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ABSTRACT: Ultraviolet light-emitting devices (LEDs) were fabricated on
the basis of Au/MgO/ZnO metal/insulator/semiconductor (MIS)
heterostructures. By introducing a thermally oxidized p-type Cu2O hole-
injection layer into this MIS structure, enhanced ultraviolet electro-
luminescence (EL) and random lasing with reduced threshold injection
current are achieved. The enhancement mechanism is attributed to effective
hole transfer from p-Cu2O to i-MgO under forward bias, which increases
the initial carrier concentration of MgO dielectric layer and further
promotes “impact-ionization” effect induced carrier generation and
injection. The current study proposes a new and effective route to improve
the EL performance of MIS junction LEDs via introducing extrinsic hole
suppliers.
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Ultraviolet (UV) light-emitting diodes (LEDs) and lasing
diodes (LDs), a very important research topic in modern

optoelectronics, have attracted tremendous attentions during
the past decades, due to their great application potential in
numerous fields such as solid-state lighting, information
storage, environment protection and life science.1−3 ZnO, a
typical representative for the third generation semiconductor, is
regarded as a promising candidate for low-threshold UV LEDs
and LDs because of its wide direct band gap of 3.37 eV and
large exciton binding energy of 60 meV.4−6 However, the lack
of high-quality and stable p-type ZnO remains to be the
greatest challenge for the development of homojunction
devices. Thus, optoelectronic devices comprised of ZnO-
based heterostructures arise and exhibit excellent device
performance.7−11 For example, high-brightness blue-light-
emitting diode based n-ZnO nanowires/p-GaN film was
fabricated and exhibited a high sensitivity in responding to
UV irradiation.12 In addition, one-dimensional ZnO-based
heterostructured energy conversion devices are emerging and
will be presented for future optoelectronic applications.13,14

Among them, metal/insulator/semiconductor (MIS) structure
is widely adopted to construct LEDs/LDs for wide-band gap
semiconductor, because its electroluminescence (EL) mecha-
nism is based on a so-called “impact-ionization” effect, which
has no rigid requirements for the p-type counterparts.11,15−18 In
addition, the emission wavelength of this structure will not
suffer from a redshift caused by p-type materials.19 More

importantly, electrically pumped lasing action can be more
easily achieved with MIS junction structure, because carrier
accumulation and population inversion can be facilely fulfilled
in the MIS junction, as a result of the blocking effect of
dielectric insulating layer. In fact, in the early stage of the
development of other wide-band gap semiconductors (e.g.,
GaN and ZnS), MIS junction diodes were often adopted to
achieve the EL (including spontaneous radiation and stimulated
emission) from these materials, since their p-type doping was
also very difficult at that time.20,21 Thus, for the research of
ZnO-based LEDs and LDs at the present stage, MIS junction
structure is still of great importance and practical significance.
Figure 1a shows the structural schematic diagram of a typical
Au/MgO/ZnO MIS heterostructure and its EL mechanism can
be well understood based on the energy band alignment
illustrated in Figure 1b. Because of the large conduction band
offset (∼3.55 eV) between ZnO and MgO, electrons would be
blocked and accumulated at the heterostructure interface under
forward bias. Most applied voltages would drop on the MgO
layer considering its dielectric nature, and the local electric field
strength could be as high as 1 × 107 to 1 × 108 V/m therein.11

Thus, electrons and holes can be generated through a so-called
“impact-ionization” process in the insulating MgO layer. The
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generated holes would be driven into ZnO active layer under
forward bias and radiatively recombine with the electrons
accumulated at ZnO/MgO interface, giving rise to the UV
emission of ZnO. Unfortunately, such a kind of “creating
something out of nothing” mode seriously limits the EL
efficiency of MIS junction LED, because the production of
holes via “impact-ionization” effect is not so efficient owing to
the extremely low intrinsic carrier concentration (∼1 × 1010

cm−3 in our case, measured by Hall Effect testing system) in the
insulating MgO layer.22,23 Thus, how to effectively increase the
hole generation rate is a key issue for improving the EL
performance of ZnO-based MIS heterojunction LEDs. Until
now, only a few reports are available on improving the EL
performance of ZnO-based MIS junction LEDs,24−26 especially
regarding to LDs. For example, Ma et al. realized the electrically
pumped UV random lasing from the Au/SiO2/ZnO MIS
heterostructures.27 Zhu et al. not only achieved electrically
pumped random lasers in Au/MgO/ZnO heterostructures, but
also effectively reduced the lasing threshold current by inserting
a weak p-type (or nearly intrinsic) ZnO film between Au
electrode and MgO layer.11

