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A spectral reduction algorithm for an échelle spectrometer with spherical mirrors that builds a one-to-one cor-
respondence between the wavelength and pixel position is proposed. The algorithm accuracy is improved by
calculating the offset distance of the principal ray from the center of the image plane in the two-dimensional
vertical direction and compensating the spectral line bending from the reflecting prism. The simulation and
experimental results verify that the maximum deviation of the entire image plane is less than one pixel. This
algorithm ensures that the wavelengths calculated from spectrograms have a high spectral resolution, meaning
the precision from the spectral analysis reaches engineering standards of practice. © 2016Optical Society of America
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1. INTRODUCTION

With their high resolution, small size, full-spectrum direct read-
ing, wide band, and many other advantages [1–7], échelle spec-
trometers are becoming popular spectrometric instruments of
choice. Their high-resolution feature, which is the most impor-
tant, requires a highly accurate spectral reduction algorithm [2].
Nevertheless, developing algorithms and error compensation
for the échelle spectrometer have proved difficult and impor-
tant problems. A spectral reduction algorithm is designed to
perform an analysis to extract the relationship between the pixel
position on the image plane and its wavelength.

By investigating in detail the workings of the échelle spec-
trometer [8], many studies have produced a series of methods
to obtain this relationship. Initially, ray-tracing methods [9] were
widely used, as all wavelengths covering the spectral range were
considered and their positions on the image plane were calculated
by geometrical optic rules. While choosing a large wavelength
interval does not characterize the relationship in detail, choosing
a small wavelength interval requires a very large amount of com-
putation. Later, more simplified algorithms were proposed, the
main idea being to use several monochromatic light rays to de-
termine the position of the reference point and then use math-
ematical methods (such as interpolation and fitting) to evaluate
the relationship of the entire image plane [10,11]. Such methods
greatly enhanced the speed of algorithms, but failed to achieve the
required accuracy. References [12,13] proposed a spectral reduc-
tion algorithm by establishing a function [14] depending on the
wavelength and pixel position. A simplified optical model was

established to calculate the correspondence between the wave-
length and pixel position. The offset distance from the center
of the image plane is calculated by using the equivalent deflection
angle, which is considered equal to the offset angle from the
principal ray. Although this simplified model further improved
speed and accuracy, it is only suitable for an échelle spectrometer
with an off-axis parabolic mirror. When using a spherical mirror
instead of an off-axis parabolic mirror or an asymmetrical struc-
ture, the model error increased significantly.

As an échelle spectrometer with an off-axis parabolic mirror has
high processing costs and is difficult to adjust, it is necessary to
reassess the spectral reduction algorithm for an échelle spectrom-
eter with spherical mirrors. In Ref. [13], the authors rethought
the calculation of the offset distance in the two-dimensional ver-
tical direction of a CCD image plane. The method combines a
functional treatment [14] with the ray-tracing technique, which
has high accuracy. Using the analysis from geometric optics, the
light path is considered in greater detail without simplification,
where the spectral line bending of the reflecting prism is taken
into consideration to compensate for the algorithm’s error. The
accuracy of the spectral reduction algorithm is then significantly
improved without sacrificing calculation speed. The algorithm
error over the entire image plane is less than one pixel, an accuracy
that is essential for high-spectral-resolution instruments.

2. THEORY OF THE ÉCHELLE SPECTROMETER

The spectral reduction algorithm described below is suitable for
an échelle spectrometer (Fig. 1) with spherical mirrors.
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Spherical mirrors are used to collimate and focus the light to
reduce complications in instrument adjustments. The symmetric
structure (the two spherical mirrors have the same inclination
and curvature radius) is designed to eliminate coma [15–18].
For high-grating efficiency [19] and reasonable layout of the
optical path, the échelle grating operates subject to the quasi-
Littrow condition (whereby the Littrow condition is approxi-
mately satisfied, i.e., the grating is rotated a small angle from
its Littrow angle). To correct the astigmatism, a cylindrical lens
is set in front of the image plane [20–22].

