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SPECIAL TOPIC — Physical research in liquid crystal

Configuration optimization of laser guide stars and wavefront
correctors for multi-conjugation adaptive optics∗
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Multi-conjugation adaptive optics (MCAOs) have been investigated and used in the large aperture optical telescopes
for high-resolution imaging with large field of view (FOV). The atmospheric tomographic phase reconstruction and pro-
jection of three-dimensional turbulence volume onto wavefront correctors, such as deformable mirrors (DMs) or liquid
crystal wavefront correctors (LCWCs), is a very important step in the data processing of an MCAO’s controller. In this
paper, a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized
configuration of multi laser guide stars (LGSs) and the reasonable conjugation heights of LCWCs. Analytical formulations
are derived for the different configurations and are used to generate optimized parameters for MCAO. Several examples are
given to demonstrate our LGSs configuration optimization method. Compared with traditional methods, our method has
minimum wavefront tomographic error, which will be helpful to get higher imaging resolution at large FOV in MCAO.

Keywords: laser guide star, liquid crystal wavefront corrector, adaptive optics, phase reconstruction
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1. Introduction

Because of atmospheric random disturbances, the wave-
front from a star will be distorted, which blurs the image
captured by large aperture, ground-based optical telescopes.
Adaptive optics (AOs)[1,2] technology can be used to restore
the imaging resolution close to the telescope diffraction limit
by compensating the aberration induced by atmospheric tur-
bulence in real time. The AO system is now considered
to be an essential setup of many new large aperture optical
telescopes.[3,4] In traditional adaptive optics, the distortion
is measured by a wavefront sensor (WFS) and corrected by
a wavefront corrector (WFC), such as a deformable mirror
(DM)[5] or liquid crystal wavefront corrector (LCWC),[6–13]

conjugated to the telescope pupil.[14,15] Unfortunately, this ap-
proach only achieves a good imaging resolution within a lim-
ited field of view (FOV) smaller than the isoplanatic angle
that is generally only a few arc-seconds at visible wavelengths.
Anisoplanatism leads to a limited FOV, which is a bottleneck
of many applications of AO systems. To enlarge the FOV,
multi-conjugate AO[16,17] has been developed by using sev-
eral natural guide stars (NGS) or laser guide stars (LGS) in
different directions. In a multi-conjugation adaptive optics
(MCAOs) system, such as GeMS,[18,19] every guide star is
sensed by an independent WFS, and several WFCs are con-

jugated to turbulence layers at different heights.
The atmospheric tomographic phase reconstruction and

projecting three-dimensional turbulence phase onto WFCs are
a necessary and very important calculation step for MCAO,
which has been investigated by many groups.[20–24] These
groups have discussed the influence of the number of mir-
rors and LGSs, but did not consider optimizing the specific
location of LGSs and WFCs further. In these reported works,
LGSs were simply located at the vertices of inscribed regular
polygon inside the FOV, and the WFCs were placed at a posi-
tion conjugated to the weighted mean height. Although Fusco
proposed a method to optimize the NGS separation for a given
FOV in Ref. [25], the distribution of NGS is not controllable,
unlike the LGS that can be controlled by laser beam launch
telescope. Up to now, LGS distribution and reasonable WFC
conjugation altitude have not been optimized, though they are
very important to obtain a high accuracy of atmospheric to-
mography. To resolve this problem and improve system imag-
ing resolution at large FOV for MCAO, we have presented a
new method to optimize the LGSs’ configuration and LCWCs’
conjugation heights. Our method is based on evaluating the
field-averaged mean-square residual phase error variance of
MCAO across the whole FOV for arbitrary configuration of
LGS and LCWC analytically based on Zernike modes. The
error variance is decomposed into reconstruction error related
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to LGS and correction error related to LCWC. Then, on one
hand, by minimizing the wavefront reconstruction error av-
eraged over the FOV, we get the optimal LGS configuration.
On the other hand, we get the optimal conjugate altitudes of
LCWCs by minimizing the error of wavefront correction for
the MCAO system. After the optimization of the location of
LGSs and LCWCs, we can obtain a phase reconstruction and
compensation with high precisions, which is of great signifi-
cance for multi-LGS AO system design.

