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� A novel enhancement method based on lateral inhibition network is proposed.
� The image pixels distributed into the four pairs of sub-regions are utilized to construct the compensation measure factor.
� Introducing the compensation measure factor and median filtering is employed to optimize the proposed model.
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There is often substantial noise and blurred details in the images captured by cameras. To solve this prob-
lem, we propose a novel image enhancement algorithm combined with an improved lateral inhibition
network. Firstly, we built a mathematical model of a lateral inhibition network in conjunction with bio-
logical visual perception; this model helped to realize enhanced contrast and improved edge definition in
images. Secondly, we proposed that the adaptive lateral inhibition coefficient adhere to an exponential
distribution thus making the model more flexible and more universal. Finally, we added median filtering
and a compensation measure factor to build the framework with high pass filtering functionality thus
eliminating image noise and improving edge contrast, addressing problems with blurred image edges.
Our experimental results show that our algorithm is able to eliminate noise and the blurring phenomena,
and enhance the details of visible and infrared images.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Image enhancement is an indispensable technique and essential
method of improving image quality in digital image processing.
Even with the ubiquity of digital cameras and mobile telephones,
there are substantial amounts of noise in images because of camera
defocusing, a lack of uniform illumination, atmospheric distur-
bances, and the like not clear edge texture and producing dark or
highlight area, i.e., which have a great impact on executing mis-
sions. Hence, it is necessary and useful to develop an effective
enhancement algorithm that addresses such noise in digital
images.

To remove noise from images, many denoising methods based
on the features of the images, the characteristics of the noise,
and spectrum distribution are proposed by scholars. They can be
broadly divided into three categories: denoising methods in area
space, such as mean filtering, median filtering, i.e.; denoising
methods in frequency space, such as homomorphic filtering, i.e.;
as well as the donising methods based on sparse representation,
such as the block-match and 3D filtering, BM3D, i.e. [1–6]. Using
the classical methods of image denoising, the noise was effectively
removed, but the image edge easily appeared fuzzy phenomenon.
In recent years, scholars worldwide have developed a variety of
image enhancement algorithms from the perspective of image
characteristics and various mathematical theories [7,8]; however,
the actual visual effect is not necessarily favorable without also
considering the visual features. To handle image information,
scholars have referenced the principles of visual lateral inhibition
as early as 1980 [9].

In this early research, background information of images was
extracted from high levels of background interference. In subse-
quent research, scholars have achieved image edge detection,
edge-sharpening, and enhanced contrast via the theory of lateral
inhibition [10–12]. With the further development of research,
scholars proposed numerous enhancement algorithms based on
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various parameters of the lateral inhibition network and the char-
acteristics of image quality [13–17]. Some scholars proposed
enhancement algorithms that combined a lateral inhibition net-
work with adaptive filtering. Using such an approach, the system
adaptively selects model parameters according to different local
variances and averages of images, thus eliminating noise.

Based on the above, we proposed a new improved algorithm
that incorporates a lateral inhibition network, which is equivalent
to a high pass filter and sensitive to noise. Furthermore, we intro-
duce a compensation measure factor that causes the network to
enhance the edges and remove noise, thus solving the problem of
image edge fuzziness. Our experimental results show that our pro-
posed method effectively removes the noise from images and
improves the quality of images.

The rest of this letter is organized as follows. Section 2 over-
views the lateral inhibition network theory. Then we present the
details of the proposed method to enhance images in Section 3.
The experimental results are given in Section 4. Finally, a conclu-
sion is drawn in Section 5.
2. Lateral inhibition network theory