Taking only échelle dispersion into consideration and using
the grating equation:

mλ � d · �sin α� sin βλ� · cos ω; (1)

where α is the incident angle, βλ is the diffraction angle, and ω
is the azimuth. Under the quasi-Littrow condition, the reflected
angle is equal to the incident angle at the center wavelength of
its order. At other wavelengths, βλ − α is less than 1.45°, which
is why the échelle spectrometer has high dispersion efficiency
over the entire spectral range. Hence, we can obtain the cor-
respondence between the diffraction angle and the wavelength.

Generally, there are two options for the prism in the échelle
spectrometer: reflecting [23] and transmitting [24]. Although a
transmitting prism makes the system compact, we chose a re-
flecting prism so that the échelle azimuth is constant and the
optical structure is symmetric.

Taking only the dispersion from the prism into considera-
tion, the deflection angle Δi between the incident light and the
outgoing light of the prism can be expressed as

Δi � arcsin

�
n · sin

�
θ − arcsin

�
sin i0
n

���
− i0; (2)

where i0 is the incident angle of the first plane of the prism, and
θ is the apex angle of prism. We see from Fig. 1 that if one
wavelength satisfiesΔi � 2ω, the light ray will fall in the center
of the image plane. At other wavelengths, Δi − 2ω is less than
1.95°, so the rays fall in a line in the direction of the prism
dispersion. As the refractive index is a function of the wave-
length, we obtain the corresponding relation between the de-
flection angle of the prism and the wavelength.

3. SPECTRAL REDUCTION ALGORITHM

Any ray incident on the CCD will be dispersed by the échelle
grating and prism. To calculate the correspondence between

the wavelengths and the pixel position on the CCD, we estab-
lish a coordinate system (X , Y ) for the image plane (Fig. 2),
where X and Y are the pixel addresses in the CCD camera
of the corresponding dispersion feature from the échelle grating
and prism, respectively. For each light path forming a spot on
the CCD image plane, the spectral reduction algorithm estab-
lishes a corresponding relation between the wavelength and the
spot coordination on the CCD.

As off-axial aberration is unavoidable and complex, the
spectral reduction algorithm analyzes only the principal ray.
The coordinate of the spot is the same as the coordinate of
the pixel that has maximum intensity. The offset distance
in the two-dimensional vertical direction from the center
of the image plane is calculated in Sections 3.A and 3.B.
The compensating error calculated using the algorithm is de-
scribed in Section 3.C.

A. Direction of Dispersion at the Échelle Grating
To analyze the offset distance in the direction of the échelle
grating dispersion (Y ), we take a closer look at the focusing
mirror. From the model (Fig. 3), the incident plane, outgoing
plane, and normal plane are extrapolated out to the same plane,
with O being the spherical center of the spherical focus mirror,
A the point of origin for the incident light (on the front surface
of the échelle grating), D the intersection point of the reflected
light and the image plane, and OH � R the radius of the
spherical focus mirror. To simplify the calculation, two approx-
imations are introduced (the experiments show that these
approximations are within acceptable error ranges):

Fig. 1. Optical setup of the échelle spectrometer.

Fig. 2. Coordinates of CCD image plane.

Fig. 3. Modeling the direction of échelle dispersion for a spherical
focusing mirror.
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(1) As the radius of the spherical focus mirror is much larger
than its diameter, HC is approximately perpendicular to OC :

DH 0 � MC � f : (3)
(2) With A being the origin point from the échelle grating,

AC is the light path from the grating to the spherical focusing
mirror. Although the point of origin varies for different wave-
lengths, the deviation arising from this difference can be ne-
glected. We set AC equal to the distance L from the center
of grating to the center of the spherical focus mirror.
Therefore, ∠HAC can be written as

∠HAC � βλ − α: (4)