In Section 2.1, Zernike coefficients representation for
MCAO are given. Using a modal decomposition of the phase
onto the Zernike polynomials basis, a simple analytical solu-
tion is proposed. The equations of shape of LCWCs and cor-
respondent performance of MCAO are derived in Section 2.2.
In Section 2.3, we also derive formulas for the computation
of the covariance matrices based on the statistical property of
atmosphere turbulence. In Section 3, a demonstration of multi-
LGS optimization process is given and discussed. Finally, our
conclusions are given in Section 4.

2. Theory
2.1. Zernike coefficients representation for MCAO

Modal decomposition of wavefront phase using Zernike
polynomials is widely used in theoretical studies of AO. For
a unit circular aperture without obstruction, the Noll Zernike
modes are defined as follows:[26]

Zenen, j =
√

n+1Rm
n (ρ)
√

2cosmω

Zodd, j =
√

n+1Rm
n (ρ)
√

2sinmω

}
m 6= 0,

Z j =
√

n+1R0
n(ρ), m = 0,

(1)

where

Rm
n (ρ) =

(n−m)/2

∑
s=0

(−1)s(n− s)!
s!
[ n+m

2 − s
]
!
[ n−m

2 − s
]
!
ρ

n−2s. (2)

The index n and m are called the radial degree and the az-
imuthal frequency, respectively. Any distorted wavefront can
be decomposed based on Zernike modes on its unit circular.
Note that each LCWC is assumed to correct spatial frequen-
cies up to a cut-off frequency and the reconstruction modes
of each WFS is limited by the number of sub-apertures. We
assume that the series representation of all phase error in this
paper is truncated with finite maximum order J. The mini-
mum order is 4 without considering piston and the global tip-
tilt component that is detected by NGS and compensated by
tilt mirror.[27,28]

Figure 1(a) shows the simple scheme that light beam from
a star at direction 𝛼 within the telescope’s FOV propagates
through a turbulence layer conjugated to LCWC at height
h and enters the telescope’s pupil. As shown in Fig. 1(a),
the meta-pupil is the large circle with a diameter Dh = Dp +

hθfov at height h. Atmospheric turbulence aberration flow-
ing through the larger circle as shown in Fig. 1(b) at height

h will affect the imaging resolution of a sky object seen by the
telescope. The Zernike basis on this circular pupil is denoted
as {Z(2𝑟/Dh)}. The light beam from the target illuminates
only a portion of the meta-pupil, as shown by the gray area
in Fig. 1(b). The beam footprint is enclosed by a small circle
with a diameter Dp. In addition, the displacement between the
center of beam footprints and that of the meta-pupil is equal
to h𝛼. The basis on the small-circular pupil is {Z(2𝑟/Dp)}.
Tokovinin[29] gave a mode projection matrix 𝑃 which permits
to represent a portion of a large-circle mode by a sum of small-
circle modes

Zi

[
2(𝑟+h𝛼)

Dh

]
=

J

∑
j=1

Pji(𝛼,h)Z j

(
2𝑟
Dp

)
, (3)

where Pji stands for the relationship between the i-th Zernike
mode in meta-pupil and the j-th Zernike mode in small pupil.
This can be calculated by

Pji(𝛼,h) = π
−1

∫
|𝑟|<1

Zi

(
Dp

Dh
𝑟+

2
Dh

h𝛼
)

Z j(𝑟)d𝑟. (4)

For certain Dp and θfov, it is dependent on α, h. The
last written will be simpler using a Cartesian polynomial
representation.[30]

h

(b)(a)

Dp

Dh

α

hα

hα

θfov

r

r

r⇁hα

Fig. 1. Scheme of mode projection, Dp is the diameter of telescope, θfov
is the FOV.

