Correction Optimization of Lens Radial Distortion with Bending Measurement Function

Zhang Min（张 敏）${ }^{1,2}$ ，Wu Fanlu（吴凡路）${ }^{3}$ ，Jin Longxu（金龙旭）${ }^{1}$ ，Li Guoning（李国宁）${ }^{1}$ ， Han Shuangli（韩双丽）${ }^{1}$ ，Zhang Yu（张 宇）${ }^{1}$
（1．Changchun Institute of Optics，Fine Mechanics and Physics，Chinese Academy of Sciences， Changchun 130033，China；
2．University of Chinese Academy of Sciences，Beijing 100049，China）
3．State Key Laboratory of Precision Measuring Technology and Instruments，Tianjin University，Tianjin 300072，China）
© Tianjin University and Springer－Verlag Berlin Heidelberg 2016

Abstract

In this paper，a distortion correction method with reduced complexity is proposed．With the single－ parameter division model，the initial approximation of distortion parameters and the distortion center can be cali－ brated．Based on the distance from the image center to the fitting lines of the extracted curves，a bending measure－ ment function with a weighted factor is proposed to optimize the initial value．Simulation and experiments verify the proposed method．

Keywords：arc fitting；camera calibration；distortion correction；division model；field angle

Lens radial distortion is a common problem in digi－ tal image analysis．Various methods have been proposed for this problem，which can be classified into three types： traditional camera calibration，auto－calibration and line－ based calibration．The first type methods ${ }^{[1-3]}$ are reliable and accurate，but they require multiple images and accu－ rate coordinates of 3D－point correspondences，which is complex and time－consuming．The second type methods use multiple views taken by a moving or rotating cam－ era，and they do not require a calibration pattern ${ }^{[4-6]}$ ，but the process is tedious and not always possible．In con－ trast，line－based methods just use a single image that contains abundant lines in human－made environment． Ahmed and Farg ${ }^{[7]}$ ，Devernay and Faugeras ${ }^{[8]}$ used the principle that straight lines in the 3D world plane should be projected into straight lines in a 2D image plane un－ der any perspective projection．Our method is similar to that of Strand and Hayman ${ }^{[9]}$ ，and Wang et al ${ }^{[10]}$ ，which estimates the distortion parameters based on the prop－ erty that distorted straight lines can be circularly mod－ eled by a single－parameter division model．Moreover， the radial distortion can be corrected with circle fitting method ${ }^{[11]}$ ．

In this paper，the initial approximation of distortion coefficient and the center in the process of circle fitting are calibrated with the extracted curved lines．As pixels move continually from the image＇s center，the curve line＇s bending degree enlarges，which means that the dis－ tortion increases accordingly．According to the imaging characteristics of camera lens，a bending measurement function with weighted factors is proposed as the objec－ tive function．

1 Distortion model

In a real camera system，due to the non－negligible distortion of lens，the linear pinhole model is not valid， which makes the actual pixel point $P_{\mathrm{d}}\left(x_{\mathrm{d}}, y_{\mathrm{d}}\right)$ deviate from the ideal pixel point $P_{\mathrm{u}}\left(x_{\mathrm{u}}, y_{\mathrm{u}}\right)$ ．Geometry distortion can be divided into radial distortion and tangential distor－ tion．Usually，radial distortion is much bigger than tan－ gential distortion，thus the latter can be ignored ${ }^{[3,7,8]}$ ．This paper only considers radial distortion and adopts Fitz－ gibbon＇s division model ${ }^{[12]}$ ，as shown by the following equations．

$$
\begin{align*}
& x_{\mathrm{u}}=\frac{x_{\mathrm{d}}}{1+\lambda_{1} r_{\mathrm{d}}^{2}+\lambda_{2} r_{\mathrm{d}}^{4}+\cdots} \tag{1}\\
& y_{\mathrm{u}}=\frac{y_{\mathrm{d}}}{1+\lambda_{1} r_{\mathrm{d}}^{2}+\lambda_{2} r_{\mathrm{d}}^{4}+\cdots} \tag{2}
\end{align*}
$$

For most lens distortions, it is sufficient to consider a single-parameter division model. More parameters lead to increasing calculation without improving the calculation accuracy. Actually, distortion center $P_{0}\left(x_{0}, y_{0}\right)$ is not the image center. Thus, we simplify Eq. (1) and Eq. (2) as

$$
\begin{align*}
& x_{\mathrm{u}}=x_{0}+\frac{x_{\mathrm{d}}-x_{0}}{1+\lambda r_{\mathrm{d}}^{2}} \tag{3}\\
& y_{\mathrm{u}}=y_{0}+\frac{y_{\mathrm{d}}-y_{0}}{1+\lambda r_{\mathrm{d}}^{2}} \tag{4}
\end{align*}
$$

where $\quad r_{\mathrm{d}}^{2}=\left(x_{\mathrm{d}}-x_{0}\right)^{2}+\left(y_{\mathrm{d}}-y_{0}\right)^{2}$.