From the internal angle and exterior angle formulas for the
corresponding triangle, we obtain the identities�

∠HAC � ∠AHO� ∠HOC
∠HOC � ∠BHO� ∠HBC : (5)

As AH and BH are the incident and reflected light paths, we
obtain

∠AHO � ∠BHO: (6)

From the two simultaneous equations, Eqs. (5) and (6),
∠HBC is given as

∠HBC � 2∠HOC − ∠HAC: (7)

The offset distance hy from the center of the image plane in
the direction Y can be expressed by

hy � DM

� HC −HH 0

� L · tan�∠HAC� − f · tan�∠HBC�: (8)

From Eqs. (4) and (7), we have an expression for ∠HAC
and ∠HBC in terms of ∠HAC and ∠HOC , which has the
expression

∠HOC � arcsin
HC
OH

� arcsin
L · tan∠HAC

R
: (9)

By substituting Eqs. (4) and (9) into Eq. (8), hy can be
written as

hy � L · tan�βλ − α� − f

· tan
�
2 arcsin

L · tan�βλ − α�
R

− βλ � α

�
: (10)

We determine from Eq. (10) that hy depends only
on βλ. That is, the relationship between the wavelength and

coordinate Y is given by Eq. (10). If a cylindrical lens is inter-
posed, the modified geometric model (Fig. 4) yields a correc-
tion to Eq. (10).

The angle δ in Fig. 4 is the angle ∠HBC in Fig. 3, and δ 0 is
the central angle at the intersection point of the incident light
and the front surface of the cylindrical lens. The radius of the
front surface of the cylindrical lens is denoted as R 0. The actual
offset distance h 0y from the center of the image plane in direc-
tion Y becomes

h 0y � h − h1 − h2 − h3; (11)

where h is HC in Fig. 3, which can be calculated using Eq. (8),
h1 and h2 are the offset distances in direction Y when the light
reaches the front and back surfaces, respectively, of the cylin-
drical lens, and h3 is the offset distance in direction Y when the
light reaches the image plane from the back surface of the lens.

In the approximation, the difference in d 1 at different
heights of the cylindrical lens can be ignored, and hence h1
can be expressed as

h1 � d 1 · tan δ: (12)

Similarly, the difference in d at different heights of the cylin-
drical lens can be ignored, and therefore h2 can be expressed as

h2 � d · tan ξ: (13)

From geometrical considerations and the refraction law,

ξ � δ 0 − ϕ 0; (14)

sin ϕ � n · sin ϕ 0; (15)

ϕ � δ 0 − δ: (16)

Substituting Eqs. (14)–(16) into Eq. (13) gives

h2 � d · tan
�
δ 0 − arc sin

�
sin�δ 0 − δ�

n

��
: (17)

Moreover, h3 can be expressed as

h3 � d 2 · tan ϕ 0 0; (18)

where φ 0 0 is determined from

n · sin ξ � sin ϕ 0 0: (19)

By solving the simultaneous equations, Eqs. (17)–(19), h3
becomes

h3 � d 2 · tan
�
arc sin

�
sin

�
δ 0 − arc sin

�
sin�δ 0 − δ�

n

��
· n
��

:

(20)

Finally, substituting Eqs. (12), (17), and (20) into Eq. (13),
as well as using the expression for ∠HBC, h 0y can be rewritten as

Fig. 4. Modeling the direction of échelle dispersion for a
cylindrical lens.
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h 0y � L · tan�∠HAC� − d 1 · tan δ − d · tan
�
δ 0 − arc sin

�
sin�δ 0 − δ�

n

��

− d 2 · tan
�
arc sin

�
sin

�
δ 0 − arc sin

�
sin�δ 0 − δ�

n

��
· n
��

� L · tan�βλ −α� − d 1 · tan
�
2 arc sin

L · tan�βλ −α�
R

− βλ�α

�

− d · tan

"
δ 0 − arc sin

 
sin
�
δ 0 −
�
2arc sin L·tan�βλ−α�

R − βλ�α
		

n

!#

× d 2 · tan

(
arc sin

"
sin

 
δ 0 − arc sin

 
sin
�
δ 0 −

�
2 arcsin L·tan�βλ−α�

R − βλ�α
		

n

!!
· n

#)
: (21)

We infer from Eq. (21) that h 0y is determined by βλ�λ� only
and thus obtain coordinate Y from h 0y.