In this work, thermally oxidized p-type Cu2O film, serving as
a hole-injection layer, was inserted between metal electrode and
dielectric layer to form Au/p-Cu2O/MgO/ZnO heterostructure
(see Figure 1c). Under forward bias, the holes from p-type
Cu2O layer can be injected into the MgO deep trap levels via a
resonant tunneling process (see Figure 1d). These exotic holes
increase the initial carrier concentration of dielectric i-type
layer, and favor the “impact-ionization” process under intensive
local electric field and make the hole generation and injection
into ZnO active region more efficient (see Figure S4 for more
detailed discussion). As a consequence, the p-type Cu2O
inserted LED shows improved UV emission and random lasing
behavior compared with the pristine Au/MgO/ZnO hetero-
structure. Specifically, by introducing p-type Cu2O hole

injection layer, the lasing threshold current was further reduced
to nearly half its initial value. To the best of our knowledge, this
contribution may be the first time report on improving the
electrically pumped random lasing performance of ZnO-based
MIS junction diode via introducing p-type Cu2O film as hole
injection layer.
Figure 2a shows the X-ray diffraction (XRD) patterns of

these copper-oxide (Cu2O or CuO) films. Only (111)
diffraction peak of Cu2O was found when the oxidation
temperature is 200 °C. As the temperature rises to 275 °C,
except for the diffraction signal from the Cu2O phase, two
additional diffraction peaks corresponding to CuO come out.
Further increasing oxidation temperature to 400 °C only
weakens the Cu2O signal but enhances the CuO diffraction
peaks, indicating a notable phase transition from Cu2O to CuO
at relatively high heating temperature. Thus, to obtain pure-
phase Cu2O film, the optimized oxidation temperature is
determined to be 200 °C. Figure 2b exhibits the energy-
dispersive X-ray (EDX) spectrum of the Cu2O film prepared at
200 °C. Only elemental Cu and O signals with an atomic ratio
of 1.9:1 were detected, further confirming that the obtained
sample is indeed a pure-phase Cu2O film. The slightly lower Cu
content compared to standard stoichiometry is ascribed to the
intrinsic copper vacancies existing in Cu2O, which behave as
acceptor centers and provide holes for the p-type conductance
of Cu2O. Figure 2c summarizes the electrical parameters of the
synthesized pure Cu2O film determined by Hall effect
measurement. As can be seen, the Cu2O film exhibits
completely identical p-type conductance at all testing magnetic
field intensity. The average hole concentration and Hall
mobility are calculated to be 4.5 × 1017 cm−3 and 0.9 cm2/
(V s), respectively. Such good p-type conductivity ensures that
the obtained Cu2O film can play the role of hole-injection layer
in the MIS junction LEDs. Figure 2d presents the scanning
electron microscopy (SEM) image of the Cu2O film. It is found

Figure 1. (a, b) Structural schematic diagram and corresponding energy-band alignment under forward bias of pristine Au/MgO/ZnO
heterostructure, respectively. Herein, the holes are generated through an “impact-ionization” process in the MgO layer and are subsequently driven
into the ZnO region under forward bias, where the injected electrons and holes radiatively recombine and UV EL is produced. (c, d) Structural
schematic diagram and corresponding energy-band alignment under forward bias of Au/p-Cu2O/MgO/ZnO heterostructure, respectively. The
introduction of p-Cu2O can improve the initial carrier concentration of MgO dielectric layer via effective hole transferring from Cu2O to MgO, and
promote succeeding “impact-ionization” effect induced carrier generation and injection.
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that the prepared sample is a polycrystalline granular film with a
mean grain size of ∼80 nm. Optical absorption spectrum of the
obtained Cu2O film was measured and plotted in Figure 2e. By
extrapolating the linear part of absorption edge, the optical
direct band gap of the as-prepared Cu2O film is estimated to be
∼2.50 eV, consistent with the reported values ranging from 2.0
to 2.6 eV by other groups.28,29

Figure 3a displays the nearly linear current−voltage (I−V)
relationships between a pair of Al or Au electrodes, which
indicates that good ohmic contacts have been formed for Al/n-
Si and Au/p-Cu2O. Typical rectifying diode-like behaviors (see
Figure 3b) with distinctive turn-on voltages of 5.5 and 2.7 V are

observed from both LEDs with and without p-Cu2O layer,
respectively. The larger turn-on bias of p-Cu2O inserted device
is attributed to the increased series resistance from additive
Cu2O film. Besides, compared with the pristine Au/MgO/ZnO
heterostructure, p-Cu2O inserted LED shows a rapider increase
of injection current after the device is “turned on”. This can be
understood in terms of the effective hole transfer from p-Cu2O
to i-MgO (see the next paragraph for detailed discussion),
which makes a considerable contribution to the conductive
current across the MIS heterojunction.19