It is reasonable to assume that atmospheric turbulence
aberration can be optically separated into L layers in different
heights hl (l = 1,2, . . . ,L)

𝑎=
(
𝑎1 · · · 𝑎l · · · 𝑎L

)T
, (5)

where 𝑎l is the Zernike coefficients for the l-th turbulence
layer. It is a vector with (J-3) elements

𝑎l =
(

al,4 · · · al, j · · · al,J
)T

, (6)

where al, j is the coefficients associated of the j-th Zernike
mode of the l-th turbulence layer. The radius ρl of a meta-
pupil for the l-th turbulence is defined as

ρl =
Dp

2
+hl

θfov

2
. (7)
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Let us consider a target star at direction 𝛼t. Light from star
in direction 𝛼t will pass through a series of atmosphere layers
in small circles at different heights into the telescope. In the
near-field approximation, the aberration to be corrected on the
telescope pupil is

𝑐(𝛼t) =
(

c2(𝛼t) · · · c j(𝛼t) · · · cJ (𝛼t)
)T

. (8)

The piston mode is not included because it does not affect the
imaging resolution. The coefficient ci is

ci(𝛼t) =
L

∑
l=1

J

∑
j=4

Pi j(𝛼t,hl)al, j. (9)

If there are M LCWCs conjugated to different altitudes h̃m,
m = 1, . . . ,M, the surface shape of the LCWCs to compensate
the turbulence could be described by

𝑎̃=
(
𝑎̃1 · · · 𝑎̃m · · · 𝑎̃M

)T
, (10)

where 𝑎̃m is a vector of Zernike coefficients for the surface
shape of the m-th LCWC which is defined on a meta-pupil
with the radius ρ̃m = Dp/2+ h̃mθfov/2. It is a vector with (J-
3) elements that piston and tip-tilt are removed

𝑎̃m =
(
𝑎̃m,4 · · · 𝑎̃m, j · · · 𝑎̃m,J

)T
. (11)

Therefore, the turbulence aberration at direction 𝛼t to be com-
pensated by LCWC could be expressed as

𝑐̃(𝛼t) =
(

c̃2(𝛼t) · · · c̃ j(𝛼t) · · · c̃J(𝛼t)
)T

, (12)

where the coefficient c̃i is

c̃i(𝛼t) =
M

∑
m=1

J

∑
j=4

Pi j(𝛼t, h̃m)𝑎̃m, j. (13)

According to the orthonormality property of the Zernike poly-
nomials on the unit circle, the instantaneous value of the field-
averaged mean-square residual phase error variance ε2

J could
be given by

ε
2
J = ‖𝑐(𝛼t)− 𝑐̃(𝛼t)‖2 = ‖𝑃TL(𝛼t)𝑎−𝑃LC(𝛼t)𝑎̃‖2

= aT𝑃 T
TL𝑃TLa−aT𝑃 T

TL𝑃LC𝑎̃

− 𝑎̃T𝑃 T
LC𝑃TLa+ 𝑎̃T𝑃 T

LC𝑃LC𝑎̃, (14)

where x̄ is the average value over the FOV. 𝑃TL is the projec-
tion matrix of turbulence

𝑃TL(𝛼t) =
(
𝑃 (𝛼t,h1) · · · 𝑃 (𝛼t,hl) · · · 𝑃 (𝛼t,hL)

)
, (15)

and 𝑃LC is the projection matrix of LCWC

𝑃LC(𝛼t)=
(
𝑃 (𝛼t, h̃1) · · · 𝑃 (𝛼t, h̃m) · · · 𝑃 (𝛼t, h̃M)

)
, (16)

where

𝑃 (𝛼t,h) =

 P24(𝛼t,h) · · · P2J(𝛼t,h)
...

. . .
...

PJ4(𝛼t,h) · · · PJJ(𝛼t,h)

 . (17)

It is obvious that residual wavefront error after correction also
depends on the location and shape of LCWCs.

