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ABSTRACT: A homologous Ni−Co based nanowire catalyst pair, composed of
NixCo3−xO4 nanowires and NiCo/NiCoOx nanohybrid, is developed for efficient
overall water splitting. NixCo3−xO4 nanowires are found as a highly active oxygen
evolution reaction (OER) catalyst, and they are converted into a highly active
hydrogen evolution reaction (HER) catalyst through hydrogenation treatment as
NiCo/NiCoOx heteronanostructures. An OER current density of 10 mA cm−2 is
obtained with the NixCo3−xO4 nanowires under an overpotential of 337 mV in
1.0 M KOH, and an HER current density of 10 mA cm−2 is obtained with the
NiCo/NiCoOx heteronanostructures at an overpotential of 155 mV. When
integrated in an electrolyzer, these catalysts demonstrate a stable performance in
water splitting.

KEYWORDS: nickel cobalt oxide, nanowires, metal/metal oxide heterostructures, hydrogen evolution reaction,
oxygen evolution reaction

1. INTRODUCTION

Water splitting through photocatalysis and electrolysis has
attracted huge attention,1−4 as hydrogen is a highly desirable
energy carrier for future clean and renewable energy supply.
Over the past several years, water splitting through photo-
catalysis has made great breakthrough, especially owing to the
discovery of various black titanium dioxide nanomaterials
through hydrogenation treatment.1,5,6 Although remarkably
enhanced hydrogen generation rate was observed in black
titanium dioxide,1 hydrogen production through photocatalysis
is still far from practical applications due to its low efficiency.
On the other hand, sustainable hydrogen production on a large
scale can be achieved by water electrolysis using electricity from
solar and wind energy.7,8 The key to water splitting through
electrolysis is the electrocatalysts. The state-of-the-art catalysts
for hydrogen evolution reaction (HER) and oxygen evolution
reaction (OER) are platinum and noble metal oxides (e.g., IrO2

and RuO2), respectively. However, their scarcity and high cost
largely restrict their widespread applications.9−13 Therefore,
exploring the earth-abundant, low-cost electrocatalysts with
high activity toward HER and/or OER is of significant
importance.

Over the past decade, earth-abundant transition metals
(especially Fe, Co, and Ni) and their derivatives have attracted
tremendous attention. The discovery of new compounds
contributed greatly to the development of earth-abundant,
low-cost electrocatalysts. For example, transition metal
phosphides9,14−17 and transition metal layered double hydrox-
ides12,13,18−20 presented high catalytic activity for HER and
OER, respectively. Another efficient way to achieve high-
activity catalysts is to modify the structure of the existing
materials. For instance, metal/metal oxide/carbon composites
synthesized through carbon thermal reduction have been
reported to possess much higher activity toward HER than
the pristine metal/carbon composites.21,22 Another example is
electrochemical tuning, which can effectively tune the electronic
structure of the materials for a better catalytic activity.11,23−26

Recently, modification of metal oxides through hydrogenation
treatment opens a new avenue to tune the catalytic activity of
the metal oxide materials.3,27,28 For example, Co/Co3O4 hybrid
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nanosheets synthesized though hydrogenation achieved a
benchmark current density of 10 mA cm−2 at a small
overpotential of 90 mV in 1.0 M KOH,3 and WO2.9 derived
from WO3 through hydrogenation reached 10 mA cm−2 at a
small overpotential of 70 mV in 0.5 M H2SO4.

28 More
importantly, the catalytic activity is highly tunable by
controlling the hydrogenation condition.3,27

Herein, we report on a homologous Ni−Co based nanowire
pair composed of NixCo3−xO4 nanowires and NiCo/NiCoOx
hybrid nanowires as efficient electrocatalysts for overall water
splitting. NixCo3−xO4 nanowires as OER catalysts have been
synthesized by hydrothermal reaction, and were converted into
NiCo/NiCoOx heterostructural HER catalysts through hydro-
genation treatment. The NixCo3−xO4 nanowires exhibit a good
OER activity with a small overpotential (337 mV) to reach a
current density of 10 mA cm−2. The NiCo/NiCoOx
heterostructures present a markedly high HER activity with
an overpotential of 155 mV to reach a current density of 10 mA
cm−2. Further, we investigated the overall water splitting
performance of the electrolyzer with NixCo3−xO4 as the anode
electrode and NiCo/NiCoOx as the cathode electrode. A
current density of 10 mA cm−2 was achieved at a voltage of 1.75
V in 1.0 M KOH, and the electrolyzer shows robust stability,
thus suggesting an efficient, low-cost, earth-abundant electrode
system for water splitting.