Figure 4a presents the EL spectra of the MIS junction LED
inserted with p-Cu2O hole-injection layer. As can be seen, an
obvious spontaneous emission band centered at 380 nm
appears when the injection current is 100 mA. The relatively
large injection current may be ascribed to relatively low quality
of MgO dielectric layer or the existence of a certain amount of
interfacial defects, both of which can lead to a lot of leakage
paths in such a MIS heterostructure.11,17 By comparing with the
photoluminescence spectrum of ZnO film (the green dashed
line in Figure 4a), the observed UV EL band is attributed to the
near-band-edge excitonic recombination in ZnO active
layer.30,31 As the current reaches 200 mA, the entire emission
intensity is increased and some sharp peaks arise and
superimpose on the spontaneous emission band. With further
increase of injection current to 300 and 350 mA, more distinct
sharp peaks are observed. The appearance of these sharp peaks
demonstrates an electrically pumped lasing action, which is
further confirmed by the superlinear dependence of integrated
emission intensity on injection current magnitude, as shown in
Figure 4b. The lasing threshold current is determined to be
∼130 mA. Someone may argue that these emission spikes
might be caused by the overheat of metal electrode or probe at
high injection currents. However, the heat-induced sharp peaks
usually exhibit a broader spectrum coverage range with
randomly emerging spikes and irregular variation of emission
intensity with injection current (see Figures S1 and S2 for
detailed discussion). Obviously, the emission spikes observed in
the current experiment do not possess the above-mentioned
features of heat-induced sharp peaks. Therefore, the appearance
of spikes in the emission spectra is absolutely not induced by
the heating effect.
On the contrary, the pristine MIS junction LED without p-

Cu2O layer only exhibits weaker light emission at the same
injection currents, and its lasing threshold is estimated to be
∼230 mA (see Figure 4c, d). That is, as discussed in the
beginning, the p-type Cu2O inserted device demonstrates the
expected better UV emission and electrically pumped lasing

Figure 2. (a) XRD patterns of the copper-oxide (Cu2O or CuO) films
obtained at different thermal oxidation temperatures, the curves at the
top and bottom are the standard PDF cards for Cu2O and CuO lattice
structures, respectively. (b) EDX spectrum of the pure-phase Cu2O
film prepared at 200 °C, the inset shows the atomic ratio of Cu and O
elements. (c) Electrical parameters of the synthesized p-Cu2O film
measured by Hall Effect testing system. (d) Top-view SEM image of
the as-prepared Cu2O granular film; the scale bar is 1 μm. (e) Optical
absorption spectrum of the obtained p-Cu2O film.

Figure 3. (a) Nearly linear I−V curves from a pair of Al (red line) or Au (blue line) electrodes, indicating that good ohmic contacts have been
formed for Al/n-Si and Au/p-Cu2O. (b) Typical rectifying I−V curves from the two LEDs with (blue line) and without (red line) p-Cu2O layer,
respectively.
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behavior than the pristine Au/MgO/ZnO heterostructure,
thanks to the effective hole transfer from p-Cu2O to i-MgO
under forward bias. Actually, there are some deep-levels at the
p-Cu2O/MgO interface, reasonably owing to the lattice
mismatch. Therefore, considering the energy band alignment,
the holes in p-Cu2O layer could be injected into MgO by a
defect-assisted resonant tunneling process. These exotic holes
are accelerated under intensive local electric field and impact
the crystal lattice and defect sites in MgO film, that is, facilitate
the “impact-ionization” process, generating more excited
electrons and holes. Driven by forward bias, these excited
holes would tunnel through the junction interface and enter
into the ZnO active region, giving out a better UV EL and
lasing behavior from the p-type Cu2O inserted device (as
shown in Figure 1d). To support this argument and show the
effect of p-Cu2O layer, analogue simulations of local hole
concentration distribution under the same forward applied
voltage of 8 V are performed and illustrated in Figures 4e, f.
Herein, the simulation software DEVICE 5.0.736 was employed
as the calculation tool, and the two simulation architectures
were constructed according to the practical device config-
urations. The insulator (MgO) was assumed to be a p-type
semiconductor with very low carrier concentration (∼1 × 1010