2.2. Compute the shape of LCWCs and performance esti-
mation

This section will discuss how to compute the instanta-
neous shape of LCWCs that are specified as the coefficients
of wavefront expansion on Zernike modes. In Fig. 2, a scheme
of multiple-LGS system is given. Light beams from several
LGSs are used to measure atmospheric tomographic aberra-
tion, and only one LGS is illustrated in the figure. Assume
that we have G different LGSs located at height hg in direc-
tions 𝛽g(θg, φg). θg is the zenith angle, and φg is the azimuth
angle (g= 1,2, . . . ,G). The light beam from LGS origins from
a point at finite height and propagates through a cone as shown
in Fig. 2. In the near-field approximation, to a position of 𝑟 on
the telescope pupil, the turbulence-induced wavefront phase
incoming wavefront phase Λg(𝑟) associated with each LGS is
given by

Λg(𝑟) =
L

∑
l=1

Φ
(l)(Kl𝑟+𝛽ghl)

=
L

∑
l=1

∞

∑
j=4

b(l)g, jZ j

[
2Kl𝑟

KlDp

]
=

∞

∑
j=4

bg, jZ j

(
2𝑟
Dp

)
, |𝑟| ≤ Dp/2, (18)

where Φ (l) is the phase funciton of the l-th turblence layer
and bg, j is series expansion coefficients of Λg(𝑟). b(l)g, j is the
Zernike coefficients of the turbulence aberrated wavefront in
the cross section of the l-th layer and given by

bg, j =
L

∑
l=1

b(l)g, j. (19)

The number of wavefront reconstruction Zernike modes
for WFS is limited by its number of sub-apertures. It is as-
sumed that the highest order of WFS is equal to that of LCWC.
Hence, the detection signal including all LGSs is

𝑏=


𝑏1
...
𝑏g
...
𝑏G

 , 𝑏g =


bg,4

...
bg, j

...
bg,J

 , (20)

where 𝑏 is a column vector with G sub-vectors, each having
(J−3) elements.

We neglect the temporal aspects of the MCAO operation
by supposing that all measurements and corrections are done
instantaneously. The computation of the optimal mirror shapes
involves two sub-problems: atmospheric reconstruction and
the derivation of the optimal mirror shape. We converge the
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two steps at a control matrix 𝑅, and the LCWC actuator com-
mand vector 𝑎̃ is calculated by

𝑎̃=𝑅𝑏. (21)

laser guidestar

Φ↼↽

Φ↼l↽

Φ↼L↽



h

hl

Kl
hl



x

z
g

g

θfov

Dp

r

βr g

θg

ϕg

Fig. 2. Scheme of turbulence tomography using LGS. The gray disks
are the footprints of LGS light cone at the correspondent turbulence
layer, respectively. Their radius is proportional to a factor Kl = (hg−
hl)/hg. The position vector of the center at the l layer is 𝛽ghl . Light
beam from LGS g goes to a position of 𝑟 through the point Kl𝑟+𝛽ghl
at the l layer.

The optimal modal wave-front compensation has a min-
imization of the statistical expectation of ε2

J . Therefore, we
have to minimize the error to find the matrix 𝑅. The expected
residual error is quadratic in matrix 𝑅. Thus, the value of 𝑅
that minimizes 〈ε2

J 〉 subject can be determined by partial dif-
ferential, according to Eqs. (14) and (21)

∂
〈
ε2

J
〉

∂𝑅
=−2𝑃 T

LC𝑃TL
〈
𝑎𝑏T〉+2𝑃 T

LC𝑃LC𝑅
〈
𝑏𝑏T〉= 0, (22)

where the operator 〈•〉 represents the statistical averaging.
From Eq. (22), an optimal control matrix 𝑅 is given by

