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Abstract：In this paper, a distortion correction method with reduced complexity is proposed. With the single-
parameter division model, the initial approximation of distortion parameters and the distortion center can be cali-
brated. Based on the distance from the image center to the fitting lines of the extracted curves, a bending measure-
ment function with a weighted factor is proposed to optimize the initial value. Simulation and experiments verify 
the proposed method. 
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Lens radial distortion is a common problem in digi-
tal image analysis. Various methods have been proposed 
for this problem, which can be classified into three types: 
traditional camera calibration, auto-calibration and line-
based calibration. The first type methods[1-3] are reliable 
and accurate, but they require multiple images and accu-
rate coordinates of 3D-point correspondences, which is 
complex and time-consuming. The second type methods 
use multiple views taken by a moving or rotating cam-
era, and they do not require a calibration pattern[4-6], but 
the process is tedious and not always possible. In con-
trast, line-based methods just use a single image that  
contains abundant lines in human-made environment. 
Ahmed and Farg[7], Devernay and Faugeras[8] used the 
principle that straight lines in the 3D world plane should 
be projected into straight lines in a 2D image plane un-
der any perspective projection. Our method is similar to 
that of Strand and Hayman[9], and Wang et al [10], which 
estimates the distortion parameters based on the prop-
erty that distorted straight lines can be circularly mod-
eled by a single-parameter division model. Moreover, 
the radial distortion can be corrected with circle fitting 
method[11]. 

In this paper, the initial approximation of distortion 
coefficient and the center in the process of circle fitting 
are calibrated with the extracted curved lines. As pixels 
move continually from the image’s center, the curve 
line’s bending degree enlarges, which means that the dis-
tortion increases accordingly. According to the imaging 
characteristics of camera lens, a bending measurement 
function with weighted factors is proposed as the objec-
tive function. 

1 Distortion model 

In a real camera system, due to the non-negligible 
distortion of lens, the linear pinhole model is not valid, 
which makes the actual pixel point Pd(xd, yd)deviate 
from the ideal pixel point Pu(xu, yu). Geometry distortion 
can be divided into radial distortion and tangential distor-
tion. Usually, radial distortion is much bigger than tan-
gential distortion, thus the latter can be ignored[3,7,8]. This 
paper only considers radial distortion and adopts Fitz-
gibbon’s division model[12], as shown by the following 
equations. 
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  For most lens distortions, it is sufficient to consider 
a single-parameter division model. More parameters lead 
to increasing calculation without improving the calcula-
tion accuracy. Actually, distortion center P0(x0, y0)is not 
the image center. Thus, we simplify Eq.(1)and Eq.(2)as 
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where 2 2 2

d d 0 d 0( ) ( )r x x y y    . 

2 Methodology 

2.1 Initial estimation 
In an ideal projection model, the straight lines in the 

3D world are projected into the straight lines on a 2D 
image plane. However, due to the introduction of radial 
distortion, the straight lines in the 3D world plane are 
instead projected into the circular arcs on the 2D image 
plane. Let the equation of straight lines of undistorted 
points be 
   u u u: 0L ax by c    (5) 

Assume that 2 2 0a b  and exclude the case of 
0a b  . By substituting Eq.(3)and Eq.(4)into Eq.(5), 

we obtain  
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By referring to Eq.(6), we have 
   2 2

d d d d 0x y Ax By C      (8) 
Eq.(8)can be viewed as the general expression of circles. 
Thus, the curved line extracted from the image can be 
considered as a circle. Let A be multiplied by x0, B multi-
plied by y0, and Ax0, By0, and C stacked together. Accord-

ingly, we can express the distortion center as follows: 
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First, we extract n(n ≥ 3) curved lines Li(i＝1,2,… , 
n)from the distorted image, obtain the parameters(Ai, Bi, 
Ci)by fitting Li into a circle, and calculate the center of 
the radial distortion P(x0, y0)as follows: 
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Next, we substitute the distortion center into Eq.(9)and 
calculate the distortion parameter according to Eq.(11), 
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To fit the distorted straight lines into circles, we adopt the 
Levenberg-Marquardt method[13,14]. Generally, the cir-
cle’s equation can be written as 
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Assume that there are N characteristic points(xi, 

yi)on the extracted curved line, and the distance from 
each feature point to the fitting arc is di. The objective 
function is 
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To find a local minimum, we use the iterative Levenberg-

