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A novel unsupervised ship detection and extraction method is proposed. A combination model based on visual sali-

ency is constructed for searching the ship target regions and suppressing the false alarms. The salient target regions 

are extracted and marked through segmentation. Radon transform is applied to confirm the suspected ship targets 

with symmetry profiles. Then, a new descriptor, improved histogram of oriented gradient (HOG), is introduced to 

discriminate the real ships. The experimental results on real optical remote sensing images demonstrate that plenty 

of ships can be extracted and located successfully, and the number of ships can be accurately acquired. Furthermore, 

the proposed method is superior to the contrastive methods in terms of both accuracy rate and false alarm rate. 
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Ship detection is an active research topic spanning sev-

eral fields such as image processing, pattern recognition 

and computer vision[1-3]. Many approaches have been 

investigated to solve the problems of ship detection in 

optical remote sensing images. Some ones can be 

roughly considered as threshold segmentation and statis-

tics methods. For instance, Corbane et al[4] proposed a 

method selecting ship candidates by morphology filter-

ing, and removing false alarms by wavelet analysis and 

Radon transform. Xu et al[5] achieved multiscale contour 

extraction using level set. Yang et al[6] employed a linear 

function which combines pixel and region characteristics 

to select ship candidates after sea surface analysis. Proia 

et al[7] estimated Gaussian distribution of the sea back-

ground density function and applied Bayesian decision 

theory to discriminate small ships. These methods are 

sensitive to the complicated sea background including 

clouds, uneven illumination, sea clutters, and small is-

lands. There are some detection methods using ship 

wakes[8,9]. But the variations of ship wake which relates 

to navigation speed are relatively large. The other ones 

are supervised classification-based methods. The great 

attention has been paid to the different kinds of features 

as well as various classifiers. Zhu et al[10] used the sup-

port vector machine (SVM) classifier based on shape and 

texture features to eliminate the false alarms. Kuma et 

al[11] introduced a classification algorithm using color 

and texture for ship detection. Tang et al[12] adopted 

compressed domain for fast ship target extraction com-

bining with deep neural network (DNN) and extreme 

learning machine. Each of them has an improvement in 

either preprocessing or classification. They can achieve 

better performance. However, these methods need to 

make a large number of templates and rely on prior 

knowledge. Besides these, there are some detection 

methods which can resist interferences and detect objects 

with complex appearance effectively in remote sensing 

images with complicated background[13,14]. However, 

they have caused significant increase in computational 

complexity. It is not fit for real-time process. And some 

small targets may not be detected.  

Therefore, although numerous approaches have been 

developed, it is still far from solving the problems of ship 

detection. In view of the above-mentioned facts, a novel 

unsupervised ship detection approach is proposed. Two 

important steps are emphasized: the first is suspected 

target region extraction, and the second is designing 

some efficient rules for discriminating targets. The sec-

ond aspect is crucial for improving the detection accu-

racy and eliminating the false alarms. However, it is 

simplified or even not considered in some existing 

methods[6,7]. The former step used in this letter is visual 

saliency method which can quickly access to information 

associated with the current scene and tasks. We construct 

a combination saliency model in this step. The latter step 

is presented to characterize the gradient symmetry of 
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ship sides based on a novel histogram of oriented gradi-

ent (HOG).  

Firstly, the visual saliency detection method is 

performed to extract the suspected ship target regions. 

Visual saliency has been widely used to highlight 

valuable targets while suppressing background in target 

detection. In this letter, a combination saliency model 

based on hypercomplex frequency domain transform 

(HFT) and phase quanternion Fourier transform (PQFT) 

is constructed for searching target region. The overall 

continuity of the same target region and the distinguishability 

between different target regions are enhanced simultaneously 

by this process. 