𝑅=
(
𝑃 T

LC𝑃LC

)−1
𝑃 T

LC𝑃TL𝐶ab𝐶
−1
bb , (23)

where 𝐶xy is the covariance matrices of column vector 𝑥 with
column vector 𝑦

𝐶xy =
〈
𝑥𝑦T〉 . (24)

Putting Eqs. (21) and (23) into Eq. (14) leads to〈
ε

2
J
〉
= Tr

[(
𝑃 T

TL𝑃TL

)
𝐶aa

−
(
𝑃 T

TL𝑃LC

)(
𝑃 T

LC𝑃LC

)−1(
𝑃 T

LC𝑃TL

)
𝐶ab𝐶

−1
bb 𝐶ba

]
= JGS + JLC−∆J, (25)

where Tr stands for the matrix trace operation that is the sum
of the diagonal elements. For a certain turbulence model, Dp

and θfov, 〈ε2
J 〉 depend on 𝑃LC, 𝐶ab and 𝐶bb, that are all re-

lated to configuration of LGS and LCWC. In order to optimize
configuration conveniently, we divide 〈ε2

J 〉 into three parts as
follows:

JGS =Tr
[(
𝑃 T

TL𝑃TL

)(
𝐶aa−𝐶ab𝐶

−1
bb 𝐶ba

)]
, (26)

JDM =Tr
{[(

𝑃 T
TL𝑃TL

)
−
(
𝑃 T

TL𝑃LC

)(
𝑃 T

LC𝑃LC

)−1(
𝑃 T

LC𝑃TL

)]
𝐶aa

}
, (27)

∆J =Tr
{[(

𝑃 T
TL𝑃TL

)
−
(
𝑃 T

TL𝑃LC

)(
𝑃 T

LC𝑃LC

)−1(
𝑃 T

LC𝑃TL

)]
×
(
𝐶aa−𝐶ab𝐶

−1
bb 𝐶ba

)}
. (28)

The error of reconstruction JGS is only related to 𝐶ab and 𝐶bb

that depend on the configuration of LGSs. The error of cor-
rection JLC is only related to 𝑃LC that depends on the config-
uration of LCWCs. ∆J is the common part of JGS and JLC,
which is much smaller than JGS and JLC. Thus, we can get the
optimal LGS configuration and conjugate altitudes of LCWCs
by minimizing JGS and JLC, respectively.

2.3. Computation of the covariance matrices

The computation of the covariance matrices 𝐶aa, 𝐶ab,
and 𝐶bb is necessary for performance estimation and config-
uration optimization. In this section, we derive formulas for
the computation of the three matrices based on the statistical
property of atmosphere turbulence.

According to Eq. (19), the turbulence layers are taken to
be statistically independent,〈

al,ibg, j
〉
=

〈
al,i

(
L

∑
l=1

b(l)g, j

)〉
=
〈

al,ib
(l)
g, j

〉
, (29)

〈
bg1,ibg1, j

〉
=

〈(
L

∑
l=1

b(l)g1, j

)(
L

∑
l=1

b(l)g2, j

)〉
=

L

∑
l=1

〈
b(l)g1,i

b(l)g2, j

〉
,(30)〈

al1,ial2, j
〉
= δl1l2

〈
al1,ial2, j

〉
. (31)

These covariances can be computed by a priori informa-
tion on turbulence and the geometry of the LGSs of AO sys-
tems. Whiteley et al. introduced a generalized analysis ge-
ometry and used this aperture-and-source geometry with con-
ventional methods to get a general expression for the inter-
aperture cross correlation of the Zernike coefficients.[31] As-
suming each turbulence layer’s statistics follows a von Kármán
power spectral density with outer scale L0 and ignoring inner
scale, we can get the following formula:

BA1i,A2 j,l(R1l ,R2l ,𝑝l)

= 6.16wlr
−5/3
0 [R1lR2l ]

−1[(ni +1)(n j +1)]1/2

×(−1)
1
2 (ni+n j)+m j 2[1−

1
2 (δmi0+δm j0)]