Marquardt nonlinear optimization algorithm, obtain Ri, 
xci, and yci, and then obtain the optimization circle pa-
rameters(A, B, C). 
2.2 Optimization algorithm 
2.2.1 Linear fitting 

The algorithm described in Section 2.1 uses only 
part of the circular arc instead of the whole curved line 
from the entire image. Thus, the derived parameters have 
considerable estimation errors and they are sensitive to 
noises. To solve this problem, a specific function with a 
weighted factor is put forward in this paper.  

First, we randomly select a long curved line, and 
then correct all n distorted points Pdi(xdi, ydi)to the undis-
torted points using the following equations: 
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Ideally, if correct distortion parameters are found, then all 
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undistorted points Pui(xui, yui)should lie on the same line. 
Therefore, a fitting straight line of undistorted points can 
be formulated as : 0i i i iL a x b y c   , where ai, bi and ci  
can be calculated by linear regression. 

Due to the inaccurate estimation of distortion pa-
rameters, there is some deviation between the undistorted 
points Pui(xui, yui) and their associated fitting line 

: 0i i i iL a x b y c   . Thus, the deviation between point 
Pui(xui, yui)and Li is 

   2 2
, u , u ,i j i i j i j i i id a x by c a b     (16)

 
If there are m feature points on the curved line, then 

the sum of the squared distances between the undistorted 
points and the fitting line can be defined as follows: 
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2.2.2 Optimal function 
According to the rules of camera imaging character-

istics, the radial distortion increases with the field of 
view. The lines close to the image center bend slightly, 
while those far away bend seriously. The algorithm pro-
posed in this paper introduces the weighted factor tn, 
which depends on the distance between Lm and the image 
center. The weighted factor is defined as the length of 
vertical distance from the image center to the fitting line, 
as shown in Fig. 1.The curved lines close to the image 
center have small weighted factors, while those far away 
have large values. The normalized weighted factor equals 
0 when dm is 0, and equals 1 when dm is the distance be-
tween the center and vertex of the image. The weighted 
factor is formulated as: 
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Fig. 1 The distance between image center and fitting line 

where w is the width of the image; h is the height; and dm 
is the vertical distance from the image center to the fitting 
line Lm. For each curved line extracted from the image, 
we calculate the correlation fitting lines of each curved 

line. Using Eq. (16), we also calculate the squared dis-
tance between the undistorted points and the fitting line. 
To search for optimal parameters, different weighted fac-
tor values are applied. Then the bending measure func-
tion is constructed by n curved lines extracted from the 
entire image as follows: 
   0 0( , , ) n nF x y t e   (19) 
Thus, the final cost function is defined as: 
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  This cost function is a nonlinear function of x0, y0 

and , and we use the whole curved lines extracted from 
the image. To estimate x0, y0 and , this cost function is 
reduced with the Levenberg-Marguardt method[15], and 
the distortion parameters from Section 2.1 are applied as 
the initial values. 

3 Experiment on synthetic images 

3.1 Tests on synthetic images and analysis 
3.1.1 Varying noise level 

We conduct a series of quantitative evaluation on 
synthetic images, which can provide exact information 
about the distortion center, line positions and distortion 
parameter[10]. A sample of the synthetic images consists 
of five horizontal straight lines and five vertical straight 
lines. The original image size is 640×480. Using known 
distortion parameter ＝-1.0×10-6 and distortion cen-
ter(320, 240), the straight line is distorted by using the 
single-parameter division model. In order to simulate the 
error in the feature extraction process, a zero-mean Gaus-
sian noise with standard deviation (varying from 0 to 3 
pixels)is inserted at each image point. Twenty random 
experiments are conducted on different levels of to 
eliminate the influence of randomness. 

