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Abstract: An effective method for reducing the sensitivity of phase diversity (PD) technique 
to Poisson noise is proposed. The denoising algorithm based on blocking-matching and 3D 
filtering is first introduced in the wavefront sensing field as a preprocessing stage. Then, the 
PD technique is applied to the denoised images. Results of the numerical simulations and 
experiments demonstrate that our approach is better than the traditional PD technique in terms 
of both the root-mean-square error (RMSE) of phase estimates and the structural similarity 
index metrics (SSIM). The RMSEs of phase estimates on synthetic data are decreased by 
approximately 40% across noise levels within the range of 58.7-18.8 dB in terms of peak 
signal-to-noise ratio (PSNR). Meanwhile, the overall decline range of SSIM is significantly 
decreased from 49% to 9%. The experiment and simulation results are in good agreement. 
The approach may be widely used in various domains, such as the measurements of intrinsic 
aberrations in optical systems and compensations for atmospheric turbulence. 
©2016 Optical Society of America 
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1. Introduction 
The phase diversity technique, which was first proposed by Gonsalves in 1979, has since 
developed to have an important role in active and adaptive optic systems [1, 2]. This 
technique is used to simultaneously infer phase aberrations and reconstruct an object from two 
or more degraded images of the same object. A known phase diversity is introduced between 
these images, with defocusing as the most common approach. Paxman et al first derived the 
expressions for an aberration-only objective function that accommodated an arbitrary number 
of diversity images in 1992 [3]. The effect of phase diversity function combination on residual 
wavefront error was explicitly analyzed by Dolne in 2005 [4]. Unlike traditional wavefront 
sensors, the PD technique offers several advantages, such as no special requirement for 
optical hardware, feasibility of both point source and extended objects, and does not require 
any calibration [5, 6]. The PD technique was applied to solar imaging by Seldin et al to 
overcome the effects of atmospheric turbulence and to restore a fine-resolution image of solar 
granulation [7, 8]. The piston error of the Keck II Telescope was precisely measured using the 
PD technique [9]. However, noise data are inevitably recorded, thereby leading to the loss of 
image details and reduced contrast. The imaging process is based on photon detection; thus, 
Poisson noise is a predominant noise source in various domains, such as in astronomical 
observation and medical imaging. Essential information buried in Poisson noise reduces the 
estimation precision of phase aberrations and deteriorates the quality of reconstructed images 
for the PD technique, particularly at low light levels [10]. For example, astronomers like to 
observe faint stars at low magnitudes, that is, faint sources or large distance conditions are 
popular in adaptive optic systems. Consequently, improving the PD technique is imperative to 
ensure that it will remain effective in systems with massive Poisson noise. 

In this study, we propose an effective approach to reduce the sensitivity of the traditional 
PD technique to Poisson noise. The approach is tested both on numerically simulated data and 
experimentally recorded images. The results show an improved performance across different 
noise levels. The accuracy of the estimated phase aberrations on synthetic data improves as 
calculated using the RMSE. The RMSEs of the phase estimates in the case of the improved 
PD are approximately 40% lower than that in the case of the traditional PD under each noise 
strength level ranging from 58.7 dB to 18.8 dB. The quality of the reconstructed images also 
considerably improves as evaluated visually and as calculated using the SSIM. The subjective 
visual quality is apparently improved given that the remaining amount of grains is minimal, 
and details are well-preserved. The SSIM for the improved PD deceases gradually and its 
overall decline range is less than 9%. By contrast, the SSIM for the traditional PD decreases 
dramatically and drops by over 49%. The results of the subjective visual quality and SSIM 
obtained via experiments are in good agreement with the simulation results. 

