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Development of An Implantable Optrode for Optogenetic Stimulation
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Abstract: In this study, an implantable optrode was developed for optogenetics stimulation of neural population in nu-
clei or multi-sites in neural circuits. The optrode was composed of base layer, micro-light emitting diode (LED) and
coating layer. The base layer was a 150 pm thick polyimide substrate on which copper wires and contacts were fabri-
cated by flexible printed circuit board processes. The micro-LED was soldered on the contacts using SnBi. Parylene-
C was deposited over the optrode as the coating layer using a vacuum vapor deposition system. The optical output
power was tested by optical power meter and the insulating property was tested using saline in the experiment. The
stimulation function of the optrode was demonstrated through animal experiment. The width of the optrode was
500 pm and the maximum thickness of the optrode was 310 pm at the LED position. The thickness of the parylene
coating layer was about 1 pm. The maximum optical output power of optrode was 9. 31 mW and the effective illumi-
nation area was a 3. 03 mm® spherical cap at 650 ym deep in brain tissue. The optrode was still functional after 14
days in physiological saline. Conventional copper electrodes were used to verify the efficacy of the optrode for stimu-
lation and robust spiking activities of the expressing Channelrhodopsin-2 neurons in the entire cortex of a mouce were
recorded. Obvious behavior change happened when light stimulation was applied to the expressing Channelrhodopsin-
2 neurons in the secondary motor cortex of the mice. The optrode has the characteristics of large effective illumina-
tion range, flexible in implantation and long-term implantable, which provide neural population in nuclei research a
new tool.
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Fig.1 Design of the optrode
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Fig.2 Dimension of the optrode
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Fig.3 Fabrication flow chart of the optrode
(a) cut the substrate; (b) paste the copper foil; (¢) coat the negative photoresist; (d) pattern transfer process; (e) etch the unexposed copper

foil; (f) peel off the residual photoresist; (g) solder the LED; (h) fabricate the parylene coating layer
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Tab.1 Insulation performance test results of the optrode (unit: V)
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Fig. 5 Simulation results of light intensity distribution as light propagates through the brain tissue
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Fig. 6 Comparison of the recording signal resulting from laser stimulation and optrode stimulation
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Fig.7 Freely-moving mouce with an optrode implanted
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