B. Direction of Dispersion Toward the Prism
We consider now the focusing mirror to analyze the offset dis-
tance (X ) for the direction of dispersion at the front surface of the
prism. The geometric model for the setup is shown in Fig. 5.

Let O be the center of the spherical focusing mirror, N
be the spherical center of the spherical focusing mirror, and
HB be the image plane. We have also ∠OAP � Δi − 2ω,
ON � PN � R, and ∠AON � ∠BON � t, with R and t
already known. To simplify the calculation, we introduce three
approximations (the experiments show that these approxima-
tions are within acceptable error ranges):

(1) A is the origin point of the prism and AC is the light path
from the prism to the spherical focus mirror. Although the points
of origin vary with the wavelength, the differences can be ne-
glected and hence AC approximately equals the distance L 0 from
the center of the prism to the center of the spherical focus mirror.

(2) As the radius of the spherical focus mirror is much larger
than its diameter, OP is an adjacent of the approximately right-
angled triangles ΔAOP, ΔNOP, and ΔBOP, from which we
can derive:

OA · tan∠OAP � ON · tan∠ONP � OB · tan∠OBP;
(22)

8><
>:

∠ONP � arctan
�
L 0·tan�Δi−2ω�

R

	
∠OBP � arctan

�
f ·tan�Δi−2ω�

R

	 : (23)

(3) As the radius of the spherical focus mirror is much larger
than its diameter, then we have approximately PQ � OB � f .

From geometric identities and the internal angle relations of
the triangle, we can derive:8>>>><

>>>>:

∠AON � ∠BON
∠APN � ∠HPN
∠HPN � ∠HPQ � ∠QPB � ∠BPN
∠AON � ∠OAP � ∠APN � ∠PNO
∠OAP � ∠AOB � ∠APB � ∠PBO

: (24)

From Eqs. (23) and (24), ∠HPQ can be expressed as

∠HPQ � ∠OAP − 2∠OBP � 2∠AON

� Δi − 2ω − 2 arctan

�
f · tan�Δi − 2ω�

R

�
� 2t:

(25)

The offset distance hx from the center of the image plane at
the direction of prism dispersion can be expressed as

hx � QB �HQ: (26)

With ∠OAP � Δi − 2ω, QB becomes

QB � OP

� L 0 · ∠OAP

� L 0 · tan�Δi − 2ω�: (27)

Using Eq. (25), HQ can be expressed as

HQ � f ·∠HPQ

� f · tan
�
Δi − 2ω − 2 arctan

�
f · tan�Δi − 2ω�

R

�
� 2t

�
:

(28)
Fig. 5. Modeling of the direction of dispersion from the spherical
focusing mirror onto the prism.
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By substituting Eqs. (27) and (28) into Eq. (26), hx can be
written as follows:

hx � L 0 · tan�Δi − 2ω�

� f · tan
�
Δi − 2ω − 2 arctan

�
f · tan�Δi − 2ω�

R

�
� 2t

�
:

(29)

We determine from Eq. (29) that hx depends only on Δi.
That is, the relationship between the wavelength and coordinate
X is given by Eq. (29). For a cylindrical lens, we establish the
geometric model (see Fig. 6) to provide the correction
for Eq. (29).