Lateral inhibition was discovered and confirmed by the Limu-
lus visual physiological electrical experiments [16]. Here, every
Limulus eye is considered as a single receptor. When the center
receptor receives a slice of strong light stimulus, the excitability
of its surrounding receptors will be inhibited, and vice versa. That
is called the lateral inhibition phenomenon in that the Limulus
eyes produce conditionality in each other. Suppose the two
receptors A, B do the experiments, assuming that the A and B
are respectively lighted, whose light emitting powers are gA and
gB, respectively; when the A and B are simultaneously lighted,
detecting their light emitting powers are reduced to f A and f B,
respectively; meanwhile, the stronger endured the degree of light
stimulus by A, the smaller emitted the pulse frequency by B. That
shows the receptor A is inhibited by the receptor B; on the other
hand, the receptor B is also inhibited by the receptor A, called
the lateral inhibition. The lateral inhibition effect can be
described as:

gA ¼ f B � kBAðf B � f ABÞ
gB ¼ f B � kABðf A � f BAÞ

ð1Þ

where gA and gB represent light emitting powers of the two recep-
tors by single light, respectively; f A and f B represent light emitting
powers of the two receptors with the lateral inhibition effect,
respectively; kAB and kBA represent the lateral inhibition coefficients
between two receptors; f AB and f BA represent the threshold value of
the lateral inhibition.

Hence, we can find that the neighboring receptors’ light emit-
ting power below the threshold value doesn’t produce lateral inhi-
bition effect; besides the lateral inhibition coefficient’s value
depends on the distance between two receptors. In the lateral inhi-
bition network composed of n receptors, the pth receptor is
endured inhibition effect from surrounding receptors, at this
moment the Eq. (1) is extended:

gp ¼ f p �
Xn
j¼1

kjpðf j � f pjÞ p ¼ 1;2; . . . ;n; j ¼ 1;2; . . . ; n;p– j ð2Þ

According to this principle, the receptors in the bright and dark
border are inhibited, then producing noticeable bright and dark
lines over there. Hence, this lateral inhibition phenomenon helps
to enhance information extraction of the retina, increase both con-
tour and contrast, and make targets much clearer and easier to
recognize.

3. Image enhancement model based on lateral inhibition
networks

3.1. Enhancement model

In order to make one-dimensional lateral inhibition network
applied to image processing, it must be extended to that of two-
dimensions. The traditional lateral inhibition algorithm adopted a
non-recurrent lateral inhibition network model with ignoring the
threshold value [18], which can be expressed as

Gðm;nÞ ¼ Fðm;nÞ �
Xl

i¼�l

Xl

j¼�l

kði; jÞ � Fðmþ i;nþ jÞ; ð3Þ

where F (m,n) represents the input image, G (m,n) represents the
output image, k (i, j) represents the inhibition coefficients matrix,
and l is the inhibition field.

The traditional lateral inhibition network is sensitive to noise.
The method used in [18] adopts a lateral inhibition network com-
bined with a mean filtering to remove noise, which disperses the
grayscale values of noise among the surroundings to realize
smoothness; however, images often become fuzzy as a result.
Compared with mean filtering, median filtering results in a better
smoothness and clearer contour. Therefore, we process images
with a lateral inhibition network combined with median filtering
to remove noise, which is expressed as:

Gðm;nÞ ¼ Fðm;nÞ �
Xl

i¼�l

Xl

j¼�l

kði; jÞ � Fðmþ i;nþ jÞ; ð4Þ

Fðm;nÞ ¼ median
ðr;sÞ2ð�l0 ;l0 Þ

½Fðk1 þ r; k2 þ sÞ�: ð5Þ

where F (m,n) represents F (m,n)’s median value in its neighbor-
hood and l0 is the size of the median filtering window.

To remove noise and avoid edge fuzziness, we introduce a com-
pensation measure factor to suppress noise signal. When it is
greater than a given threshold value, considered as a valid signal
mutation and carried on enhancing this signal; and vice, consid-
ered as a noise mutation and carried on inhibiting noise. For one-
dimensional signal with noise, if there is signal intensity mutation
near the mutational site, the signal intensity has some correlation
each other; if there is signal intensity mutation near the noise
point, the signal intensity has no correlation each other. The signal
average intensity is not equal located in the mutational site on
both sides, but the signal average intensity is very approximate
located in the noise point on both sides. For the images, the edge
points are grayscale mutational sites with a certain direction, and
define a direction perpendicular to the grayscale mutational site
as edge direction. Hence, most can be found at least one edge point
along the edge directions in any neighborhood of the edge points.
Using the edge points along the edge direction, the neighborhood
pixels can be divided into at least two sub-regions, whose internal
grayscales are homogeneous distribution. However, the difference
of grayscale is larger between the two sub-regions; but there is not
this feature for the noise in the smooth region.

