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We present a simplified solution to phase diversity when the observed object is a point source. It utilizes an
iterative linearization of the point spread function (PSF) at two or more diverse planes by first-order Taylor
expansion to reconstruct the initial wavefront. To enhance the influence of the PSF in the defocal plane which
is usually very dim compared to that in the focal plane, we build a new model with the Tikhonov regularization
function. The new model cannot only increase the computational speed, but also reduce the influence of the noise.
By using the PSFs obtained from Zemax, we reconstruct the wavefront of the Hubble Space Telescope (HST) at
the edge of the field of view (FOV) when the telescope is in either the nominal state or the misaligned state. We
also set up an experiment, which consists of an imaging system and a deformable mirror, to validate the correct-
ness of the presented model. The result shows that the new model can improve the computational speed with high
wavefront detection accuracy. © 2016 Optical Society of America
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1. INTRODUCTION

In the process of assembly, transportation, and launch, the
position and surface of the optical components may have
changes due to vibration and other environmental factors,
which is called misalignment and will result in decrease of
the image quality [1]. By introducing the active optics, the
misalignment can be corrected to some extent. Active optical
technology mainly includes three parts [2]: first, detecting the
wavefront of the misaligned system; second, solving the mis-
alignments using the detected wavefront; last, correcting the
misalignments. Many methods have been proposed to detect
the wavefront of the system. These methods can be classified
into two types: one depends on the hardware facilities such as
Shack–Hartmann [3], Curvature Sensing [4] and Pyramid
Sensor [5]; the other uses images such as Phase Retrieval
(PR) [6] and Phase Diversity (PD) [7]. Phase Diversity only
needs two images to detect the wavefront, thus the structure
is quite simple and easy to implement. However, because of
the complex relationship between the phase and the objective
function of the conventional algorithm, it is quite difficult to
solve the phase directly. Researchers often use nonlinear opti-
mization algorithms to solve the objective function, thus the
calculation is quite complicated, and the real-time performance
is very poor. This results in PD often being used for image
reconstruction. The calculated amount of PD algorithm is

the main restriction for the application of PD in active optics.
Keller et al. [8,9] proposed a first-order and second-order
approximation method to expand the generalized pupil func-
tion (GPF), which can separate the point spread function (PSF)
into its odd and even parts. By analyzing the PSFs of the focal
and defocal planes, they acquire the relationship between the
phase and the even part of the PSF in both the focal and defocal
planes, thereby reducing the computational complexity. Smith
et al. [10–13] process a first-order and second-order Taylor ex-
pansion to the PSF at zero phase each time to obtain a set of
approximation solutions of the true phase, and then gradually
correct the optical system by deforming the mirror until the
phase approaches zero. Because the Taylor expansion coeffi-
cients of PSF at zero phase can be obtained in advance, it
can greatly reduce the calculation time. However, it is complex
to use a deformable mirror system to iteratively reduce the aber-
rations in the practical application of active optics (especially
when it is used on the space telescope). Besides, the central
energy of the PSF in the defocal plane is usually very low com-
pared to the focal plane, so the influence of the PSF in the de-
focal plane on the calculated result is much weaker than that of
the focal PSF, which will easily lead to a large error in the result.
In this paper, we utilize a first-order Taylor expansion of the
PSF to establish a new objective function, which can strengthen
the influence of the PSF in the defocal plane and can be easily
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solved. By making the expansion at the point where we get in
the last iteration, we can acquire the aberration coefficients di-
rectly without the iterative correction by a deformable mirror.

2. TRADITIONAL PHASE DIVERSITY
ALGORITHM

The image of the optical system can be approximated by the
following convolution:

i�u; ν� � psf �u; ν� � o�u; ν�; (1)

where o�u; ν� is the observed object, and psf �u; ν� is the PSF of
the optical system. �u; ν� is the coordinate vector in the
pupil plane.

The relationship between the phase φ and the intensity dis-
tribution in the image plane of a PSF can be described using the
Fourier transformation of the GPF as

psf �u; v;φ� � jf fP�u; v;φ�gj2; (2)

f f•g means the Fourier transform.
The GPF is defined as

P�u; v;φ� � A�u; v�eiφ�u;v;α�; (3)

where A�u; v� is the pupil function (1 over the pupil and 0 in
the exterior), and the phase can be approximated using a nor-
malized Zernike basis:

φ�uj; vj; α� � Z �uj; vj�T · α: (4)

As for the other image, of which the diversities are usually
acquired by defocus, the phase is:

φd �uj; vj; α� � Z �uj; vj�T · �α� β�; (5)

where β is the known diversity.
Paxman [14] has deduced a likelihood function to evaluate

the similarity between the phase and the image:

L�α� � −
X
u;ν∈χ

jD1�u; ν�S2�u; ν� − D2�u; ν�S1�u; ν�j
jS1�u; ν�j2 � jS2�u; ν�j2

; (6)

where Dk�u; ν�jk�1;2 is the discrete Fourier transform of the
focal/defocal image, and Sk�u; ν�jk�1;2 is the optical transfer
function (OTF) of the focal/defocal plane. We treat the object,
the PSFs, and the images as periodic arrays with a period cell of
sizeN × N . There arrays are completely specified by their func-
tional values on the set χ, where χ � f0; 1; � � � ; N − 1g ×
f0; 1; � � � ; N − 1g[14].

When the function arrives at its minimum, we will acquire
the phase of the optical system.

3. LINEAR APPROXIMATION OF PSF BASED ON
TAYLOR EXPANSION

The relationship between Eq. (6) and the phase is very com-
plex, so it is usually very difficult to find its minimum.
Researchers often use Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method to solve the function [15]. But the conven-
tional BFGS method only converges to global optima when
the cost function is convex, and it usually costs too much time.

When the observed object is a point source, we can approxi-
mate the PSF by first-order Taylor expansion in α � 0:

psf �α� � h0 � h1 · α� O‖α‖2; (7)

where h0 � psf �α�jα�0, h1 � ∂psf �α�
∂α jα�0

, and O‖α‖2 is the
2nd-order Lagrange residue.

When the phase is very small, the 2nd-order Lagrange res-
idue can be ignored. Thus, the PSFs of the focal and defocal
planes can be written as

psf f �α� � h0;f � h1;f · α

psf d �α� � h0;d � h1;d · α: (8)

So the difference between the real PSFs of the image plane
and the PSFs that we rebuilt is:

E � �‖psf f �α� − if ‖22 � k‖psf d �α� − id‖22�min
;

i.e.,

E � �‖h1;f α� h0;f − if ‖22 � k‖h1;dα� h0;d − id‖22�min
;

(9)

k is used to balance the impact of the focal image and the

defocal image. Usually k � ‖h1;f α�h0;f −if ‖22
‖h1;dα�h0;d −id‖22

.

If we take ∂E
∂α � 0, we will get:

UT
1 U 1α − UT

1 W 1 � k2UT
2 U 2α − k2UT

2 W 2 � 0;

i.e.,

α � �UT
1 U 1 � k2UT

2 U 2�−1�UT
1 W 1 � k2UT

2 W 2�; (10)

whereU 1�h1;f ,U 2�h1;d ,W f � if − h0;f ,W d � id − h0;d .
Usually, the accuracy of the first-order Taylor expansion in

α � 0 is not enough. So we make the expansion at the point
where we get in the last iteration. Equation (8) will be rewritten
as

psf f �α� � h0;f ;k � h1;f ;k · �α − αk�
psf d �α� � h0;d ;k � h1;d ;k · �α − αk�; (11)

where h0;f ;k � psf f �α�jα�αk , h0;d ;k � psf d �α�jα�αk , h1;f ;k �
∂psf f �α�

∂α jα�αk
, h1;d ;k � ∂psf d �α�

∂α jα�αk
.

Thus:

αk�1 � �UT
1 U 1 � k2UT

2 U 2�−1�UT
1 W 1 � k2UT

2 W 2� � αk:
(12)

4. TIKHONOV REGULARIZATION FUNCTION

The main influence of the noise is that it will increase the dif-
ference between the actual PSF and the one that we rebuild
using linear approximation. Here, we introduce a Tikhonov
regularization function of the first order. Equation (9) can
be rewritten as

E��‖h1;f α�h0;f −if ‖22�k‖h1;dα�h0;d −id‖22�λ‖Liα‖22�min
:

(13)

Li is the i-th differential operator and is used to control the
smoothness of the solution during the iterative steps. λ is
non-negative regularization parameter [15].
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Usually we take

L0 �

2
6664

1
1

. .
.

1

3
7775;

and λ � σ2∕S. σ2 is the variance of the noise, and S is the
power spectral density (PSD). The solution of the Eq. (13) is

α � �UT
1 U 1 � k2UT

2 U 2 � λLTi Li�−1�UT
1 W 1 � k2UT

2 W 2�:
(14)

5. NUMERICAL SIMULATION

In this section, we use ZEMAX to acquire the PSFs both in the
focal and defocal planes to solve the phase, and then we contrast
them with the phase from ZEMAX. The optical system we
choose is the Hubble Space Telescope (Fig. 1), whose param-
eters we can obtain from the ZEMAX object. Because the
Hubble Space Telescope is a typical R-C system, the second
mirror shades the pupil in the center. Thus, the pupil function
A�u; v� will be an annulus (1 in the annulus and 0 in the
exterior). But the phase φ�u; v; α� can still be expressed on
the whole circle because of the orthogonality of the Zernike
Fringe Term, which is validated by the result of the numerical
simulation.