2. EXPERIMENTAL SECTION
2.1. Material Synthesis. In a typical synthesis, 0.25 mmol

Ni(NO3)2·6H2O, 0.25 mmol Co(NO3)2·6H2O and 2.5 mmol urea
were dissolved in 16 mL deionized water as the precursor solution. A
piece of nickel foam (∼7 cm2) was sonicated in 3 M HCl for 10 min to
remove the possible surface oxide layer. After being washed with
deionized water, the nickel foam was transferred into the precursor
solution and reacted in a Teflon lined stainless steel autoclave at 120
°C for 12 h (hydrothermal process). After the reaction, the nickel
foam was washed with deionized water and dried in air, followed by
annealing at 300 °C for 2 h to obtain a NixCo3−xO4 coated Ni foam.
The sample was then treated in a hydrogen atmosphere at 250 °C for
3 h (hydrogenation) to obtain NiCo/NiCoOx nanohybrids-covered Ni
foam. The mass loading of the NiCo/NiCoOx nanohybrids on nickel
foam was about 0.7 mg cm−2. To investigate the structure and
composition of the NiCo/NiCoOx nanohybrids, we also applied
similar processes to the powders formed in the hydrothermal process.
2.2. Property Characterization. Morphologies of the samples

were examined using scanning and transmission electron microscopy
(SEM and TEM). The SEM images were taken on a Hatachi 4700
field emission scanning electron microscope (FESEM). The foams
were directly mounted on the sample stage for analysis. The TEM
study was performed on a FEI Tecnai F20 STEM. The electron
accelerating voltage was 200 kV. A small amount of powder sample
dispersed in water was dropped onto a thin holey carbon film, and
dried overnight before TEM measurement. Structural and chemical
properties were studied with X-ray diffraction (XRD) and X-ray
photoelectron spectroscopy (XPS). The XRD was performed using a
Rigaku Miniflex X-ray diffractometer using Cu Kα radiation (wave-
length = 1.5418 Å). XPS data were collected using a Kratos Axis 165
X-ray photoelectron spectrometer. Spectra were acquired using a
photon beam of 1486.6 eV, selected from an Al/Mg dual-anode X-ray
source. Fourier transform infrared (FTIR) spectra were recorded on a
Thermo-Nicolet iS10 FT-IR spectrometer with an attenuated total
reflectance unit.
2.3. Electrochemical Characterization. Electrochemical meas-

urements were carried out in a three-electrode system at room
temperature. A Pt wire and an Ag/AgCl electrode were used as the
counter and reference electrode, respectively. 1.0 M KOH solution was
used as the electrolyte. Cyclic voltammetry was performed five cycles
in the voltage range of 0−0.5 V vs Ag/AgCl at a scan rate of 5 mV s−1

to activate the working electrode of the as-prepared samples. To
prepare the IrO2 electrode, IrO2 (5 mg, 99%) were dispersed in mixed
solvent of deionized water (1 mL) and 2-propanol (0.25 mL) via
sonication for 0.5 h. Nafion solution (10 μL, 5 wt %) was added to
increase the binding strength before sonication. Then, 35 μL of the
suspension was drop-casted on Ni foam by micropipette, and the
solvent was allowed to be evaporated at 70 °C for around 10 min. The
catalyst loading was 0.7 mg cm−2. Cyclic voltammetry was performed
30 cycles between 0.4 and 0.55 V vs Ag/AgCl at a scan rate of 10 mV
s−1 until the oxygen evolution current of the IrO2 electrode showed
negligible change. Linear sweep voltammetry was conducted at a scan
rate of 5 mV s−1 to evaluate the HER and/or OER performances of the
all working electrode. Electrochemical impedance spectroscopy (EIS)
analysis was performed using a 10 mV amplitude AC signal over a
frequency range from 100 kHz to 10 mHz on a Biologic potentiostat/
EIS electrochemical workstation. The polarization curve was iR-
corrected for an ohmic drop obtained from EIS Nyquist plot. The
reference electrode was calibrated with respect to reversible hydrogen
electrode (RHE). The calibration was performed in a high purity
hydrogen saturated 1 M KOH electrolyte with a Pt wire as the working
electrode.