cm−3, similar to the carrier concentration of MgO layer by Hall
measurement). The only difference between the two models
was the p-Cu2O layer in one of them. During the simulation,
trap-assisted recombination, Auger recombination, and radia-
tive combination of the semiconductors have been taken into
account, while the “impact ionization” process was actually not
involved because it is a highly nonlinear process, and it is
inclusion in the physical model for the semiconductor can easily
cause divergences in the simulation. Nonetheless, as can be
seen, the overall hole concentration of p-Cu2O inserted LED is
much greater than that of pristine device, indicating the positive
role of Cu2O as an external hole supplier. As shown in Figure
4g, hole concentration enhancement ratio demonstrates that
the introduction of p-Cu2O layer indeed leads to a dramatic
increase of hole carrier concentration in MgO insulating layer,
MgO/ZnO interface and ZnO active layer, owing to the
effective hole transfer and injection from p-Cu2O to ZnO,
which in some extent confirms the EL enhancement
mechanism mentioned above. It should be pointed out that
this enhancement ratio is not largest at the interface of MgO/
ZnO. The reason is that it is regarded as the active region,
moreover, the electron concentration is relative higher than the
hole concentration at the interface of MgO/ZnO. Reasonably,
the hole concentration should reduce gradually during the
carrier transport from p-Cu2O or MgO to the active region
owing to the electron−hole recombination processes. By the
way, a weak visible emission band peaked at ∼560 nm shows up
for both LEDs when the electric current is increased. This is
because, under high injection level, part of the injected carriers
relax to the defect states, giving birth to the observed broad-
band deep level emission.32−34

Finally, let us briefly discuss the mode type and formation
mechanism of electrically pumped lasing action. Figure 5a, b
show the schematic diagram of angle-dependent EL measure-
ment configuration and the lasing spectra of the p-Cu2O
inserted device recorded from varying detection angles,
respectively. Distinct lasing spikes are observed in different
directions, which are a strong experimental evidence for
random lasing behavior.11,35 To further prove that the observed
phenomenon is electrically pumped random lasing in our
experiment, we successively recorded the EL spectra taken from
the same device with time interval of 15 s as an alternative. It is
found that the lasing spectrum varies with time, as shown in
Figure S3. The position and intensity of the observed sharp
peaks change randomly, and the mode spacing is not uniform.
This is because the feedback path of each closed-loop changes
from time to time, which, in turn, results in real-time variations
in the collected lasing spectra. This phenomenon reflects the
intrinsic properties of random laser oscillation, and can be
viewed as another solid evidence for the occurrence of random
lasing action in our experiment.15,18 Figure 5c displays cross-
sectional transmission electron microscopy (TEM) image of
our ZnO film. As can be seen, the polycrystalline film is
composed of many small nanocolumns. Such a kind of
relatively disorder system can act as both gain medium and
scattering units for random lasing.15,36 For the device with p-
type hole-injection layer, the disordered granular Cu2O film
may even be helpful to the optical confinement of the system
by scattering the emitted photons back to the ZnO active
layer.11 When the population inversion condition (EFn − EFp >
Eg) is satisfied (see Figure 5d) and the optical gain is larger than
the loss through closed-loop multiscatterings (see Figure 5e),
random lasing oscillations occur.

Figure 4. (a, c) EL spectra of the Au/MgO/ZnO heterostructures with
(blue lines) and without (red lines) p-Cu2O layer under different
injection currents, respectively; the green dashed curve in Figure 4a is
the photoluminescence spectrum of ZnO film excited by the 325 nm
line of a He−Cd laser. (b, d) Superlinear dependences of integrated
emission intensity on the injection current of the two devices with
(blue sphere) and without (red sphere) p-Cu2O layer. (e, f) Simulated
distribution profiles of hole concentration in the two LEDs with and
without p-Cu2O layer respectively, which clearly show that the hole
concentrations in MgO and ZnO layers are remarkably improved by
introducing p-Cu2O hole injection layer. (g) Hole carrier concen-
tration enhancement after introducing p-Cu2O hole injection layer.
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In summary, prototype UV LEDs and LDs based on Au/
MgO/ZnO heterostructures have been successfully demon-
strated. By employing thermally oxidized p-Cu2O film as hole-
injection layer, the UV emission and random lasing perform-
ance were dramatically improved. The enhancement mecha-
nism is attributed to the effective hole injection from p-Cu2O
into i-MgO, which increases the initial carrier concentration for
“impact-ionization” process and makes the hole generation in i-
layer more efficient. Although further optimization of the
device efficiency is still needed, the study presented here
provides an effective and feasible way to improve the EL
performance of MIS junction LEDs/LDs.
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