The compensation measure factor processes pixels by distribut-
ing into the four pairs of sub-regions shown in Fig. 1. The neighbor-
hood of every pixel in the image is divided into two equal parts,
each of which is processed using median filtering and a 5 � 5 tem-
plate. On each subsidiary neighborhood, the number of pixel (m,n)
is respectively t1 and t2, with grayscale values of pixels is p1i and



Fig. 1. Four defined sub-regions of pixels.

Fig. 2. Exponential function’s decay rate based on different values of q.
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p2i, respectively. Hence, the respective grayscale averages of each
subsidiary are

l1 ¼ 1
t1

Xt1
i¼1

p1i; ð6Þ

l2 ¼ 1
t2

Xt2
i¼1

p2i: ð7Þ

Our method consists of three steps, each step is summarized
below.

Step 1. We compute the grayscale mutation values of pixel
(m,n)’s subsidiary in the four directions, i.e.,

Dgs ¼ jl1 � l2js; s ¼ 1;2;3;4: ð8Þ

Step 2. Set Dgðm;nÞ ¼ max
4

s¼1
Dgs, and set Dgmax ¼ maxm;nDgðm;nÞ.

Step 3. Pixel (m,n) is potentially an edge point if it meets the fol-
lowing requirements:

Eðm;nÞ ¼ Dgðm;nÞ=Dgmax; 0 6 Eðm; nÞ 6 1: ð9Þ
The larger E (m,n) is the more likely it is an edge point, but also,

the more likely it is noise.
Introducing the compensation measure factor, the lateral inhi-

bition network model is improved as

Gðm;nÞ ¼ Fðm;nÞ �
Xl

i¼�l

Xl

j¼�l

kði; jÞ � Fðmþ i;nþ jÞ þ Eðm; nÞ

� ðFðm;nÞ � Fðm; nÞÞ: ð10Þ
This improved network can distinguish from the noise and

edge points to a certain extent, i.e., causing high-brightness
points of the edge to be relatively brighter and low-brightness
points are relatively darker. Furthermore, the improved network
improves the contrast of the edge points, suppressing noise at
the same time.

3.2. Lateral inhibition coefficient distribution

According to biological visual perception, the lateral inhibition
coefficient is inversely proportional to the distance between the
two receptors. An anisotropic filtering method proposed by SHI
can determine inhibition coefficients according to scene [19], but
the lateral inhibition coefficient distribution must satisfy a Gaus-
sian function whose expression is overly complex [20,21]. Hence,
we propose an exponential lateral inhibition coefficient distribu-
tion. Here, the exponential function is a monotone function and
has rapid attenuation with the increase of an independent variable,
which is similar to the relationship of the lateral inhibition net-
work and distance between the two different receptors. The alter-
ative tendency of the lateral inhibition coefficient distribution is
shown in Fig. 2, and is expressed as
k ¼ A exp � dij;pq

q

� �
; ð11Þ

q ¼ 1
Fðm;nÞ : ð12Þ

here, A is a constant. Eq. (11) is based on the definition of the Eucli-

dean distance formula, dij;pq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði� pÞ2 þ ðj� qÞ2

q
, which represents

distance between the central receptor (i, j) and the other surround-
ing receptor (p, q) in the same inhibition field. In Eq. (12), F (m, n)
represents pixel (m, n)’s grayscale value.

Assuming that A has been set in Eq. (11), the different values of
q determine the decay rate of the exponential function, as shown
in Fig. 2.