3. RESULTS AND DISCUSSION
The crystal structures of the resultant products were
investigated by XRD. Figure S1 shows the XRD patterns of
NixCo3−xO4 and NiCo/NiCoOx. The XRD pattern of the
NixCo3−xO4 nanowires obtained by reaction of 0.25 mmol Ni2+

and 0.25 mmol Co2+ at 120 °C for 12 h in the presence of urea
matched well with the standard XRD pattern of Co3O4 (JCPDS
42-1467). After hydrogenation, the feature peaks of NiCo alloy
at θ = 44.10, 51.62, and 76.08° match well with the (111),
(200) and (220) characteristics of a face-centered cubic (fcc)
NiCo structure, respectively, which is very similar to those of
either fcc Ni (JCPDS 15-0806) or fcc Co (JCPDS 01-1260)
while a slight variation for the peak position can be observed
(all the peak positions lie between those of fcc Ni and fcc Co.).
The average grain size was calculated using Scherrer’s equation:
d = (kλ)/(βcos θ), where k is the shape factor with a typical
value of 0.9, λ is the X-ray wavelength, β is the full width at half-
maximum, θ is the Bragg angle, and d is the grain size.3,27,29

The calculated average grain sizes of NixCo3−xO4 and NiCo
alloy were about 6 and 9 nm, respectively.
The morphology and detailed structures of the products were

studied by SEM and TEM. SEM measurements showed that
the Ni foam was fully covered by NixCo3−xO4 nanowires
(Figures S2 and S3), and was still fully covered by NiCo/
NiCoOx nanohybrid after hydrogenation (Figures S4 and S5).
The as-prepared NixCo3−xO4 nanowires have an average
diameter of ∼20 nm and a length of more than 500 nm
(Figure 1A). After hydrogen reduction, the morphology was
altered due to the reduction and fusion, and thus the NiCo/
NiCoOx nanohybrid had a nanorod-like morphology (Figure
1B). The TEM image in Figure 1C confirmed the nanorod-like
morphology of the NiCo/NiCoOx nanohybrid. Figures 1D
showed the HRTEM images of the NiCo/NiCoOx nanohybrid.
A core−shell structure was revealed. The core features lattice
fringes with the lattice spacing of 0.204 nm (inset, Figure 1D)
corresponding to the (111) plane of face-centered cubic NiCo
crystals.30 The shell was mainly amorphous and had a thickness
of 2−4 nm as indicated by the dotted line in Figure 1D.
The XPS survey of both NixCo3−xO4 and NiCo/NiCoOx

were shown in Figure 2A. The spectra were similar: signals
from Ni, Co and O elements were observed with C deposition
from the atmosphere. All the spectra were calibrated with the C
1s peak to 284.6 eV. Figure 2B shows the Ni 2p core-level XPS
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spectra of both NixCo3−xO4 and NiCo/NiCoOx. Two core-
level signals of Ni2+ centered at ∼855.2 and ∼872.6 eV were
assigned to the Ni2+ 2p3/2 and Ni2+ 2p1/2, respectively.

31,32

Signals located at ∼861.2 and ∼879.5 eV were the satellite
peaks corresponding to Ni2+ 2p3/2 and Ni2+ 2p1/2, respec-
tively.32 Figure 2C displays the Co 2p core-level XPS spectra.
The two primary peaks from Co in NixCo3−xO4 are the typical
characteristics of Co 2p1/2 (795.0 eV) and Co p3/2 (779.8
eV) in Co3O4.

21,33 However, the two main peaks in the Co 2p

core-level XPS spectrum of NiCo/NiCoOx shifted to higher
binding energies compared to NixCo3−xO4. The higher binding
energies (796.0 and 780.7 eV) suggested that more Co2+ ions
were likely generated in NiCo/NiCoOx owing to the hydrogen
reduction.34,35 Therefore, the slightly shifted signals in the Ni
and Co 2p spectra of NiCo/NiCoOx may be caused by the
more complicated surface composition, where Ni and Co may
have different valence states derived from hydrogen reduction.
Given that XPS can only probe the chemical information within
a few atomic layers near the surface, it thus confirmed that the
NiCo/NiCoOx has a crystalline NiCo core and an amorphous
NiCoOx shell. The O 1s XPS spectra were shown in Figure 2D.
The O 1s peaks located at ∼529.4 and 531.2 eV were attributed
to the lattice O2− and oxygen vacancies and/or hydroxyl
groups, respectively.33,36 Obviously, the lattice O2− atoms
diminished after hydrogenation as evidenced by the obviously
weakened XPS peak intensity, indicating the degradation of the
crystal structure. This was consistent with the observations for
hydrogenated nickel oxide and cobalt oxide in previous
studies.3,27