Suppose that the cylindrical lens is a parallel plate in the
direction of X , with the thickness of the plate being d . The
offset distance Δh � HH 0 caused by the cylindrical lens can
be expressed as

Δh � d · �tan ii − tan i 0i�; (30)

where ii is ∠HPQ , which is the incident angle of the cylindri-
cal lens, and i 0i is the refraction angle. The angles ii and i 0i satisfy
the refraction law:

sin ii � n · sin i 0i : (31)

From the simultaneous equations of Eqs. (30) and (31) and
from ∠HPQ; h � HH 0 can be rewritten as

Δh�d ·

8<
:tan

�
Δi−2ω−2arctan

�
f ·tan�Δi−2ω�

R
�2t

��

−tan

2
4arcsinsin

�
Δi−2ω−2arctan

�
f ·tan�Δi−2ω�

R �2t
		

n

3
5
9=
;:

(32)

Finally, h 0x can be rewritten as

h 0x�hx −Δh

�L 0 ·tan�Δi−2ω�

�f ·tan
�
Δi−2ω−2arctan

�
f ·tan�Δi−2ω�

R

�
�2t

�

−d ·
�
tan

�
Δi−2ω−2arctan

�
f ·tan�Δi−2ω�

R

�
�2t

�

−tan

2
4arcsinsin

�
Δi−2ω−2 arctan

�
f ·tan�Δi−2ω�

R �2t
		

n

3
5
9=
;:

(33)

We deduce from Eq. (33) that h 0x is determined by Δi�λ�
only and obtain coordinate X from h 0x .

C. Optimization Algorithm of Spectral Reduction
Algorithm
Recalling the algorithm for spectral reduction discussed earlier,
a spectral reduction model can be established. The relationship
between the wavelength and the spot coordinate can be deter-
mined using the model. The model generates a matrix that cor-
responds to the CCD array, and its elements are wavelengths.
The accuracy criterion is that the largest deviation is no more
than one pixel.

However, the model still has deviations in the direction of X
and the largest deviation is more than one pixel, assuming that
the deviation in direction X is solely caused by the spectral line
bending of the reflecting prism [25,26]. To compensate the
influence of the spectral line bending of the reflecting prism
on coordinate X , we developed a geometric model (see Fig. 7).
Since the spectral line bending is difficult to express by equa-
tions, we analyze the spectral line bending by vector.

A rectangular coordinate system is established with the ori-
gin of the coordinate system set at the center of the front surface
of the prism. AO is the incident light ray into the principal
section, and BO is the incident light ray out of the principal
section, which satisfied ∠AOB � βλ − α. The incident angle i0
of the prism is ∠AOX . To get the angular information only, we

Fig. 6. Modeling the direction of dispersion from the prism to the
cylindrical lens. Fig. 7. Geometric model of the prism.
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set the incident light unit length and calculate the coordinate of
the outgoing light ray to get the angular deviation.

As the information of the incident light is known, we can
obtain the information of the refracting ray and the reflecting
ray by the steps below:

(1) Depending on the directional vector of the incident ray
and the normal vector at the incident point, the plane deter-
mined by the incident light and the normal can be calculated.

(2) Depending on the coordinates of the prism, the coor-
dinates of the triangle determined by the prism and the plane
determined by step 1 can be calculated.

(3) From the law of reflection and the law of refraction, the
vector of the reflected ray and refracted ray in the triangle by
step 2 can be calculated.

Using these three steps, we calculate the vectors BO, OM ,
MN , and NP one by one. Finally, according to the vector
coordinate of NP, we obtain the angular deviation in direction
X . NP can be expressed as a function of βλ − α, and therefore
we obtain the corrected X by substituting the angular deviation
in direction X into Eq. (33).

4. EXPERIMENTAL RESULTS AND DISCUSSION

We chose the échelle spectrometer developed by our team for
the experiment and constructed the model matrix to get the
wavelength using the spot coordinates on the CCD. The
parameters of the échelle spectrometer related to the model
are shown in Table 1.

At the same time, we used ray-tracing software to verify the
accuracy of the model, regarding the trace results as the actual
coordinates. We refer to this algorithm that compensates for
spectral line bending as the “optimized spectra reduction.”
The contrast results are shown in Table 2.