First, we choose the original system to validate our algo-
rithm, and then we add some misalignments to the system
to taint the phase. To reduce the amount of the calculation,
the sampling grid we choose on the pupil plane is 32 × 32,
and 64 × 64 on the image plane, which can satisfy the
Nyquist sampling criterion. The exit pupil diameter is
2.4 m, and the F number of the system is 24. The field we
choose is (0.08, 0.08 deg). The Gaussian noise power we
add is 30 dB both in the focal and defocal planes. The
CPU we used is Intel(R) Core(Tm) i7-4790K, and the fre-
quency is 4.00 GHz.

A. Original Optical System
In Fig. 2, we plot the phase expressed by Zernike Fringe
Coefficients. The blue term is the standard data from
ZEMAX. The red term is acquired by using the new simplified
algorithm (adding Tikhonov regularization and enhancing the
influence of the PSF in the defocal plane). The green term is
acquired neither using Tikhonov regularization function nor
enhancing the influence of the PSF in the defocal plane,

and the magenta term is the result of using a traditional PD
algorithm.

In Fig. 3 we show the wavefront map. Figure 3(a) is the
standard map from ZEMAX. Figure 3(b) is reconstructed using
the result acquired by the new algorithm. Figure 3(c) is the
result of neither using the Tikhonov regularization function
nor enhancing the influence of the PSF in the defocal plane,
and Fig 3(d) is the result of the traditional PD algorithm.

In Fig. 4 we show the tendency of the RMS between the
result and the standard data from ZEMAX during the iteration.

Fig. 1. Sketch map of Hubble Space Telescope (from ZEMAX).

Fig. 2. Phase expressed by Zernike Fringe Coefficients (without
misalignments).

Fig. 3. Wavefront map of HST without misalignments (the unit is λ).

Fig. 4. Tendency of the RMS between the result and the value from
ZEMAX during the iteration (without misalignments).
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When using the new simplified PD algorithm, the result has
the tendency to be stable after the iteration evolves to the
25th generation. The time that the algorithm costs is 1.046 s,
and the RMS between the result and the standard data from
ZEMAX is 0.0046λ. Without using Tikhonov regularization
function or enhancing the influence of the PSF in the defocal
plane, the result will be stable after the 29th generation.
The time is 1.537 s, and the RMS is 0.0305λ. As for the
traditional PD algorithm, the result needs 57 generations to be
stable with the time that it costs is 16.731 s, and the RMS
is 0.0164λ.

B. System with Misalignments
In the previous section, the original optical system is an ideal
model whose phase is too small. When the telescope is sent to
the working orbit, some parts of the optical system would not
be on the correct place, and the phase will not be very good. In
this section, we add some misalignments to the system to stain
the phase. In Fig. 5, we show the result as in Fig. 2, and in
Fig. 6, we show the wavefront map as in Fig. 3.

In Fig. 7 we see that when using the new simplified PD
algorithm, the result has the tendency to be stable after the
5th generation. The time that the algorithm costs is 0.666 s,
and the RMS between the result and the standard data from
ZEMAX is 0.0072λ. Without using the Tikhonov regulariza-
tion function or enhancing the influence of the PSF in the

defocal plane, the result will be stable after the 8th generation,
with the time that it costs is 1.181 s. The RMS is 0.0357λ.
The traditional PD algorithm needs 28 generations to be stable,
and the time is 10.545 s. The RMS is 0.0186λ.

6. EXPERIMENTAL VALIDATION

To validate the algorithm, we use a laser irradiating on a de-
formable mirror (DM), and then reflecting through some lens.
The image is acquired with a CMOS set on the guide rail.
Because the Shack–Hartmann method cannot detect the wave-
front on the image plane directly, we use the DM to add extra
phase. Thus, the Shack–Hartmann can detect the change of the
phase. By contrasting the change from Shack–Hartmann with
the result that we got from our algorithm, the algorithm will be
validated. The focal length is 60 mm, and the F number is 15.
The wavelength of the laser is 680 nm. The sketch map and the
real facility of the optical system are shown in Figs. 8 and 9.