The OER activity of NixCo3−xO4 nanowires and NiCo/
NiCoOx nanohybrid was investigated in a standard three-
electrode system using linear sweep voltammetry. For
comparison, the OER performances of bare Ni foam and
IrO2 were evaluated under similar conditions. Figure 3A shows
the polarization curves of NixCo3−xO4 nanowires, NiCo/
NiCoOx nanohybrid, IrO2 and Ni foam in 1.0 M KOH at a
scan rate of 5 mV s−1. The NixCo3−xO4 nanowires showed an
onset of ∼1.51 V versus RHE, and required an overpotential of
∼337 mV to drive a cathodic current density of 10 mA cm−2.
The NiCo/NiCoOx nanohybrid presented a slightly lower
activity with an overpotential of 361 mV at 10 mA cm−2 maybe

Figure 1. SEM images of (A) NixCo3−xO4 nanowires and (B) NiCo/
NiCoOx nanohybrid. (C) Low-resolution and (D) high-resolution
TEM images of NiCo/NiCoOx nanohybrid.

Figure 2. (A) XPS survey and XPS spectra of the (B) Ni 2p, (C) Co 2p, and (D) O 1s peaks of (a) NixCo3−xO4 and (b) NiCo/NiCoOx.
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owing to the rapid depletion of the NixCo3−xO4 during the
hydrogen reduction. Figure 3B displays the Tafel plots of
NixCo3−xO4 nanowires, NiCo/NiCoOx nanohybrid, IrO2 and
Ni foam derived from Figure 3A. NixCo3−xO4 nanowires
presented a lower Tafel slope (75 mV dec−1) than NiCo/
NiCoOx nanohybrid (80 mV dec−1) and Ni foam (84 mV
dec−1), indicating faster OER kinetics on the surface of the
NixCo3−xO4 nanowire electrode.

37 In conclusion, this perform-
ance is better than many of the reported Co3O4- and
NixCo3−xO4-based catalysts.37−40 This can be attributed to
(1) the three-dimensional nature of our electrode and open
space between nanowires which can facilitate the diffusion of
electrolyte and oxygen bubbles; (2) the large surface area
associated with the nanostructured nanowires along with the
absence of binder, accelerating the surface reaction; and (3) the
direct contact of nanowires to the underneath conductive

substrate which ensures each nanowire to participate in the
reaction.12,41

The HER activity of NiCo/NiCoOx nanohybrid was first
studied in a standard three-electrode system using liner sweep
voltammetry. Bare Ni foam, NixCo3−xO4 nanowires and
commercial Pt/C were also comparatively tested under similar
conditions. Figure 4A shows the polarization curves of various
electrodes in 1.0 M KOH at a scan rate of 5 mV s−1. NiCo/
NiCoOx nanohybrid nanowires showed an onset of −0.065 V
versus RHE, whereas it was −0.138 V versus RHE for
NixCo3−xO4 nanowires. A small overpotential (∼155 mV)
was needed for NiCo/NiCoOx nanohybrid to reach a cathodic
current density of 10 mA cm−2, which was 60 mV smaller than
that of NixCo3−xO4 nanowires. The much higher HER activity
of NiCo/NiCoOx nanohybrid compared to NixCo3−xO4
nanowires was ascribed to the exposed NiCo/NiCoOx interface
where there was a synergistic effect between metal and metal

Figure 3. Electrochemical characterizations for OER activity. (A) Polarization curves of NixCo3−xO4 nanowires, NiCo/NiCoOx nanohybrid, IrO2
and Ni foam in 1.0 M KOH. (B) Tafel plots derived from panel A.