From Fig. 2, we observe that the inhibition coefficient of k is lar-
ger when q is larger at the same distance of d. For example, the
background grayscale value is often smaller than the target grays-
cale value of the infrared image; in such cases, the infrared back-
ground is inhibited more intensely and infrared target is
inhibited less intensely. Thus, the image target can be more clearly
distinguished from the image background. Overall, this satisfies
the characteristics of the lateral inhibition network, which can
enhance the contrast and stand out the edges.
3.3. Lateral inhibition field selection

The lateral inhibition field refers to the maximum distance
between the central receptor and its surrounding other receptors.
Based on on-type of biological vision [17,22], nerve cells emit a
charge under light stimulation. The amount of the emitting elec-
tronic signal is proportional to light stimulation in the lateral inhi-
bition field, which benefits the edge extraction effect. According to
necessary degree of inhibition intensity, the inhibition fields may
be 3 � 3, 5 � 5, 7 � 7, 11 � 11 or larger. We used our proposed
method to process the infrared image at the different lateral inhi-
bition fields, as shown in Fig. 3 below.

From Fig. 3(b)–(e), we observe that infrared image noise was
gradually reduced with the increase of the lateral inhibition field,
but the fuzzy phenomenon become more pronounced. Fig. 3(f)



Fig. 3. Comparison of enhanced infrared images at the different lateral inhibition fields. (a) Original noisy image; (b) with a lateral inhibition field of 3 � 3; (c) with a lateral
inhibition field of 5 � 5; (d) with a lateral inhibition field of 7 � 7; (e) with a lateral inhibition field of 11 � 11; and (f) bi-axes diagram of the information entropy and fuzzy
index at the different lateral inhibition fields.
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shows the bi-axes diagrams of the information entropy and fuzzy
index values of the enhanced images at the different lateral inhibi-
tion fields. We observe here that we can obtain the best fuzzy
index and information entropy values with an inhibition field of
5 � 5.

Our experimental results show that enhanced images are not
obviously enhanced when small inhibition fields are used; how-
ever, enhanced images are severely anamorphic and computation-
ally expensive when large inhibition fields are used. Hence, we
note that it is best to enhance images with an inhibition field of
5 � 5, which achieves a practical compromise of computation
and noticeable enhancements.
4. Experimental results and analysis

4.1. Comparing image visual effects

In our experiments, the programming platform is Matlab
R2012a, and the original images are added Gaussian noise, whose
variance is 0.03, obtaining the noise images. There are three kinds
of test images, including infrared images of size 320 pix-
el � 256 pixel, visible light images of size 512 pixel � 320 pixel,
and natural images of size 768 pixel � 512 pixel. The first two
images are captured from the photoelectric theodolite in the
shooting range. The third images are obtained from LIVE Image
Quality Assessment Database Release 2 [23]. All three kinds of
images were converted into grayscale images. Furthermore, we
used two-dimensional histogram equalization (2DHE) [24], two-
dimensional median filtering (2DMF) [25], the block-match and
3D filtering (BM3D), the method proposed in [18], and our pro-
posed method to process all test images. The original and enhanced
images for each of the three test images are shown in Figs. 4–6. To
obtain a higher image quality and better visual effect, we deter-
mined via a large number of experimental results that parameter
Awas best set at 0.6 [18]. As noted above, we selected an inhibition
field of 5 � 5 because of the required amount of computation.

Test 1. Fig. 4 shows the resulting images for the infrared image
obtained by both the conventional methods and our proposed
method. The input image with noise is shown in Fig. 4(a). The
converted images obtained by 2DHE, 2DMF, BM3D, the method
proposed in [18], and our proposed method are shown in
Fig. 4(b)–(f), respectively. We observe that 2DHE effectively
improved image contrast, but noise still exits, with the visibility
of characters on the boat worsening. We conclude that the image
quality of Fig. 4(b) is poor.