×
{{

(−1)
3
2 (mi+m j) cos

[
(mi +m j)arg(𝑝l)

+
π

4
[
(1−δmi0)((−1)i−1)+(1−δm j0)((−1) j−1)

]]
094216-4
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×
∫

∞

0

dx
x
(x2 + x2

0)
−11/6

×Jmi+m j [|𝑝l |x]Jni+1[R1lx]Jn j+1[R2lx]
}

+

{
(−1)

3
2 |mi−m j| cos

[
(mi−m j)arg(𝑝l)

+
π

4
[
(1−δmi0)((−1)i−1)− (1−δm j0)((−1) j−1)

]]
×
∫

∞

0

dx
x
(x2 + x2

0)
−11/6

×J|mi−m j|[|𝑝l |x]Jni+1[R1lx]Jn j+1[R2lx]
}}

, (32)

where BA1i,A2 j,l in the turbulence layer l is the covariance be-
tween Zernike mode i measured within aperture A1 from the
source S1 and Zernike mode j measured within aperture A2

from the source S2. R1l and R2l are the radius of the source
light cones at the intersection with turbulent layer l to the cor-
responding pupil radii at the aperture. pl is the displacement
vector between the center of the two intersection. ni, mi, and
n j, m j are the radial and the azimuthal orders of the i-th and
the j-th Zernike modes, respectively. Jλ (•) is the Bessel func-

tion of the first kind of order λ . δ is the Kronecker delta.
x0 = πDp/L0. r0 is the Fried parameter of the turbulence. wl

is the relative strength of a layer in the atmosphere with

L

∑
l=1

wl = 1. (33)

This is dependent on the refractive-index structure constant C2
n

profile.
The aperture and source geometry for single-layer turbu-

lence is shown in Fig. 3. We can get correspondent R1l , R2l ,
and 𝑝l , according to their A1, A2, S1 and S2, respectively. Now
we have three kinds of covariance as〈

al,ib
(l)
g, j

〉
= BA1i,A2 j,l

(
ρl ,

Dp

2
Kl ,𝛽g1hl

)
, (34)〈

b(l)g1,i
b(l)g2, j

〉
= BA1i,A2 j,l

(
Dp

2
Kl ,

Dp

2
Kl ,𝛽g2hl−𝛽g1hl

)
, (35)〈

al,ial, j
〉
= BA1i,A2 j,l(ρl ,ρl ,0). (36)

If the Zernike model number is enough, we can also compute
covariance matrices approximately by the linear method.[23]

 S S S



S ↼infinite altitude↽ S↪ S ↼infinite altitude↽

A1, A2
A1, A2

hg
hg

hg

(b) (c)(a)

Dp

hl hl

hl

Rl
Rl/Rl

RlRl
Rl

pl
pl

A1 A2

Dp
Dp


θfov


θfov

θfov

Fig. 3. Analysis geometry used for computing the cross correlation of Zernike coefficients. 𝑎l is the same as a vector of Zernike
coeffcients associated to an infinite altitude beacon in the center of the FOV, measured within a virtual aperture with radius ρl centered
at the origin which is indicated with dashed circle. The solid circle at the bottom is the telescope aperture. (a) Covariance between al,i

with b(l)g, j; (b) covariance between b(l)g1,i with b(l)g2, j; (c) covariance between al,i with al, j .

3. Results and discussion
3.1. Turbulence model and system parameters

For this work, the well-known Hufnagel–Valley 5/7
model is used to describe the C2

n profile. Troxel[32] mentioned
that four layers could be used to describe accurately the tur-
bulence. The altitudes and strength of the turbulence layers
are listed in Table 1. The Fried parameter for the whole atmo-
sphere is r0 = 0.12 m at λ = 500 nm, and the outer scale is
infinite.