As the influences of aberrations and spectral line bending are
greater at the edge of the image plane, we chose nine wave-
lengths that fall in the middle and on the edge and corner
of the CCD to obtain a wide range of data. We can determine
that:

(1) By comparing columns 3 and 4, the coordinate
deviation of the spectra reduction is more than one pixel on
the right edge of the CCD image, and the closer the spot is
to the edge of the CCD image, the bigger the coordinate
deviation is.

(2) Comparing columns 3 and 5, the coordinate deviation
of the optimized spectral reduction over the whole image plane
is less than one pixel.

To establish whether the deviation is caused by the spectral
line bending of the prism, we chose wavelengths of the order
46, which fall on the right side of the CCD image, for analysis.
The simulation results shows that the ray tracing has the same
tendency as the spectral line bending and the coordinate, for
the optimized spectral reduction is closer to that for ray tracing
than for spectral reduction (see Fig. 8).

As the characteristic wavelength of mercury is known, we
captured mercury’s spectral image using the CCD (see
Fig. 9) to test the accuracy of the optimized spectra reduction
algorithm. The contrast results are shown in Table 3.

Choosing the eight characteristic wavelengths of mercury for
analysis, we determined that:

(1) By comparing columns 3 and 4, the coordinate
deviation between the ray tracing and the CCD is less than
one pixel, the deviation being the result of the adjustment error.

(2) By comparing columns 4 and 5, the coordinate
deviation between the CCD and spectra reduction is less than

Table 1. Parameters of Échelle Spectrometer

Parameters Value

Focus length 262 mm
Groove density of échelle 54.5 gr/mm
Incident angel of échelle 46°
Azimuth of échelle 8°
Incident angel of prism 10.44°
Apex angle of prism 12°
Radius of the spherical focus mirror 520.9 mm
Radius of front surface of the cylindrical lens 180.5 mm
Thickness of cylindrical lens 9 mm
Diameter of pin hole 25 μm
Pixel size 26 μm

Table 2. Contrast Table for the Spot Coordinate

Wavelength Order

Coordinate
of Ray
Tracing

Coordinate
of Spectral
Reduction

Coordinate
of Optimized

Spectral
Reduction

188.919 140 (4.7, 40.6) (5, 40) (4, 40)
189.427 138 (9.6, 256) (9, 256) (9, 256)
189.899 136 (11.9, 470.6) (12, 471) (11, 471)
242.682 109 (256.3, 35.4) (257, 35) (256, 35)
242.045 108 (256.4, 256) (256, 256) (256, 256)
241.344 107 (252.5, 474.8) (254, 475) (252, 475)
575.131 46 (499.3, 30.1) (501, 29) (500, 29)
580.909 45 (501.2, 256) (502, 256) (502, 256)
586.876 44 (501.1, 478.3) (503, 479) (501, 479)

495 496 497 498 499 500 501 502 503 504
0

50

100
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200
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300
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400
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500
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Y

 

 

ray tracing
spectral reduction
optimized spectral
reduction

Fig. 8. Coordinate contrast.
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one pixel, which means the algorithm fulfills the resolution
requirements of the échelle spectrometer.

5. CONCLUSIONS

The spectral reduction algorithm, which constructs a math-
ematical model by calculating the offset distance of the princi-
pal ray, is improved. We have shown both numerically and
experimentally that the spot coordinates of any wavelength
can be calculated quickly by the model, which is suitable for
an échelle spectrometer with spherical mirrors in accordance
with the known design parameters. To improve the accuracy
of the algorithm, the spectral line bending of the reflecting
prism was taken into consideration to compensate for the algo-
rithm’s error. The experiment showed that the error for the
algorithm model is less than one pixel over the whole CCD
image plane, which takes full advantage of the high spectral
resolution of the échelle spectrometer.
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