2 Methodology

2.1 Initial estimation

In an ideal projection model, the straight lines in the 3 D world are projected into the straight lines on a 2 D image plane. However, due to the introduction of radial distortion, the straight lines in the 3D world plane are instead projected into the circular arcs on the 2D image plane. Let the equation of straight lines of undistorted points be

$$
\begin{equation*}
L_{\mathrm{u}}: a x_{\mathrm{u}}+b y_{\mathrm{u}}+c=0 \tag{5}
\end{equation*}
$$

Assume that $a^{2}+b^{2}>0$ and exclude the case of $a=b=0$. By substituting Eq. (3) and Eq. (4) into Eq. (5), we obtain

$$
\begin{align*}
& x_{\mathrm{d}}^{2}+y_{\mathrm{d}}^{2}+\left(\frac{a}{c \lambda}-2 x_{0}\right) x_{\mathrm{d}}+\left(\frac{b}{c \lambda}-2 y_{0}\right) y_{\mathrm{d}}+ \\
& \left(x_{0}^{2}+y_{0}^{2}-\frac{a}{c \lambda} x_{0}-\frac{b}{c \lambda} y_{0}+\frac{1}{\lambda}\right)=0 \tag{6}
\end{align*}
$$

where,

$$
\begin{align*}
& A=\frac{a}{c \lambda}-2 x_{0} \\
& B=\frac{b}{c \lambda}-2 y_{0} \tag{7}\\
& C=x_{0}^{2}+y_{0}^{2}-\frac{a}{c \lambda} x_{0}-\frac{b}{c \lambda} y_{0}+\frac{1}{\lambda}
\end{align*}
$$

By referring to Eq. (6), we have

$$
\begin{equation*}
x_{\mathrm{d}}^{2}+y_{\mathrm{d}}^{2}+A x_{\mathrm{d}}+B y_{\mathrm{d}}+C=0 \tag{8}
\end{equation*}
$$

Eq. (8) can be viewed as the general expression of circles. Thus, the curved line extracted from the image can be considered as a circle. Let A be multiplied by x_{0}, B multiplied by y_{0}, and $A x_{0}, B y_{0}$, and C stacked together. Accord-
ingly, we can express the distortion center as follows:

$$
\begin{equation*}
x_{0}^{2}+y_{0}^{2}+A x_{0}+B y_{0}+C-\frac{1}{\lambda}=0 \tag{9}
\end{equation*}
$$

First, we extract $n(n \geqslant 3)$ curved lines $L_{i}(i=1,2, \cdots$, $n)$ from the distorted image, obtain the parameters $\left(A_{i}, B_{i}\right.$, C_{i}) by fitting L_{i} into a circle, and calculate the center of the radial distortion $P\left(x_{0}, y_{0}\right)$ as follows:

$$
\left\{\begin{array}{l}
\left(A_{1}-A_{2}\right) x_{0}+\left(B_{1}-B_{2}\right) y_{0}+\left(C_{1}-C_{2}\right)=0 \tag{10}\\
\left(A_{1}-A_{3}\right) x_{0}+\left(B_{1}-B_{3}\right) y_{0}+\left(C_{1}-C_{3}\right)=0 \\
\left(A_{2}-A_{3}\right) x_{0}+\left(B_{2}-B_{3}\right) y_{0}+\left(C_{2}-C_{3}\right)=0
\end{array}\right.
$$

Next, we substitute the distortion center into Eq. (9) and calculate the distortion parameter according to Eq. (11),

$$
\begin{equation*}
\frac{1}{\lambda}=x_{0}^{2}+y_{0}^{2}+A x_{0}+B y_{0}+C \tag{11}
\end{equation*}
$$