Figure 4. Electrochemical characterizations for HER activity. (A) Polarization curves of various electrodes in 1.0 M KOH. (B) Tafel plots derived
from Figure 4A. (C) Nyquist plots of NixCo3−xO4 nanowires and NiCo/NiCoOx nanohybrid obtained at a potential of −1.2 V versus RHE. (D)
Chronopotentiometry curve of NiCo/NiCoOx nanohybrid without iR compensation.
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oxide.3,21,22,27 In detail, surface amorphous NiCoOx could
facilitate both Volmer and Heyrovesky processes due to its
good interaction with OH− groups;3,27 NiCo alloy not only
improved the conductivity of the catalyst and facilitated the
electron transfer but also accelerated the electrochemical
reduction of the absorbed H2O as both Ni and Co were
calculated to have suitable H binding energies.21,22 Figure 4B
displays the Tafel plots derived from the polarization curves in
Figure 4A. According to the Tafel equation (η = a + blog|j|), the
Tafel slope (b) describes the current density (j) enhancement
versus overpotential (η) in the Tafel region, and the smaller the
Tafel slope is, the faster the current density increase with
overpotential will be.42 NiCo/NiCoOx nanohybrid had a much
smaller Tafel slope (35 mV dec−1) than NixCo3−xO4 nanowires
(42 mV dec−1), confirming the enhanced HER activity of
NiCo/NiCoOx nanohybrid. To reveal the kinetics on the
surface of the electrodes, Nyquist plots were obtained by EIS
measurement at a constant potential of −1.2 V versus RHE.
One semicircle suggested a one-time-constant behavior for both
NixCo3−xO4 nanowires and NiCo/NiCoOx nanohybrid (Figure
4C).43 Obviously, the NiCo/NiCoOx nanohybrid electrode had
a much smaller charge transfer resistance (2.8 Ω) than that of
NixCo3−xO4 nanowire electrode (5.2 Ω). This indicated a faster
charge transfer process or a faster hydrogen evolution rate on
the surface of the NiCo/NiCoOx electrode,

43,44 which was solid
evidence of the synergistic effect of the highly conductive NiCo
core and the amorphouos NiCoOx shell. The stability of NiCo/
NiCoOx nanohybrid was evaluated using constant voltage
technique. At a constant overpotential of 200 mV, the current
showed slight degradation during a long period of 6000 s
(Figure 4D). This indicated a good stability of the NiCo/
NiCoOx nanohybrid as HER catalyst.
An electrolyzer with NixCo3−xO4 nanowires and NiCo/

NiCoOx nanohybrid as the anode and cathode electrodes was
assembled to demonstrate the overall water splitting activity in
1 M KOH. The liner sweep voltammetry of the NixCo3−xO4 ∥
NiCo/NiCoOx system showed that the electrolysis process
proceeded at an applied potential of 1.58 V (Figure 5A). A
current density of 10 mA cm−2 was achieved at a voltage of
∼1.75 V (Figure 5A), corresponding to an overpotential of 520
mV. In sharp comparison, the Ni ∥ Ni system required an
overpotential of 690 mV to reach 10 mA cm−2. The durability
of the electrolyzer, which is of great importance for the practical
applications, was carried at 1.8 V in 1 M KOH at room
temperature. The HER current gradually decreased from 18 to
12 mA cm−2 after water electrolysis for 10 h (Figure 5B). The

current decrease was more likely caused by the limited mass
transfer, as the stirring greatly affected the current and the
polarization curves before and after the long-term stability
showed negligible change (Figure S6). This indicated that the
as-prepared catalysts had a good stability. These results
indicated that our NixCo3−xO4 ∥ NiCo/NiCoOx system is a
promising candidate for water splitting owing to their high
electrocatalytic activity, excellent stability, and simple synthesis.

4. CONCLUSIONS
In summary, we have developed a low-cost, earth-abundant
catalyst pair composed of NixCo3−xO4 nanowires and NiCo/
NiCoOx nanohybrid for overall water splitting, acting as OER
catalyst and HER catalyst, respectively. NiCo/NiCoOx nano-
hybrid can be readily achieved from NixCo3−xO4 nanowires
through a simple hydrogen reduction process at a relatively low
temperature, achieving the transformation from OER catalyst to
HER catalyst. NiCo/NiCoOx nanohybrid demonstrates a high
catalytic activity toward HER with a small onset overpotential
of 65 mV due to the synergistic effect between metal and
amorphous metal oxide. More importantly, when assembled in
an alkaline electrolyzer, the catalyst pair exhibits both high
activity and robust stability. Therefore, we demonstrate a new
way of tuning the HER-OER performance of electrocatalysts
through the structural modification with hydrogenation for
overall water splitting.
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