We consider an 8-m telescope with several sodium LGSs
(hg = 90 km). The LGSs are positioned in a circle of radius
θg. In this paper, we focus our work on the optimization of
configuration of LGS and conjugated heights of LCWCs. For

simplification, the fitting error (variance of modes higer than
J) and noise modeling are not considered here. Hence, we
consider low-order correcting Zernike mode numbers 4-136
(radial order 15) without noise. For our atmospheric model,
the uncorrected variance of those modes is 142.5 rad2.

Table 1. Four-layer turbulence model altitudes and relative layer
strength.

l 1 2 3 4
hl/m 200 2000 10000 18000

wl 0.8902 0.0443 0.0591 0.0064

3.2. Optimization of LGS configuration

We compute the reconstruction error of different LGS
constellations. The number of LGSs is in the range from 2
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to 5. All LGSs are located at the vertices of regular polygons
as shown in Fig. 4. On the basis of symmetrical characteristic,
different azimuth angles of LGSs are equivalent. In order to
optimize the LGS configuration we have to find an optimized
θg.

(a) (b) (c) (d)

θg
θg

θg
θg

Fig. 4. Illustration of the LGS constellation. (a) G = 2, (b) G = 3, (c) G = 4,
(d) G = 5.

The result is shown in Fig. 5, where the error decreases
with the increase in the number of LGSs. However, further in-
crease in LGSs’ number will lead to limited decrease of resid-
ual error. Therefore, there is a tradeoff between residual error
and AOS cost caused by increasing the number of LGSs. For
every kind of LGS arrangement, the reconstruction error JGS

has a minimum value at a specific θg, which results in an op-
timal θg. The larger θg is, the weaker the correlation between
turbulence layers and the detected signal will be. The smaller
θg is, the stronger the correlation of measurement by different
LGSs will be, which leads the efficiency of the measurement
to reduce because of over-sampling on the turbulence. This
indicates that the optimal θg is not the same as usually used.
The wavefront reconstruction errors JGS at optimal θg and half
FOV 30′′ are listed in Table 2, respectively.

Table 2. The optimal θg and corresponding minimum JGS.

G 2 3 4 5
Optimal θg/(

′′) 15.7 21.5 23.5 27.4
Optimal JGS/rad2 1.34 0.47 0.31 0.19

JGS@30′′/rad2 2.04 0.72 0.41 0.22

0
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Fig. 5. (color online) JGS as a function of θg. Gray dashed line at 30 arc-
sec is the inscribed θg. Results shown are for hg = 90 km, θfov = 1 ar-
cmin, Dp = 8 m.

As shown in Fig. 6(a), for five LGSs and a telescope with
diameter of 8 m, the optimal θg increases monotonously as
FOV becomes larger. We calculate a series of optimal θg for

θfov in the range from 0 to 120 arcsec. For comparison, five
LGSs are arranged uniformly at the edge of FOV according to
the traditional methods,[21,22,24] and corresponding results are
shown by the square line in Fig. 6(a). The θg of both methods
varies nearly linearly with θfov, but has different slopes. They
are the same for 42′′ FOV. Their corresponding minimum av-
erage variances are also calculated. The wavefront reconstruc-
tion errors for the two sceneries are shown in Fig. 6(b). This
indicates that our optimal arrangement of LGSs is obviously
better than traditional one, and its reconstruction error is much
less than the traditional method for FOV smaller or larger than
42′′.
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Fig. 6. (color online) Comparison of simulation results of θg and JGS
with our optimal result (circle) and traditional method that inscribed in
the FOV (square) for hg = 90 km, G = 5, θfov = 1 arcmin, Dp = 8 m:
(a) θg as a function of θfov; (b) JGS as a function of θfov. Square line:
traditional method; circle line: optimal method.