To fit the distorted straight lines into circles, we adopt the Levenberg-Marquardt method ${ }^{[13,14]}$. Generally, the circle's equation can be written as

$$
\begin{equation*}
\left(x-x_{\mathrm{c}}\right)^{2}+\left(y-y_{\mathrm{c}}\right)^{2}=R^{2} \tag{12}
\end{equation*}
$$

Assume that there are N characteristic points $\left(x_{i}\right.$, y_{i}) on the extracted curved line, and the distance from each feature point to the fitting arc is d_{i}. The objective function is

$$
\begin{align*}
& f\left(R_{i}, x_{\mathrm{c} i}, y_{\mathrm{c} i}\right)=\sum_{i=1}^{N} d_{i}^{2}= \\
& \sum_{i=1}^{N}\left(\sqrt{\left(x_{i}-x_{\mathrm{c}}\right)^{2}+\left(y_{i}-y_{\mathrm{c}}\right)^{2}}-R\right)^{2} \tag{13}
\end{align*}
$$

To find a local minimum, we use the iterative LevenbergMarquardt nonlinear optimization algorithm, obtain R_{i}, $x_{\mathrm{c} i}$, and $y_{\mathrm{c} i}$, and then obtain the optimization circle parameters (A, B, C).

2.2 Optimization algorithm

2.2.1 Linear fitting

The algorithm described in Section 2.1 uses only part of the circular arc instead of the whole curved line from the entire image. Thus, the derived parameters have considerable estimation errors and they are sensitive to noises. To solve this problem, a specific function with a weighted factor is put forward in this paper.

First, we randomly select a long curved line, and then correct all n distorted points $P_{\mathrm{d} i}\left(x_{\mathrm{d} i}, y_{\mathrm{d} i}\right)$ to the undistorted points using the following equations:

$$
\begin{align*}
& x_{\mathrm{u} i}=x_{0}+\frac{x_{\mathrm{d} i}-x_{0}}{1+\lambda r_{\mathrm{d} i}^{2}} \tag{14}\\
& y_{\mathrm{u} i}=y_{0}+\frac{y_{\mathrm{d} i}-y_{0}}{1+\lambda r_{\mathrm{d} i}^{2}} \tag{15}
\end{align*}
$$

Ideally, if correct distortion parameters are found, then all
undistorted points $P_{\mathrm{u} i}\left(x_{\mathrm{u} i}, y_{\mathrm{ui} i}\right)$ should lie on the same line. Therefore, a fitting straight line of undistorted points can be formulated as $L_{i}: a_{i} x+b_{i} y+c_{i}=0$, where a_{i}, b_{i} and c_{i} can be calculated by linear regression.

Due to the inaccurate estimation of distortion parameters, there is some deviation between the undistorted points $P_{\mathrm{u} i}\left(x_{\mathrm{u} i}, y_{\mathrm{ui}}\right)$ and their associated fitting line $L_{i}: a_{i} x+b_{i} y+c_{i}=0$. Thus, the deviation between point $P_{\mathrm{u} i}\left(x_{\mathrm{u} i}, y_{\mathrm{u} i}\right)$ and L_{i} is

$$
\begin{equation*}
d_{i, j}=\left|a_{i} x_{\mathrm{u} i, j}+b y_{\mathrm{u} i, j}+c_{i}\right| / \sqrt{a_{i}^{2}+b_{i}^{2}} \tag{16}
\end{equation*}
$$

If there are m feature points on the curved line, then the sum of the squared distances between the undistorted points and the fitting line can be defined as follows:

$$
\begin{equation*}
e_{m}=\sum_{j=1}^{m} d_{i, j}^{2} \tag{17}
\end{equation*}
$$

2.2.2 Optimal function

According to the rules of camera imaging characteristics, the radial distortion increases with the field of view. The lines close to the image center bend slightly, while those far away bend seriously. The algorithm proposed in this paper introduces the weighted factor t_{n}, which depends on the distance between L_{m} and the image center. The weighted factor is defined as the length of vertical distance from the image center to the fitting line, as shown in Fig. 1.The curved lines close to the image center have small weighted factors, while those far away have large values. The normalized weighted factor equals 0 when d_{m} is 0 , and equals 1 when d_{m} is the distance between the center and vertex of the image. The weighted factor is formulated as:

$$
\begin{equation*}
t_{n}=\frac{2 d_{m}}{\sqrt{w^{2}+h^{2}}} \tag{18}
\end{equation*}
$$