Next, we note that 2DMF successfully removed noise from the
entire image, as shown in Fig. 4(c). The resulting image con-
tained fuzziness and had low contrast, all indicating that an
excessive enhancement of the boat occurred. The BM3D method
makes the noise images sparse representation with the
dictionary obtained from training the similar noise images. This
enhancement method achieved better denoising effect, but the
method is easy to weaken the texture, and produce edge fuzzi-
ness and the block effect in Fig. 4(d). Such over-enhancement
was also observed in Fig. 4(e), which is the resulting image
obtained via the method proposed in [18]. In the image, the hull
is completely blurred. Furthermore, the resulting image was not
enhanced from the perspective of image contrast. Overall, the
image quality is insufficient. Finally, the enhanced image
obtained by our proposed method shown in Fig. 4(f) is visually
appealing. Image noise and contrast were improved with a good
balance.

Test 2. Fig. 5 shows the resulting images based on a visible light
image obtained from optoelectronic theodolite in the same manner
as Fig. 4. In the 2DHE result, shown in Fig. 5(b), there is still noise
and the intensity of image enhancement is not large. The images
showing the effect of 2DMF and the method proposed in [18] are
good, as shown in Fig. 5(c) and (e), respectively; however, the con-
trast enhancement effect of both 2DMF and the method proposed



Fig. 4. Comparisons of enhanced images obtained from the infrared camera: (a) original input image; (b) 2DHE; (c) 2DMF; (d) BM3D; (e) the method proposed in [18]; and (f)
our proposed method.

Fig. 5. Comparison of enhanced images obtained from the visible light camera: (a) original input image; (b) 2DHE; (c) 2DMF; (d) BM3D; (e) the method proposed in [18]; and
(f) our proposed method.
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in [18] is insufficient. Furthermore, the fuzziness phenomenon is
serious. Meanwhile, the block effect is very noticeable in the
enhanced images by the BM3D method in Fig. 5(d). From Fig. 5
(f), we observe that our proposed method was able to make up
for these shortages. The contrast and texture details of the
enhanced image are obviously improved and more useful for rec-
ognize the image’s content.

Test 3. Fig. 6 shows the resulting images of natural image
obtained from LIVE laboratory. Here, as shown in Fig. 6(b), 2DHE
obtained superior results as compared with the enhancements
for the infrared and visible light images; however, the removal of
noise in 2DHE is poor in comparison with the other four methods.
The impression received from the resulting image obtained by
2DMF, as shown in Fig. 6(c) is that it is insufficient, though it is
better than that of the case of removing noise. The denoising effect
of the BM3Dmethod is better than first two conventional methods,
but this method still exists the block effect to debase enhanced
image quality, as shown in Fig. 6(d). The contrast enhancement
effect of the method proposed in [18] is also insufficient, resulting
in an image that gives a fuzzy impression, as shown in Fig. 6(e),
though the removal of noise is performed well. The image obtained
by our proposed method, shown in Fig. 6(f), is better than the
image obtained by the method proposed in [18] in terms of image
contrast and noise, and giving an impression of liveliness. From
these results, we conclude that our proposed method is superior
to the others.



Fig. 6. Comparison of enhanced images obtained from LIVE laboratory: (a) original input image; (b) 2DHE; (c) 2DMF; (d) BM3D; (e) the method proposed in [18]; and (f) our
proposed method.

Table 2
Statistical evaluation (MEAN) of 20 infrared images.

2DHE 2DMF BM3D Method proposed
in [18]

Proposed
method

RMSC 60.9983 43.3724 44.4207 42.1414 45.7532
Contrast 0.7873 0.1651 0.2578 0.1492 0.2613
Entropy 8.1585 8.2194 6.9962 8.0298 7.8274
Fuzzy

index
0.0807 0.0814 0.0828 0.0795 0.0565

MSE 91.5839 90.9607 74.3170 96.2064 144.7559
PSNR 28.5126 28.5423 29.4199 28.2988 26.5244

Table 3
Statistical evaluation (MEAN) of 20 visible images.

