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This paper presents a biologically inspired adaptive image enhancement method, consisting of four
stages: illumination estimation, reflection extraction, color restoration and postprocessing. The illumi-
nation of the input image is estimated using guided filter. We propose to utilize the smoothed Y channel
in the YCbCr color space as the guidance image, since it can better capture the illuminance of the real

color restoration. In order to further improve the quality of the extracted reflection, we explore a learning
strategy to select the optimal parameters of the nonlinear stretching by optimizing a novel image quality
measurement, named as the Modified Contrast–Naturalness–Colorfulness (MCNC) function. Compared
with the original CNC function, the proposed MCNC function employs a more effective objective criterion
and can better agree with human visual perception. Both qualitative and quantitative experiments
demonstrate that the proposed method is adaptive and robust to outdoor images and achieves favorable
performance against state-of-the-art methods especially for images captured under extremely hazed or
low-light conditions.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

In numerous applications of computer vision technology, such
as visual tracking, anomaly detection and recognition, clear images
are the critical prerequisite for good understanding of the real
scenes. In practice, however, the quality of the images captured
outdoors can be severely degraded due to various weather con-
ditions, such as low illumination, fog and haze, which result in
dimness or distortion. Therefore, enhancing and restoring degen-
erated images is particularly important.

Existing methods for image enhancement can be mainly clas-
sified into two categories [1]: (1) image restoration based on
physical models, and (2) image enhancement based on image
processing techniques.

For the first category, the optimal estimate of a haze-free image
is obtained by establishing and inverting the process of image
degradation. Various attempts have been explored, and tre-
mendous progress has been made in haze removal for single
image [2–4]. The dark channel prior (DCP) theory proposed by He
et al. [4] directly estimates the thickness of haze using the statis-
tics prior of haze-free outdoor images. Recent algorithms [5–7]
improve the DCP method in some particular aspects. Though sig-
nificant performance gain has been achieved by these methods,
results restored from images captured under the overcast
environment are still unsatisfactory. Take the DCP method for
instance, its dehazing results are clear and natural for images with
a certain brightness (Fig. 1(a) and (b)). However, it performs poorly
when the lightness of the image is in the low level (Fig. 1
(c) and (d)).

The second category of image enhancement techniques directly
improves contrast and highlights details by global or local pixel-
processing, regardless of the cause of image degradation. Some
traditional methods, such as gamma correction, contrast stretch-
ing and histogram equalization (HE), are simple but easily fail to
provide exact enhanced images and sometimes may even destroy
the image contents [8]. In contrast, more advanced methods, like
contrast-limited adaptive histogram equalization (CLAHE) [9],
wavelet transformations [10] and homomorphic filtering [8], have
shown strong robustness to images of various quality.

The Retinex theory is firstly introduced to image enhancement
by Land et al. [11] based on the observation that sensations of
color have a strong correlation with reflectance, even though the
amount of visible light reaching the eye depends on the product of
reflectance and illumination. Subsequently, a line of methods [12–
16] has been proposed. Among them, the multi-scale Retinex with
color restoration (MSRCR) method [14] proposes to estimate the
illumination of the input image using three Gaussian surround
filters with different scales and conduct enhancement by applying
color restoration followed by linear stretching to the logarithm of
reflectance. Though the MSRCR method has demonstrated a strong
ability in providing dynamic range compression and preserving
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Fig. 1. DCP's success and failure. Success: for the image (a) with a certain brightness, the recovered image (b) looks nature and clear. Failure: for the low-light image (c), the
result (d) is still dim with low contrast.

Fig. 2. MSRCR [14]'s success and failure. Success: for the original image (a), the lightness and contrast are greatly improved in its enhanced result (b). Failure: the image (c) is
enhanced too much, blocking effects and color distortion appear in the result (d).
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most of the details (see Fig. 2(a) and (b)), a large number of
parameters are involved and set empirically, such as the scales and
weights of Gaussian filters, and stretching factors, which limits the
generalization ability and often results in pseudo halos and
unnatural color (see Fig. 2(c) and (d)).