Fig. 1 The distance between image center and fitting line
where w is the width of the image; h is the height; and d_{m} is the vertical distance from the image center to the fitting line L_{m}. For each curved line extracted from the image, we calculate the correlation fitting lines of each curved
line. Using Eq. (16), we also calculate the squared distance between the undistorted points and the fitting line. To search for optimal parameters, different weighted factor values are applied. Then the bending measure function is constructed by n curved lines extracted from the entire image as follows:

$$
\begin{equation*}
F\left(x_{0}, y_{0}, \lambda\right)=t_{n} e_{n} \tag{19}
\end{equation*}
$$

Thus, the final cost function is defined as:

$$
\begin{align*}
& e_{\text {final }}=\min \left\{\sum_{i=1}^{n} F\left(x_{0}, y_{0}, \lambda\right)\right\}= \\
& \quad \min \left\{\sum_{i=1}^{n}\left(t_{1} e_{1}+t_{2} e_{2}+t_{3} e_{3}+\cdots+t_{n} e_{n}\right)\right\} \tag{20}
\end{align*}
$$

This cost function is a nonlinear function of x_{0}, y_{0} and λ, and we use the whole curved lines extracted from the image. To estimate x_{0}, y_{0} and λ, this cost function is reduced with the Levenberg-Marguardt method ${ }^{[15]}$, and the distortion parameters from Section 2.1 are applied as the initial values.

3 Experiment on synthetic images

3.1 Tests on synthetic images and analysis

3.1.1 Varying noise level

We conduct a series of quantitative evaluation on synthetic images, which can provide exact information about the distortion center, line positions and distortion parameter ${ }^{[10]}$. A sample of the synthetic images consists of five horizontal straight lines and five vertical straight lines. The original image size is 640×480. Using known distortion parameter $\lambda=-1.0 \times 10^{-6}$ and distortion center $(320,240)$, the straight line is distorted by using the single-parameter division model. In order to simulate the error in the feature extraction process, a zero-mean Gaussian noise with standard deviation σ (varying from 0 to 3 pixels) is inserted at each image point. Twenty random experiments are conducted on different levels of σ to eliminate the influence of randomness.

Since each pixel coordinate on the original image can be accurately calculated, we use root mean square error (RMSE) to measure the correction effect of the synthetic image.

$$
\begin{equation*}
D_{\mathrm{RMSE}}=\sqrt{\frac{\sum_{i=1}^{n} \sum_{j=1}^{m}\left[\left(\hat{x}_{i j}-x_{i j}\right)^{2}+\left(\hat{y}_{i j}-y_{i j}\right)^{2}\right]}{m \times n}} \tag{21}
\end{equation*}
$$

The relationship between RMSE and various noise levels is shown in Fig. 2. For the method without optimization proposed by Wang et al ${ }^{[10]}$, the initial value is sen-
sitive to noise simply by using arc fitting. As the noise level increases, the performance of Wang's method ${ }^{[10]}$ deteriorates and the RMSE increases robustly as well. The optimization method without weighting factor uses the entire curved lines in the image, and it greatly improves the stability and accuracy in both the low and high noise zones. However, the optimization algorithm with weighted factor proposed in this paper obtains even more accurate results. When the noise level is less than 2 pixels, the RMSE of the corresponding coordinates can be controlled within 0.4 pixels. Compared with the method without weighted factor, the accuracy increases by 0.2 . These results demonstrate that the proposed algorithm is feasible and effective.

Fig. 2 Results from the synthetic image experiments at various noise levels

3.1.2 Varying λ

At a fixed noise level σ of 1 pixel, we vary λ, and fix the distortion center at $(320,240)$. The distortion varies from extreme barrel to extreme pin-cushion. Twenty random experiments were performed on different levels

(a) Original image

(c) Extracted contours
of λ. The relationship between RMSE and various values of λ obtained from the three algorithms is given in Fig. 3. It can be seen that the proposed method is more accurate in finding the distortion parameter at moderate $\lambda=$ -1.0×10^{-6} or even larger. However, when the absolute value of the distortion parameter is small, the RMSE is very large, thus the algorithm will fail. The amount of distortion is so slight that it is greatly affected by the noises introduced by the process of extracting curve ${ }^{[10]}$.