2. Principles 
PD is known to simultaneously estimate phase aberrations and reconstruct an object from two 
or more images. One of these images is the conventional focal-plane image that is degraded 
by unknown aberrations, and intentional phase diversities are introduced into the other 
images. The phase diversity used in this paper is defocus, which is the most commonly 
considered approach. 
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For a space-invariant incoherent imaging system, the image can be described as a 
convolution between the pristine object f  and the point spread function (PSF) ( )s x  as 

follows: 

 ( ) ( ),k kg x f s x= ∗  (1) 

where x  is the spatial coordinate, ∗  stands for the convolution operation, ( )ks x  is a PSF with 

diversity k , and kg  is the kth diversity image [11]. The PSF ( )ks x  is described as follows: 
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where 1F −  represents the inverse Fourier transform; p  is a binary pupil function with values 

of 1 inside the pupil and 0 outside it; kθ  is a known phase function; and tφ  is the unknown 

phase aberration function to be estimated, which can be expressed as a set of basis functions 

jφ  with coefficients jα . The basis functions used in this study is Zernike polynomials [12]. 

Noise is recorded while the true object is obtained by detectors. The noise model is 
roughly regarded as additive white noise. Each detected diversity image ( )kd x  is described as 

follows: 

 ( ) ( ) ( ).k k kd x g x n x= +  (4) 

Maximum likelihood estimation theory mentions that the traditional objective function to be 
minimized and the object expression can be obtained after reducing the dimension of the 
parameter space as follows: 
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where kD , F , and kS  are the discrete Fourier transforms of kd , f , and ks , respectively. 

The superscript ∗  indicates a complex conjugation [3]. 
As indicated in Eqs. (5) and (6), the calculated total image data consist not only of the 

object information but also of noise data. However, the noisy points randomly distributed in 
images do not satisfy the PD relationship between focused and defocused images. 
Consequently, the phase aberration accuracy estimated using Eq. (5) decreases significantly at 
high noise levels. The reconstructed object is also distorted by the original noise data. 
Therefore, the main objective of this work is to weaken the influence of Poisson noise on the 
PD technique. 

In this study, a denoising strategy based on the blocking-matching and 3D filtering 
(BM3D) algorithm is first introduced into the PD technique. The realization of BM3D 
includes three major steps: grouping by matching, collaborative filtering by shrinkage in the 
transform domain, and aggregation [13–15]. First, similar 2D fragments of the image are 
grouped into 3D data arrays. Second, the collaborative transform-domain shrinkage includes 
three successive steps: applying 3D linear transform to the group, shrinking the transform 
coefficients to reduce noise, and applying inverse linear transform to produce estimates of all 
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the grouped blocks. Third, the global estimate ˆ finaly  is computed using a weighted average of 

the blockwise estimates ˆ Rx
xY . 

We propose an effective approach to improve the performance of the traditional PD used 
in adaptive or active systems with considerable Poisson noise. The denoising algorithm is 
applied to noisy focused and defocused images as a preprocessing stage. The global estimate 
ˆ( )y x  of the noisy image is obtained. PD technique is applied to the denoised images to 

estimate phase aberrations and to reconstruct objects. Thus, the new error metric and object 
expression are transformed into 
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where ( )Y u  is the discrete Fourier transform of ˆ( )y x  obtained using the denoising algorithm. 

Particle swarm optimization is applied to the new error metric to estimate the aberration and 
the object. 

3. Simulations and experiments 

3.1 Simulations 

The focused and defocused images are degraded by a known random phase aberration, which 
is expressed as a set of Zernike polynomials with different weights. According to some 
previous works [16–18], the defocus distance introduced in this study is 1 wavelength, peak-
to-valley (PV). Poisson noise is added to the degraded images at several noise levels to 
simulate low light conditions. The original object used in this study, i.e., Peppers, is shown in 
Fig. 1(a). The random phase aberrations used in this study is illustrated in Fig. 1(b). The 
image is degraded using the same aberration form in three different root-mean-square (RMS) 
scales, namely, 0.0572 λ , 0.1327 λ , and 0.2006 λ , which are denoted by aberrations a, b, and 
c, respectively. The given phase aberration also can be indicated by the input Strehl Ratio 
(SR), which equals to 0.879, 0.499, and 0.204, respectively, as calculated by Eq. (9) [19]. 