Based on HFT model, we improve it in color, fre-

quency domain transform and scale. The CIE Lab color 

system is used to describe the features in place of RGB 

color features. Then, the value of each pixel in an image 

is represented as follows: 

( ) 1
( , ) ( , )q x y L x y L u= − +  

( ) ( )2 3
( , ) ( , )a x y a u b x y b u− + − ,              (1) 

where x and y denote the pixel positions in spatial do-

main, and u1, u2, u3 are unit pure quaternions with u1⊥u2, 

u2⊥u3, u3⊥u1, u1u2=u3, u1u2u3=−1. L, a and b are color 

features, while L , a and b are average values of L, a 

and b on the whole image. 

The discrete cosine transform is used instead of 

discrete Fourier transform. The spectrum scale-space is 

used for handling amplitude spectra at different scales, 

defined as： 

[ , ] ( ( , ))Q u v DCT q x y= ,                      (2) 

( , ) [ , ]A u v Q u v= ,                          (3) 
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where u and v denote the pixel positions in frequency 

domain; DCT (·) denotes the discrete cosine transform. A 

represents the amplitude spectra. G(·) denotes Gaussian 

kernels. A collection of derived signals Λ(u, v; k) are 

defined by the convolution of the amplitude spectra A 

with the series of Gaussian kernels. k is the scale pa-

rameter, and it is set to be k=1, 2, 3. 

The better one (S´(x, y)) from a series of saliency 

maps Sk is obtained based on entropy criterion. Then, we 

smooth it by Gaussian filtering. The saliency map S1(x,y) 

based on HFT is expressed as: 

( ) ( )( )21
,S x, y g S x y′= ⊗ ,                   (6) 

where g is a 2-D Gaussian filter, and ⊗ denotes convolu-

tion. 

The similar procedure is applied in improving the 

PQFT method. The value of each pixel in an image is 

represented as a quaternion as follows: 

1 2 3
( , ) ( , ) ( , ) ( , )q x y L x y u a x y u b x y u= + + .        (7) 

The discrete cosine transform is used instead of dis-

crete Fourier transform. The logarithm value of ampli-

tude spectra can be calculated using Eq.(8). The saliency 

map S2(x, y) based on PQFT is obtained.
   

log( ) log( [ , ] )AL A Q u v= = .                  (8) 

The saliency map S1(x, y) and saliency map S2(x, y) are 

fused based on the following formula. The fusion result 

combines the advantages of two models. Before fusing, 

the saliency maps from two models are scaled to [0, 1]. 

The final map S(x,y) is calculated as: 

( ) ( ) ( )
1 1 2 2

, , ,S x y z S x y z S x y= × + × ,           (9) 

where z1 and z2 are weights, and they are set to be z1=0.3 

and z2=1−z1, empirically. The results of our saliency de-

tection method are shown in Fig.1. As we can see, the 

proposed method generates sharper and more uniform 

highlighted salient regions compared with other methods. 

Most of thin clouds, mist and sea clutters are eliminated. 

Different sizes of ships are highlighted fast and accu-

rately. 

 

   

   
(a)                      (b) 

   

   
(c)                       (d) 

Fig.1 Visual comparison of saliency maps with dif-

ferent methods: (a) Original image; (b) HFT; (c) PQFT; 

(d) The proposed  

 

Then, an adaptive coarse segmentation method based 

on OTSU is used to extract the candidate regions: 
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S(x,y) is binarized by setting any pixel larger than T to 

1, otherwise the rest of the pixels to 0. According to the 

binary map, we define the regions covered by the 

bounding rectangle of each connected area as candidate 

regions. Many candidate chips can be obtained in this 

step. But it is still possible to detect some heavy clouds, 

islands or coast. Candidate chips may contain real and 

false targets. So, the discrimination is necessary. The 

next work is applied to solve this problem. In order to 

ensure that the target has a good integrity, we extend the 

range of coordinate of each candidate chip to 10 pixels. 

Different from the segmentation method in Ref.[15], 

an effective method based on GrabCut is proposed to 

segment the target chips accurately in this letter. This 

process can be done automatically. This method is based 

on the texture and color information to extract the target 

from the candidate chips precisely. In order to overcome 

the shortcomings of manual operation in previous algo-

rithm, these candidate chips are disposed directly instead 

of segmenting the whole image. The ranges of (4, col-4) 

and (4, row-4) in horizontal and vertical directions of the 

chip are the foreground. The rest is the background. In 

the candidate target chip, only a single target and a small 

portion of the surrounding area are contained. Besides, 

the targets are relatively small. In general, the number of 

iterations is set as 2. If the sea background is complex or 

the target chip is large, it can be set as 3. 