Recently, some improvements on MSRCR have been proposed.
Rather than utilizing the Gaussian filters to perform the illumi-
nation estimation, the method in [17] employs a denoising tech-
nique called non-local means filter, assuming that the denoised
image is equivalent to the illumination image. In [18], the illumi-
nation of the input image is estimated using a guided filter, which
not only plays the smoothing role, but also transfers the structure
of its guidance image to the filtering output. Jang et al. [19] pro-
pose the visual contrast measure (VCM) method to select the
scales and weights of Gaussian filters for illumination estimation,
while the parameters of MSRCR in [20] are optimized using the
particle swarm optimization (PSO) method. Apart from the
obtained reflectance, the mid-tone of the image is also considered
in [21] by applying an inverse sigmoid function to the estimated
illumination.

This paper focuses on improving the visual quality of outdoor
images, especially for those captured under the overcast or low-
light conditions. To this end, we propose a biologically inspired
adaptive image enhancement method. The pipeline of the pro-
posed method is shown in Fig. 3.

Firstly, we also exploit guided filter to estimate the illumina-
tion. However, different from [18] which directly uses the input
image as the guidance image of the guided filter, we utilize the
smoothed Y channel in the YCbCr color space, which can better
reflect the luminance of the real scene. The smoothing operation
of the Y channel is conducted by utilizing a weighted combination
of three Gaussian filters with different scales, the weights of which
depend on the local contrast [19] of the Y channel. According to
the estimated illumination, the reflection of the input image is
then predicted using the Retinex algorithm. Finally, the predicted
reflection is further refined via color restoration followed by a
novel automatic postprocessing method to obtain the final
enhanced image. Specifically, in the postprocessing stage, we
explore a learning strategy to select the optimal parameters of the
nonlinear stretching by optimizing a novel image quality mea-
surement, named as the Modified Contrast–Naturalness–Color-
fulness (MCNC) function. Compared with the original CNC function
[22], the proposed MCNC function employs a more effective
objective criterion and thus better agrees with human visual
perception. The optimization of parameters is conducted by using
the QDPSO method [23], which has a stronger ability of global
searching than the PSO method utilized in [20].

The contributions of this paper can be summarized as follows:

(1) We propose a novel design for the guided filter by utilizing the
smoothed Y channel in the YCbCr color space as the guided
image, which can reflect the luminance of the real scene and
facilitates a better estimation of the illumination.

(2) We propose the MCNC function for the evaluation of image
quality, which is more effective and better accord with the
human visual perception than the CNC function considering
both color and contrast of images.

(3) We explore a novel and effective postprocessing method,
where the parameters of the stretching are adaptively deter-
mined by maximizing the value of MCNC function.

The remainder of this paper is organized as follows: the multi-
scale Retinex with color restoration (MSRCR) method is explained
in Section 2. In Section 3, a novel biologically inspired image
enhancement method based on Retinex is proposed. Both quan-
titative and qualitative experimental results are reported in Sec-
tion 4. Section 5 summarizes our work.
2. Multi-scale Retinex with color restoration (MSRCR)

According to the Retinex theory [11], the visual rendering of an
image relies on two factors: the distribution of the source illumi-
nation and that of the scene reflectance, where the latter has a
strong correlation with the sensations of color for the human
visual system. Since human eyes exhibit a logarithmic response to
the lightness, image enhancement based on the Retinex theory is
performed by

Rðx; yÞ ¼ log Iðx; yÞ� log Lðx; yÞ; ð1Þ
where I is the image; ðx; yÞ denotes pixel coordinate; L is the illu-
mination and R is the Retinex output.

Note that the calculation of the illumination L is a singularity
problem. In [13,14], the illumination is approximated by filtering
the image with the Gaussian surround function, and the color
image enhancement is conducted using the single-scale Retinex
(SSR) [13] as

Ri ¼ log Iiðx; yÞ� log fFðx; yÞnIiðx; yÞg; ð2Þ
where iAfr; g; bg and Ii is the ith channel of the input image; Ri is
the ith channel of the SSR's output; ”n” represents the convolution
operation; Fðx; yÞ is the Gaussian surround function which is
defined as