Figure 10 shows the images on the focal and defocal planes.
Figures 10(a) and 10(b) are acquired by the CMOS. We solve
the phase using Figs. 10(a) and 10(b) in three ways. The first
time we use the new simplified algorithm, and the recon-
structed images are shown in Figs. 10(c) and 10(d). The second
time we use the simplified algorithm without using the
Tikhonov regularization function or enhancing the influence
of the PSF in defocal plane, and the images are shown in

Fig. 5. Phase expressed by Zernike Fringe Coefficients (with mis-
alignments).

Fig. 6. Wavefront map of HST with misalignments (the unit is λ). Fig. 8. Sketch map of the optical system used in the experiment.

Fig. 7. Tendency of the RMS between the result and the value from
ZEMAX during the iteration (with misalignments).
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Figs. 10(e) and 10(f ). The last time we use the traditional PD
algorithm, and the images are shown in Figs. 10(g) and 10(h).
To show the defocal image clearly, we divide the image by the
maximum of itself. The same operation is performed in Fig. 12.

Figure 11 is the phase of the system by solving Figs. 10(a)
and 10(b). The blue term is the result using the Tikhonov regu-
larization function and enhancing the influence of the PSF in the
defocal plane. The time that the algorithm costs is 1.16 s. The red
term is the result without using the Tikhonov regularization func-
tion or enhancing the influence of the PSF in the defocal plane.
The time that the algorithm costs is 1.31 s. The green term is the
result of the traditional PD algorithm, and the time cost is 18.16 s.

Then, we add some astigmatisms on the DM, and the
images on the focal and defocal planes are shown in
Figs. 12(a) and 12(b). The reconstructed images on the focal

and defocal planes that in three different ways (using the new
simplified algorithm, without using the Tikhonov regulariza-
tion function or enhancing the influence of the PSF in the
defocal plane, and traditional PD algorithm) are shown in
Figs. 12(c)–12(h) as Fig. 10.

The results of the three kinds of algorithms are shown in
Fig. 13 as Fig. 11. The time that the new algorithm costs is
1.88 s. Without using the Tikhonov regularization function
or enhancing the influence of the PSF in the defocal plane,
the time is 2.12 s. The traditional PD algorithm costs 23.51 s.

Figure 14 shows the wavefront that the DM added in the
system. Figure 14(a) is the output of the Shack–Hartmann.
Figure 14(b) is the wavefront reconstructed with the result that
was acquired from the new simplified algorithm. Figure 14(c) is
reconstructed without using the Tikhonov regularization func-
tion or enhancing the influence of the PSF in the defocal plane,
and Fig. 14(d) uses the traditional PD algorithm.

The residual error between the wavefront detected by Shack–
Hartmann and that reconstructed with the results are shown in
Fig. 15. Figure 15(a) shows the difference between the Shack–
Hartmann and the new simplified algorithm. Figure 15(b)
shows the difference between the Shack–Hartmann and the
algorithm without using the Tikhonov regularization function
or enhancing the influence of the PSF in the defocal plane. And
Fig. 15(c) is the difference between the Shack–Hartmann and
the traditional PD algorithm.

We choose the Zernike Fringe Term to fit these residual
errors. The results are shown in Fig. 16. The blue term is
the result of the new simplified algorithm, with the RMS of
0.0134λ. The red term does not use the Tikhonov regularization

Fig. 12. Images on the focal and defocal planes with some astigma-
tisms added on the DM.

Fig. 13. Phase acquired from the algorithms after adding astigma-
tisms on the DM.

Fig. 10. Images on the focal and defocal planes.

Fig. 11. Phase acquired from the algorithms before adding astigma-
tisms on the DM.

Fig. 9. Snapshot of the experiment.
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function or enhance the influence of the PSF in the defocal
plane. The RMS is 0.0277λ. The green term uses the traditional
PD algorithm. The RMS is 0.0212λ.

7. CONCLUSION

In this paper, we have presented a simplified PD algorithm
based on the first-order Taylor expansion of PSF, when the

observed object is a point source. By enhancing the influence
of the defocal PSF and introducing the Tikhonov regularization
function, the RMS of the result can be approximately 0.01λ
according to the numerical simulation and the experiment.
The time that the new algorithm costs is about 10% of the
traditional PD algorithm.

We solve the wavefront of the Hubble Space Telescope at
the edge of FOV with the PSF from ZEMAX, when the tele-
scope is in either the nominal state or the misaligned state.
Further on, we set a simple optical system with a DM to change
the phase, and use the Shack–Hartmann to detect the change.
Both the numerical simulation and the experiment show that
the proposed algorithm has a higher accuracy with much faster
computation compared to the traditional algorithm.
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