 

Fig. 1. (a) Original object and (b) known aberration form 

 22
exp[ ( ) ].wSR πσ

λ
≈ −  (9) 

The noise level is indicated by PSNR of the degraded focused image. The accuracy of the 
estimated phase aberrations is evaluated using the RMSE of phase estimates. Moreover, SSIM 
is used as an objective evaluation of image quality. PSNR, RMSE, and SSIM are calculated as 
follows. 

                                                                                         Vol. 24, No. 19 | 5 Sep 2016 | OPTICS EXPRESS 22037 



 
2

10
2

1

max( ( ))
10log ( ),

( ( ) ( )) /
N

noisy
j

d jPSNR
d j d j N

=

=
−

 (10) 

where ( )d j  is the noiseless focused image, ( )noisyd j  is the noisy focused image, and N  

indicates the number of total pixels. 
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where ( )jφ  is the true phase aberration that is known in advance at coordinate j , ˆ( )jφ  is the 

estimated phase aberration, and pupilN  indicates the number of points in the discrete aperture. 
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where f  is the pristine object, f̂  refers to the estimated object, μ  is the average, and 2σ  is 

the variance. The constants 1c  and 2c  are used to stabilize the division with a weak 

denominator. 
Phase estimation accuracy is shown in the plots in Figs. 2(a), 2(c), and 2(e). The plots 

demonstrate an increasing tendency in terms of the RMSE of phase estimates as noise 
strength increases in both the improved and traditional PD cases. However, the RMSE in the 
improved PD case is consistently approximately 40% lower than that in the traditional PD 
case for all noise levels under each phase aberration. The results in terms of SSIM are shown 
in the plots in Figs. 2(b), 2(d), and 2(f). As the noise level increases, a sharp drop in SSIM is 
observed in the traditional PD case, in which SSIM decreases by 51.7%, 49.6%, and 58.2% 
for each aberration. By contrast, SSIM remains stable across different noise levels in the 
improved PD cases. The overall decline range is 8.2%, 7.8%, and 8.0% for each aberration. 
As shown in Fig. 3, the performance of the improved PD technique is also better than that of 
the traditional PD technique in terms of subjective visual perception at different noise levels 
for each phase aberration. At a high PSNR level of 58 dB, no evident difference is observed 
between the images reconstructed using the improved and traditional PD techniques. At a low 
PSNR level of 25 dB, the reconstructed images are distorted by numerous grains. By contrast, 
our approach achieves a considerably better performance in terms of visual perception 
because the remaining amount of grains is minimal, and the details are well-preserved. 
Therefore, the improved PD algorithm exhibits better performance on aberration estimation 
and image restoration at all noise levels compared with the traditional PD algorithm. In 
summary, the traditional PD technique is highly sensitive to noise and our approach can 
significantly improve the traditional PD technique across different noise levels. 
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Fig. 2. Plots (a), (c), and (e): simulation results in terms of the RMSEs of phase estimates for 
aberrations a, b, and c, respectively. Plots (b), (d), and (f): simulation results in terms of SSIM. 
The RMSEs and SSIM are both as functions of the PSNR of the noisy focused image. 
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Fig. 3. Images for aberrations a, b, and c are denoted by (a), (b), and (c), respectively. Row 1: 
noisy focus-plane images degraded by aberrations at the PSNR levels of 58 dB and 25 dB. 
Row 2: reconstructed images using the traditional PD. Row 3: reconstructed images using the 
improved PD. 