3.3. Optimization of LCWC configuration

Considering the cost and complexity of MCAOS, one
generally uses several LCWCs in MCAOS. Here, in our simu-
lation, we use three LCWCs in our simulation with one LCWC
conjugated to the ground turbulence layer at 0 km as shown in
Fig. 7(a). LCWC1, LCWC2, and LCWC3 are conjugated to
turbulence layer 1, 2, and 3, respectively. The simulated re-
sults are shown in Fig. 7(b). Especially, LCWC1 coincides
with LCWC2 for h̃2 = 0 km, which is equivalent to the case of
two LCWCs with one LCWC conjugated to 0 km. This indi-
cates that the optimal height is [0 km, 10 km] for two LCWCs
and [0 km, 2 km, 11 km] for three LCWCs, respectively.
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Fig. 7. (color online) Optimization of LCWCs’ conjugation heights.
(a) Scheme of three LCWCs and their conjugated heights. (b) The opti-
mal result of LCWC for 1-arcmin FOV.
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Fig. 8. (color online) Influence of FOV on the optimal result of LCWC.
(a) Reconstruction error JLC for two LCWCs as a function of FOV and
conjugation height. Curves from the bottom to the top vary in θFOV
from 0.2 arcmin to 2 arcmin with the increment of 0.2 arcmin. (b) Re-
construction error JLC at conjugation height of 10 km for two and three
LCWCs.

Figure 8(a) shows that the reconstruction error JLC for
two LCWCs with one at 0 km and another at different heights
varying with different FOVs. The curves from the bottom up
vary in FOV from 0.2 arcmin to 2 arcmin with the increment of
0.2 arcmin. This indicates that the optimal height conjugated
to the second LCWC is always 10 km for different FOVs. The
result is not affected by the FOV. The simulation results for
three LCWCs are also obtained, but not shown here. Sim-
ilarly, a series of optimized conjugation heights at different
FOVs are also obtained. As a comparison, figure 8(b) shows
that the minimum reconstruction error JLC at their optimized
heights increases dramatically with the FOV. Therefore, two
LCWCs are enough for 1-arcmin FOV, but larger FOV will
need more LCWCs.

3.4. Simulation of wavefront reconstruction for MCAO

Based on the results and discussion above, we use the op-
timal parameters as listed in Table 3 to have a performance
testing. The performance is represented by Strehl ratio (SR).
SR maps for the two MCAO systems are shown in Fig. 9.
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Fig. 9. (color online) SR maps for two MCAO working with parameters
listed in Table 3. (a) 1 arcmin FOV; (b) 2 arcmin FOV. The variances
have been linearly interpolated on a regular grid of 317 evaluation di-
rections. The green pentagrams sign the angle of the LGSs. The dotted
circle is the range of FOV.
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The average SR will be 0.6 and 0.58 in the FOV. The two
MCAOS both have good performance at most region of FOV.
The SR varies in the observed target direction 𝛼t. In MCAO,
we get higher SR of 0.74 at the direction of LGS. The mini-
mum SR of 0.3 appears at the intersection of edge of FOV and
the central line of two LGSs.

Table 3. Parameters for MCAO.

Parameter θfov = 1′ θfov = 2′

Number of LGS 3 5
Arrangement of LGS Fig. 4(b) Fig. 4(d)
Zenith angle of LGS 21.5′′ 46′′

Number of LCWC 2 3
Conjugate altitude of LCWC1 0 km 0 km
Conjugate altitude of LCWC2 10 km 2 km
Conjugate altitude of LCWC3 — 11 km

4. Conclusions
In this paper, a Zernike polynomial-based modal method

was introduced to predict the higher-order error of MCAO
across the field for arbitrary configuration of LGS and LCWC
analytically. Then we obtained a phase reconstruction and
compensation with high precisions by optimizing the location
of LGSs and LCWCs conjugation heights. A demonstration
of multi-LGS optimization process was given and discussed.
We concluded that the optimal θg is linear to θfov and the opti-
mal conjugated height of LCWCs is not affected by the FOV.
Theoretical results indicated that our method would get the
minimum wavefront reconstruction error for MCAO, and had
higher imaging resolution at large FOVs. Additional experi-
ments in our lab have been prepared to validate the method for
the next-step research. Our method will benefit the design of
MCAO in large aperture telescopes.
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