Given a target chip after fine segmentation, it should 

be symmetric by rotating and aligning the ship axis to the 

vertical direction. Radon transform is used to perform 

this task. The illustration is shown in Fig.2 in detail. 

 

     

(a)             (b)                    (c) 

     

(d)                 (e)             (f)  

Fig.2 The process of Radon transformation: (a) Gray 

image; (b) Binary image; (c) Radon transform (θ pre-

sents the rotation angle ranging from 0 ° to 180 °.); (d) 

The angle with the highest Radon correlation; (e) Ro-

tating; (f) Regular chip  

An effective descriptor identifying the real ship is 

critical for the final discrimination. In general, a robust 

ship descriptor should meet the requirement that it is 

applicable to ships with different sizes firstly. Inspired by 

the facts that a ship always has a long bar-type shape, 

and the gradients of the two ship sides are symmetrical, a 

novel descriptor based on HOG is applied in this letter. 

The traditional HOG descriptor identifies an object by 

the gradients from its multi-parts. But it is sensitive to 

the orientation small targets. To overcome this, we align 

the target axis to the vertical direction by Radon trans-

form. And the rotation invariance is fulfilled. The gradi-

ent orientations are divided into eight specific bins, 

h1—h8 as shown in Fig.3(a). The angle in each bin is 

45°. To identify the target more accurately, we divide the 

body of ship along the axis direction into three blocks, 

B1, B2 and B3. They are one whole and two halves as 

shown in Fig.3(b). Theoretically, magnitudes in bins h1 

and h5 acquire higher statistical quantities relative to 

others in all blocks. This can be explained by that the 

ship target has a pair of parallel long sides, which leads 

to strong and symmetric responses on the gradient. So, 

the descriptor presented has a good robustness in identi-

fying ships. Moreover, the proposed descriptor is very 

effective for different sizes of ships. 
 

     
(a)                          (b) 

Fig.3 Illustration for bins and blocks: (a) Intervals of 

eight bins; (b) Three blocks 
 

We summarize three rules for HOG in characterizing ship 

targets as follows: 1) Magnitudes in h1 and h5 should be 

bigger than those of others; 2) Magnitudes in h1 and h5 

should be matchable; 3) The three blocks should satisfy the 

two rules above simultaneously. 

However, the image is often disturbed by clouds, clut-

ters, islands and illumination variances in fact. So, ships 

in real images might not strictly comply with these rules. 

Regarding the degradation, the relaxation parameters α1, 

α2 and γ are introduced to relax the constraints. Let 

H={hi, i=1, 2, 3, … , 8}, Hf={h1, h5}, Hp={h2, h3, h4, 

h6, h7, h8}, where 
f

H is the average of Hf, and 
p

H is 

the average of Hp. The following conditions should be 

satisfied to decide the suspected target is a real ship: 

p
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the parameters are set as follows: α1=0.6, α2=0.7, γ=0.65. 

To give an objective performance evaluation of the 

algorithms, we test them on 80 panchromatic satellite 

images with size of 300×210 from Google Earth under 

different weather conditions. These images are evenly 

divided into two groups: one group with simple sea sur-

face and the other with complicated sea surface. 

In the first step, the proposed saliency detection 

method is evaluated according to the values of Recall, 

Precision and F-Measure. The PQFT and HFT methods 

are used to be compared with the proposed saliency de-

tection method. Given a ground-truth saliency map G 

and the detected saliency map S for an image, we have 

the following formulas. The corresponding curves are 

shown in Fig.4. As we can see, the proposed method has 

a better effect in generating sharper and more uniform 

highlighted salient regions compared with other methods. 