3.2 Experiments 

The performance of the improved PD technique is demonstrated through a series of 
experiments, and the optical configuration is shown in Fig. 4. Lens L1 (

105 , 25.4f mm mm= Φ = ) is used to collimate the light coming from the fiber. The 

collimated incident beam passes through a filter ( 633nm ) and a beam splitter, and then 
reflected by an artificial deformed mirror where the pupil ( 12mmΦ = ) is located. Therefore, 
an unknown aberration is introduced by this mirror. The light beam is split into two beams by 
another beam splitter after passing through imaging lens L2 ( 300 , 50.8f mm mm= Φ = ). As 

the two beams reach the CCD (Andor Zyla 4.2) through different optical paths, the focused 
and defocused images can be recorded simultaneously, in which the introduced defocused 
distance is 1λ  PV. A focused image is used at a high light level without aberration to provide 
an approximation of the pristine object, and a focused image is degraded using fixed 
aberrations at a high light level to evaluate noise levels. Poisson distributed noise is notable at 
low light levels, and thus, noisy images are obtained by reducing light intensity, as shown in 
Fig. 5 (Row 1), which corresponds to noise levels of 43.1, 36.6, 30.7, 26.8, and 22.6 dB in 
terms of PSNR. 

The experimental results are in good agreement with the simulation results. Our approach 
consistently achieves good performances both in terms of subjective visual perception and 
SSIM at all noise levels. Images restored using the traditional PD technique, as shown in the 
second row in Fig. 5, include massive grains that cause varying degrees of destruction to the 
details. Distinguishing the object from the background becomes difficult because the edges 
are buried into a strong background as noise level increases. The bottom row provides good 
visual effects with few grains and a relatively high contrast. The reconstructed object can be 
recognized easily given its weak background and well-preserved details even at the highest 
noise level. Except for the subjective visual perception, the images reconstructed using the 
improved PD exhibit considerable improvement in terms of SSIM, as shown in Fig. 6, in a 
same trend as the simulation results. In the case of the traditional PD, SSIM drops 
dramatically as noise level rises. The overall decline range of SSIM is 42.2% for the 
traditional PD technique and only 5.2% for the improved PD technique. The experiments 
show that the results obtained using the improved PD technique exhibit higher accuracy and 
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precision. The PD technique is clearly incapable of suppressing noise, but instead, is sensitive 
to it. Making full use of all the image data is a merit, as well as a demerit, of the PD 
technique. Each noise datum is regarded as useful information to be calculated, which causes 
the rapid decline of the estimated phase aberration precision and quality of the restored 
objects. The performance of the improved PD technique applied to images of noisy systems is 
verified by the aforementioned experiments. This method may be used in various domains, 
such as in the measurements of intrinsic aberrations and compensations for atmospheric 
turbulence. 

 

Fig. 4. Optical layout of the proposed verification experiment 

 

Fig. 5. Row 1: focused images captured by CCD. Row 2: images restored using the traditional 
PD technique. Row 3: images reconstructed using the improved PD technique. 
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Fig. 6. Experimental results: SSIM of the reconstructed images as a function of the PSNR of 
the noisy focused images. 

4. Conclusion 
In this study, we propose an effective improvement on the PD technique to weaken the 
influence of Poisson noise. The poor performance of the traditional PD technique at low 
photon counts is improved by combining this technique with a denoising strategy based on the 
BM3D algorithm. The performance of the improved PD technique is confirmed by comparing 
the results of simulations and experiments. The RMSE of phase estimates on synthetic data in 
the case of the improved method is approximately 40% lower than that in case of the 
traditional PD technique across noise levels ranging from 58.7 dB to 18.8 dB while Strehl 
Ratio is 0.879, 0.499, and 0.204, respectively. The overall decline range of SSIM for the 
improved PD technique is less than 9%. However, SSIM drops by over 49% for the traditional 
PD. The experiments results are in good agreement with the simulation results. All the results 
demonstrate that the improved algorithm provides a valuable approach for the wavefront 
sensing technique to work under noisy conditions. The improved PD technique is useful in 
noisy active and adaptive optic systems. 
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