Since each pixel coordinate on the original image 
can be accurately calculated, we use root mean square 
error(RMSE)to measure the correction effect of the syn-
thetic image. 
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  The relationship between RMSE and various noise 
levels is shown in Fig. 2. For the method without optimi-
zation proposed by Wang et al[10], the initial value is sen-



Zhang Min  et al: Correction Optimization of Lens Radial Distortion with Bending Measurement Function Trans. Tianjin Univ.
  

 —377—   

sitive to noise simply by using arc fitting. As the noise 
level increases, the performance of Wang’s method[10] 
deteriorates and the RMSE increases robustly as well. 
The optimization method without weighting factor uses 
the entire curved lines in the image, and it greatly im-
proves the stability and accuracy in both the low and high 
noise zones. However, the optimization algorithm with 
weighted factor proposed in this paper obtains even more 
accurate results. When the noise level is less than 2 pix-
els, the RMSE of the corresponding coordinates can be 
controlled within 0.4 pixels. Compared with the method 
without weighted factor, the accuracy increases by 0.2. 
These results demonstrate that the proposed algorithm is 
feasible and effective.  

 
Fig. 2  Results from the synthetic image experiments at 

various noise levels 

3.1.2 Varying  
At a fixed noise level  of 1 pixel, we vary , and 

fix the distortion center at(320, 240). The distortion var-
ies from extreme barrel to extreme pin-cushion. Twenty 
random experiments were performed on different levels  

of . The relationship between RMSE and various values 
of  obtained from the three algorithms is given in Fig. 3. 
It can be seen that the proposed method is more accurate 
in finding the distortion parameter at moderate ＝ 
-1.0×10-6 or even larger. However, when the absolute 
value of the distortion parameter is small, the RMSE is 
very large, thus the algorithm will fail. The amount of 
distortion is so slight that it is greatly affected by the 
noises introduced by the process of extracting curve[10]. 

 

Fig. 3 Results from the synthetic image experiments with 
various values of  

3.2 Experiment on real-image 
To verify the stability and reliability of our pro-

posed algorithm, experiments are conducted on images 
obtained using NIKON D7000. One group of images are 
used to show the step-by-step results, as shown in Fig. 4. 
Since the image distortion is often less than a pixel, an 
edge detection method is used with sub-pixel accuracy to 
extract the edge information[16, 17](Fig. 4(b)). The edges  

 
(a) Original image                                                                     (b) Detected edges 

 
(c) Extracted contours                                                          (d) Corrected image 

Fig. 4 Experimental result 
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obtained by the algorithm can be broken, closed or short. 
Since the short edges contain less information and are 
sensitive to noise, the edges less than 50 pixels in length 
are removed. Then the long pixel subsequences that can 
be fit by circular arcs are also studied(Fig. 4(c)). Two 
groups of experimental calibration results are listed in 

Tab. 1. It is observed that the proposed algorithm can 
achieve a good corrective effect. Moreover, the other 
original images and corrected images can also be seen in 
Fig. 5 , showing that the distortion can be effectively re-
moved . 

Tab. 1 Experiment calibration data  
Method x0/ pixel  y0 /pixel  Total number of arcs 

Wang et al[10] 1 023.196 4  766.892 1 -5.501 8×10-7 35 

This paper 1 024.801 6 768.249 7 -5.976 1×10-7 35 

 

(a) Distorted image                                                             (b)Corrected image 

Fig. 5 Distorted images and corrected results 

4 Conclusions 

In this paper, the initial values of the distortion pa-
rameters and distortion center are calibrated. In addition, 
a bending measurement function with a weighted factor 
is proposed to optimize the distortion parameter and dis-
tortion center. This method only requires straight-line 
segments on a single image, and avoids the complex 
process of calculating parameters and highly precise cali-
bration pattern, making it straightforward to implement. 
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