoped with Y3+, Yb3+,
and Er3+ (mole ratios of Y/Yb/Er are 60/30/10, 30/60/10, and
0/90/10, respectively) to investigate the effect of Yb3+, where
Y3+ just acts as a kind of ion diluent because of a lack of 4f
energy level. However, the spectra of Up-MOF-Y/Yb/Er with
the distinctly different doping concentration of Yb3+ show the
same emission intensity (Figure 4), indicating that the up-
conversion mechanism of Up-MOFs is speculated to arise from
excited state absorption of Er3+ by the interaction between
multiple photons and metastable energy level rather than an

Figure 2. SEM images of standard Up-MOF crystals synthesized with
(a),(b) and without (c),(d) addition of sodium acetate at different
magnifications. Scale bars: 1 μm (a, c), 500 nm (b, d).

Figure 3. UCL of Up-MOF-Y1‑χ/Erχ with different concentration of
Er3+ (range of χ is from 2% to 100%) with the excitation at 980 nm.
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energy transfer up-conversion process like inorganic matrix up-
conversion materials of NaYF4:Yb

3+/Er3+.38

To further investigate the UC mechanism of Up-MOFs-
Y0.94/Er0.06 (standard, mole ratio of Y:Er is 94:6), the
relationship between pumping power and luminescent intensity
has been measured (shown in Figure 5). Typically, for an

unsaturated up-conversion process, the emission intensity is
strongly dependent on its local environment and obeys an
empirical relation that is given as39,40

∝I Pn
f (1)

The relation demonstrates that the fluorescent intensity (If) is
proportional to the nth power of the excitation (P); meanwhile,
n represents the number denoting photons absorbed in per up-
converted process (often take the first integer more than n
when n is not an integer). Figure 5 indicates the dependence of
UC intensity on the laser power: calculated n = 1.98 and 1.01
for 540 and 651 nm emissions, respectively. These facts mean
that populations on states of 4S3/2 and

4F9/2 result from two-
photon UC processes at least. Due to the existence of the cross-
relaxation and nonradiative transitions in MOFs, we can deduce
that the UC process results from the multiphoton absorption
process of Er3+, and the exact number of photons is far more
than 2.

To further understand the up-conversion mechanism of Up-
MOFs, we measure the absorption spectra of various samples,
and the results are shown in Figure S4. The absorption spectra
of various Up-MOFs exhibit a relatively wide absorption band
from ∼960 to ∼1150 nm which should be caused by an organic
matrix and may further lead to ligand-to-metal energy
transition.41,42 This observation also demonstrates the existence
of coordination bonds between Er3+ and carboxyl from organic
ligands.
Based on the above analysis, the UC emission of Up-MOF-

Y/Er has been further demonstrated to be the excited state
absorption process in trivalent Er ions. A scheme of up-
conversion energy transfer process in Er3+-based MOF is
exhibited in Figure 6. Absorption at 980 nm is followed by

energy transfer to the 4I11/2 energy level of Er
3+. Subsequently,

the second absorption leads to the population at a higher
energy level of 2H11/2. By virtue of the nonradiative relaxation
processes (2H11/2 → 4S3/2), absorbed photons lead to two
primary emissions at 520 nm (from 2H11/2 to

4I15/2) and 540
nm (from 4S3/2 to

4I15/2) which locate in the green-light region
via radiative transition. Also, two near-infrared photons may be
absorbed sequentially by one Er3+ and used to promote
electronic population to high-lying energy levels, and such
excited state population finally emits red light of 651 nm via the
relaxation back to the ground state through the transition of
2H11/2 → 4S3/2 → 4F9/2 → 4I15/2. It is possible that other
excitation routes for level 4F9/2 derived from the interactions of
neighboring Er3+ exist.38 However, detailed investigation of
such a process is beyond the scope of the current work, and it
can be explained by a previously published study.43

To further demonstrate the up-conversion process, the UCL
lifetime of the standard Up-MOFs-Y/Er at 540 nm under pulse
laser excitation of 980 nm has also been measured and plotted
in Figure 7. Obviously, the entire lifetime consists of a
population curve and decay curve, suggesting that the emission
results from an up-conversion process. The decay curve is well
conformed to a single exponential function with the decay time
of 133.89 μs, which is consistent with the decay time of Er3+ in
other up-conversion materials.44 Generally, up-conversion
materials suffer from the situation of low quantum efficiency
because of the existing of a mount of nonradiative relaxation
process and the susceptibility to complex dispersion environ-

Figure 4. UCL of Up-MOFs codoped with Y, Yb, and Er in different
molar ratio.

Figure 5. Plot (ln−ln) of up-conversion intensity versus excitation
power (standard Up-MOFs-Y/Er).

Figure 6. Up-conversion energy scheme of Er3+ from near-infrared
excitation to visible emission.
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ment. Hence, we will particularly focus on enhancing up-
conversion emission intensity in the further study.

■ CONCLUSIONS
In summary, a series of metal−organic frameworks with up-
conversion luminescence under NIR excitation have been
successfully fabricated via a facile and simple one-step synthesis
method. After being comprehensively characterized by a suite
of measurements such as SEM, PXRD, PL, and so on, it is
demonstrated that Up-MOFs fully display the merits of
structure stability, porosity nature, and valuable up-conversion
characteristic under near-infrared light excitation of 980 nm.
Moreover, the up-conversion mechanisms have been deeply
investigated and attributed to ESA. The fine-organized porosity
and multifunctionality of Up-MOF offer the possibility for us to
develop an attractive carrier which is extremely suitable for
biological applications in drug release or chemical sensing with
the help of a detectable optical signal under near-infrared
excitation. Basic drug release performance has been examined
and proves the feasibility. This work also broadens the scope of
potential energy and environment applications such as in
optoelectronics, catalysis, and energy conversion/storage
devices owing to its superior physical, chemical, and optical
properties.
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