2DHE 2DMF BM3D Method
proposed in [18]

Proposed
method

RMSC 70.3846 52.2541 45.6903 45.9708 63.4006
Contrast 0.7604 0.1385 0.3273 0.1025 0.3623
Entropy 7.2222 7.1800 7.3955 7.1824 7.3097
Fuzzy index 0.1388 0.2225 0.1387 0.2348
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Test 4. Test the algorithms’ processing time, comparing with the
performance and efficiency among the five algorithms. The CPU for
test of the personal computer is Intel Core(TM)2 Duo Q9550,
whose frequency is 2.83 GHz, memory is 3.5 GB, and programming
platform is DELL Windows XP + Matlab R2012a. There are three
kinds of test images, which are the infrared images of size 320 pix-
el � 256 pixel, the visible light images of size 512 pixel � 320 pixel,
and the natural images of size 768 pixel � 512 pixel, respectively.
Test results are shown in Table 1. Among the five methods, the
2DHE method and the 2DFM method have the shortest processing
time and the fastest processing speed, but the enhancement effects
are not obvious; the BM3D method has the longest processing
time; the processing time of the method proposed in [18] is shorter
than the proposed method with the different sizes of images, but
the enhanced images by the method proposed in [18] appeared
fuzzy phenomenon. In order to improve this problem, we intro-
duced a compensation measure factor to ameliorate the proposed
method. The results of simulation and tests indicate that using
the proposed method the noise the enhanced images can be
removed more effectively while less calculation amount is
increased.
0.1651
MSE 232.1120 101.5583 80.7617 108.260 142.2839
PSNR 24.4738 28.0637 29.0588 27.7861 26.5992
4.2. Impersonal comparison

In the previous section, we provided an intuitive comparison of
image enhancement algorithms applied to infrared and visible
images. We further illustrate the superiority of our proposed
method via six evaluation values calculated on each test image
to assess the enhancement effect and image quality: these six cri-
teria are root-mean-square contrast (RMSC) [26], local contrast
[27], information entropy, fuzzy index, mean square error (MSE),
and peak signal-to-noise ratio (PSNR), respectively.
Table 1
Comparison of processing time with five methods.

Image size Infrared images 320 pixel � 256 pixel Visibl

2DHE/s 0.8 0.7
2DFM/s 0.68 0.5
BM3D/s 110.03 226.4
Method proposed in [18]/s 5.13 10.4
Proposed method/s 19.06 38.3
In this letter, we chose 20 pictures of infrared images and visi-
ble images, respectively, as test images.

For this letter, we selected 20 infrared and 20 visible images as
test images; Tables 2 and 3 show the statistical results of these two
sets of test images, respectively. Each number listed in the two
tables is the mean of 20 images. We observe that RMSC and local
contrast for our proposed method are slightly below that of
e light images 512 pixel � 320 pixel Natural images 768 pixel � 512 pixel

1 1.1
0.51

1 535.35
7 26.01
9 93.12
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2DHE, though higher than that of 2DMF, BM3D, and the method
proposed in [18]; however, the information entropy and fuzzy
index of our proposed method are better than the other three
methods. Estimating the ability to reduce noise via the two values
of MSE and PSNR, our proposed method is lower than that of 2DHE
for visible images, but higher than that of the other three methods.
Overall, the comprehensive performance of our proposed method
is better than that of the other three methods.

Note that the parameters of the method proposed in [18] are set
according to [18]. If we can optimize these parameters, we may be
able to obtain better results.

5. Conclusion

In this letter, we proposed a novel enhancement method based
on lateral inhibition networks. We established an improved lateral
inhibition network to realize enhancement effects for increasing
contrast and making edges more prominent. Furthermore, we pro-
posed a compensation factor to eliminate image fuzziness. Our
experimental results showed that image contrast was effectively
enhanced by our proposed method. Compared with other enhance-
ment methods, the visual quality of the noise-reduced images gen-
erated by our proposed method was better. Moreover, the original
information can be exactly recovered with indispensable textural
details. Hence, our proposed method successfully enhanced image
contrast. For future work, we plan to improve our proposed meth-
od’s robustness and apply it to images obtained from optoelec-
tronic theodolite to improve image visibility and clarity.
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