\ldots Method proposed by Wang et al ${ }^{[10]}$;
\rightarrow Without weight factor; $-\Delta$ With weight factor
Fig. 3 Results from the synthetic image experiments with various values of λ

3.2 Experiment on real-image

To verify the stability and reliability of our proposed algorithm, experiments are conducted on images obtained using NIKON D7000. One group of images are used to show the step-by-step results, as shown in Fig. 4. Since the image distortion is often less than a pixel, an edge detection method is used with sub-pixel accuracy to extract the edge information ${ }^{[16,17]}$ (Fig. 4(b)). The edges

Fig. 4 Experimental result
obtained by the algorithm can be broken, closed or short. Since the short edges contain less information and are sensitive to noise, the edges less than 50 pixels in length are removed. Then the long pixel subsequences that can be fit by circular arcs are also studied (Fig. 4(c)). Two groups of experimental calibration results are listed in

Tab. 1. It is observed that the proposed algorithm can achieve a good corrective effect. Moreover, the other original images and corrected images can also be seen in Fig. 5, showing that the distortion can be effectively removed.

Tab. 1 Experiment calibration data

Method	$x_{0} /$ pixel	$y_{0} /$ pixel	λ	Total number of arcs
${\text { Wang } \text { et al }{ }^{[10]}}{ }^{[0]}$	1023.1964	766.8921	-5.5018×10^{-7}	35
This paper	1024.8016	768.2497	-5.9761×10^{-7}	35

Fig. 5 Distorted images and corrected results

4 Conclusions

In this paper, the initial values of the distortion parameters and distortion center are calibrated. In addition, a bending measurement function with a weighted factor is proposed to optimize the distortion parameter and distortion center. This method only requires straight-line segments on a single image, and avoids the complex process of calculating parameters and highly precise calibration pattern, making it straightforward to implement.

References

[1] Weng J, Cohen P, Herniou M. Camera calibration with distortion models and accuracy evaluation $[\mathrm{J}]$. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14 (10) : 965-980.
[2] Tsai R. A versatile camera calibration technique for highaccuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE Journal of Robotics and Automation, 1987, 3 (4) : 323-344.
[3] Zhang Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (11) : 1330-1334.
[4] Ramalingam S, Sturm P, Lodha S K. Generic self-
calibration of central cameras[J]. Computer Vision and Image Understanding, 2010, 144 (2) : 210-219.
[5] Stein G P. Lens distortion calibration using point correspondences[C]. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). San Juan, 1997.
[6] Kukelova Z, Pajdla T. A minimal solution to radial distortion autocalibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (12) : 24102422.
[7] Ahmed M, Farg A. Nonmetric calibration of camera lens distortion: Differential methods and robust estimation [J]. IEEE Transactions on Image Processing, 2005, 14(8): 1215-1230.
[8] Devernay F, Faugeras O. Straight lines have to be straightautomatic calibration and removal of distortion from scenes of structured environments [J]. Machine Vision and Applications, 2001, 13 (1): 14-24.
[9] Strand R, Hayman E. Correcting radial distortion by circle fitting[C]. In: British Machine Vision Conference (BMVC). Oxford, UK, 2005.
[10] Wang A Q, Qiu T S, Shao L T. A simple method of radial distortion correction with center of distortion estimation[J]. Journal of Mathematical Imaging and Vision, 2009, 35 (3) : 165-172.
[11] Faisal Bukhari, Matthew N Dailey. Automatic radial distortion estimation from a single image [J]. Journal of Mathematical Imaging and Vision, 2013, 45 (1) : 31-45.
[12] Fitzgibbon A W. Simultaneous linear estimation of multiple view geometry and lens distortion [C]. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). Kauai, USA, 2001.
[13] Chernov N, Lesort C. Least squares fitting of circles [J]. Journal of Mathematical Imaging and Vision, 2005, 23 (3) : 239-252.
[14] Chernov N. Circle and Linear Regression: Fitting Circles
and Lines by Least Squares [M]. Chapman \& Hall, London, UK, 2010.
[15] More J J. The Levenberg-Marquardt algorithm: Implementation and theory[C]. In: Numerical Analysis. Springer Berlin Heidelberg, 1978.
[16] Canny J. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6) : 679-698.
[17] Pellegrino F A, Vanzella W, Torre V. Edge detection revisited[J]. IEEE Transactions on Systems, Man, and Cyber-netics-Part B: Cybernetics, 2004, 34 (3) : 1500-1518.
(Editor: Wu Liyou)