It is also more effective for eliminating background in-

terferences and detecting ship targets with different sizes. 

x x
x

x
x

g s
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×
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∑
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x x
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(a) 

 
(b) 

Fig.4 Performance comparison of different saliency 

models: (a) RP curves; (b) F-Measure 

In the second step, we evaluate the total detection 

performance of the proposed method with discrimination 

using accuracy rate (Cr) and false alarm rate (Far). They 

are defined as follows. 

tt

t

N
Cr

N
= ,

 

                               (14) 

fa

tt fa

N
Far

N N
=

+
,                          (15) 

where Nt is the total number of real ships, Ntt is the 

number of real detected ships, and Nfa is the number of 

false alarms. The detection results are shown in Tab.1. 

Two unsupervised methods proposed in Ref.[4] and 

Ref.[6] are used for comparison with the proposed 

method. In addition, the proposed method without the 

step 2 and that with the step 2 are also compared to test 

the performance of the HOG descriptor. 

 

Tab.1 Detection results of different methods 

Image group Methods Nt Ntt Nfa Cr (%)
Far 

(%)

Ref.[4] 93 75 14 80.645 15.730

Ref.[6] 93 79 10 84.946 11.236

The proposed method 

without step 2 
93 89 7 95.699 7.292

Simple sea 

surface 

The proposed method 

with step 2 
93 89 2 95.699 2.198

Ref.[4] 116 85 36 73.276 29.752

Ref.[6] 116 93 30 80.172 24.390

The proposed method 

without step 2 
116 106 24 90.517 18.461

Complex sea 

surface 

The proposed method 

with step 2 
116 103 11 88.793 9.649

     

 

The results in Tab.1 indicate that the proposed method 

with the step 2 performs better for different sea groups 

due to the saliency detection and the novel HOG de-

scriptor. The method in Ref.[4] is sensitive to the noises 

when target candidates are extracted and its detection 

results are relatively poor. The method in Ref.[6] can 

overcome the cluttered background by utilizing 

length-width ratio and compactness. But it is less suc-

cessful when detecting small target and clouds cover. 

Compared with the proposed method without the step 2, 

we note that the Far after the discrimination has been 

reduced largely. The Cr decreases a little because the 

ship target may be deformed on the complicated sea sur-

face. Some detection results output by our method are 

shown in Fig.5 respectively. Some heavy clouds, islands 

and coast are eliminated and different sizes of ship tar-

gets can be detected successfully. 

Furthermore, the relaxation parameters α1, α2 and γ are 

crucial in ship discrimination. We briefly test their ef-

fects by varying one parameter while fixing others as 

empirical values. The relationship curves are shown in 

Fig.6. Based on these results, they are set as follows after 

testing plenty of images: α1=0.6, α2=0.7, γ=0.65.  
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Fig.5 Some detection results of the proposed method 

 

   
(a)                           (b) 

   
(c)                           (d) 

Fig.6 Cr and Far curves for different relaxation pa-

rameters: (a) and (b) simple sea surface; (c) and (d) 

complicated sea surface 
 
With regard to the time consumption, our method can 

basically achieve the near-real-time. The proposed sali-

ency detection method consumes a total of 1.693 s to 

process an image in the first step. In the second step, 

taking an example of ship target chip with size of 55*92, 

the average running time of coarse segmentation, fine 

segmentation, Radon transform and HOG is 0.097 s, 

0.025 s, 0.217 s and 0.166 s, respectively. 

In this letter, a novel unsupervised method is proposed 

to detect and extract ships from optical remote sensing 

images. In order to generate sharper and more uniform 

highlighted salient regions, a saliency model is con-

structed which combines the merits of HFT and PQFT. 

Then, some regular target chips are extracted after fine 

segmentation and Radon transform. To characterize ship 

targets and discriminate them more accurately, a novel 

descriptor based on HOG is introduced. Due to the con-

tribution, the false alarms in the candidate chips are 

greatly suppressed and most real ship targets are well 

preserved. The experiments on real satellite images con-

firm that the proposed method not only outperforms the 

state-of-the-art methods, but also is robust for scenes 

with clouds, islands, sea clutters, and different sizes of 

ships. 
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