Fðx; yÞ ¼ 1ffiffiffiffiffiffi
2π

p
c
exp �x2þy2

2c2

� �
; ð3Þ

where the scale c of the Gaussian filter has an important impact on
the result [14,19]. Specifically, a small-scale Gaussian filter can well
preserve the information of the objects' shape in the estimated
illumination, which leads to prominent details in the output, but
may easily cause halos and color distortion. On the contrary, a
large-scale Gaussian filter can well preserve the image color, but
fails to maintain the local contrast and object shape information.
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In order to provide both dynamic range compression and tonal
rendition simultaneously, the multi-scale Retinex with color
restoration (MSRCR) [14] exploits a weighted combination of three
Gaussian filters with different scales to conduct color image
enhancement by

Rmsrcri ¼ G Ciðx; yÞ
X3
k ¼ 1

ωkRi;ck

 !
þt

( )
; ð4Þ

where Ri;ck is the output of the SSR method computed by Eq. (2)
using the Gaussian filter whose scale is ck; ωk is the corresponding
weight; G and t are the gain and the offset for stretching adjust-
ment, respectively; Ciðx; yÞ is the color restoration function of the
ith (iAfr; g; bg) channel defined as

Ciðx; yÞ ¼ β log ½αIiðx; yÞ�� log
X

iA fr;g;bg
Iiðx; yÞ

2
4

3
5

8<
:

9=
;; ð5Þ

where β is a gain constant and α controls the strength of the
nonlinearity.

Though the MSRCR algorithm has strong abilities of providing
good dynamic range compression and preserving most of the
details, there are too many parameters involved [14], such as the
scales and weights of Gaussian filters, the gain and offset para-
meters in the stretching. Besides, all the parameters are empiri-
cally set, which decrease the robustness of the MSRCR algorithm
and often result in pseudo halos. In order to handle this issue, our
method explores a learning strategy to adaptively determine the
parameters for each input image and achieves more robust
performance.
3. Enhancement algorithm

In this section, we present a biologically inspired adaptive
image enhancement method, which consists of the following three
steps: (1) illumination estimation using a newly designed guided
filter, (2) reflection extraction followed by color restoration, and
(3) postprocessing.

3.1. Illumination estimation

The guided filter [24] performs smoothing operator which can
transfer the structure of the guidance image to the filtering output.
Given an input image in YCbCr color space, we estimate the illu-
mination of the image using guided filter with the Y channel as the
guidance image, which can better reflect the luminance of the real
scene. In practice, we observe that the Y channel contains rich
local boundary details, which could cause redundant information
to be transferred if directly used as the guidance image, so a
smoothing operation over the Y channel is necessary.

Following [14], the smoothing operation is performed by a
weighted combination of three Gaussian filters, whose scales are
c1 ¼ 240, c2 ¼ 80 and c3 ¼ 15. The corresponding weights are
determined by w1 ¼ ð2nPþ1Þ=3, w2 ¼w3 ¼ ð1�w1Þ=2, where P is
the normalized local contrast [19] of the Y channel computed as

P ¼ 1� 1
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nb

XNb

l ¼ 1

ðml�mÞ2
vuut ; ð6Þ

where Nb is the number of divided sub-blocks; ml represents the
average luminance of the lth sub-block; and m indicates the
average luminance of the Y channel. The smoothing process can
then be performed by the combination of three Gaussian filters as

Yf ðx; yÞ ¼
X3
k ¼ 1

ωk Fkðx; yÞnYðx; yÞ
� �

;

Fkðx; yÞ ¼
1ffiffiffiffiffiffi
2π

p
ck

exp �x2þy2

2c2k

( )
; ð7Þ

where Fk is the kth Gaussian filter whose scale and weight are ck
and wk, respectively. Using Yf as the guidance image, the illumi-
nation is estimated by applying the guided filter to the input image
as follows:

Liðx; yÞ ¼
1

jwðx;yÞ j
X

ðu;vÞAwðx;yÞ
aðu;vÞi Yf ðx; yÞþbðu;vÞi

n o
; ð8Þ

where Li is the ith (iAfr; g; bg) channel of the estimated illumina-
tion; Yf is the smoothed Y channel of the input image, which is
utilized as the guidance image; wðx;yÞ denotes the local square
window centered at (x,y); jwðx;yÞ j denotes the number of pixels in
wðx;yÞ; aðu;vÞi and bðu;vÞi are some linear coefficients computed as

aðu;vÞi ¼
1

jwðu;vÞ j
P

ðk;jÞAwðu;vÞ Iiðk; jÞYðk; jÞ�μðu;vÞ
i μðu;vÞ

Y

ðσðu;vÞ
Y Þ2þε

;

bðu;vÞi ¼ μðu;vÞ
i �aðu;vÞi μðu;vÞ

Y ; ð9Þ
where Ii is the ith (iAfr; g; bg) channel of the input image; μðu;vÞ

i is
the mean of Ii in wðu;vÞ; μðu;vÞ

Y and ðσðu;vÞ
Y Þ2 are the mean and variance

of Yf inwðu;vÞ, respectively; ε is a regularization parameter. In all the
reported experiments, the size of each local square window is set
to 30�30 pixels, and the regularization parameter ε is set to 0.01.

Fig. 4 shows the robustness of the proposed method in pre-
dicting the illumination. The illumination of the input image (Fig. 4
(a)) is dim and uniform. The illumination estimated by the method
of [14] demonstrates redundant information of the local bound-
aries, which do not belong to the distribution of the illumination
and may lead to excessive enhancement and halos in the final result
(Fig. 4(c)). Since our method adopts the smoothed Y channel (Fig. 4
(d)) as the guidance image, the estimated illumination (Fig. 4(e))
can better reflect the uniform distribution of the real scene, which
makes the final enhanced image (Fig. 4(f)) more clear and natural.

3.2. Reflection extraction and color restoration

After estimating the illumination, the reflection of the image is
extracted from the original image as follows:

Rðx; yÞ ¼
X

iA fr;g;bg
log Iiðx; yÞ� log Liðx; yÞ; ð10Þ

where Ii and Li are the ith (iAfr; g; bg) channel of the input image
and illumination, respectively; Rðx; yÞ is the logarithmic distribu-
tion of scene reflectance.

Considering a color restoration scheme that provides good
color rendition for images containing gray-world violations, Eq.
(10) is modified [14] as follows:

Rðx; yÞ ¼
X

iA fr;g;bg
Ciðx; yÞflog Iiðx; yÞ� log Liðx; yÞg ð11Þ

where Ci is the color restoration function for the ith channel,
which is computed as Eq. (5). In our experiment, we empirically
set the parameters of Ci as β¼1 and α¼125.

3.3. Postprocessing

In the MSRCR method [14], the final output is obtained by using
a pair of gain and offset constants G and t (in the Eq. (4)) for the
transition between the logarithmic domain and the display
domain. However, we argue that such a global linear stretching
sometimes cannot provide prominent details for the region of
interest. In order to address this issue, we propose a novel auto-
matic postprocessing method, which consists of nonlinear
stretching and parameters optimization. Specifically, the



Fig. 4. Illumination estimation. (a) Original image, (b) illumination estimated by [14], (c) enhanced result of [14], (d) guidance image Yf, (e) illumination estimated by our
method, and (f) enhanced result of ours.
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parameters of the stretching are learned by maximizing the MCNC
value (see Section 3.3.2) of the output image, which is efficiently
solved by using the QDPSO algorithm (see Section 3.3.3).

3.3.1. Stretching
Fig. 5 shows the statistic curve of the cumulative distribution

function (CDF) [25] of pixel intensity values in natural images. It
can be observed that only a few pixel values of images are in a
saturated state, and the majority fall in the range of ½Rlow;Rhigh�,
where Rlow and Rhigh denote the lower and upper saturated points,
respectively. In addition, those pixels in the saturated state have
little impact on the whole image.

In order to highlight the main details of the image, we only
stretch those pixels whose values fall into the range of ½Rlow;Rhigh�
by gamma correction [26] as follows:

Rout
i ¼

0 Riðx; yÞoRlow
i

255
Riðx; yÞ�Rlow

i

Rhigh
i �Rlow

i

 !γi

Rlow
i rRiðx; yÞrRhigh

i

255 Riðx; pyÞ4Rhigh
i

8>>>>><
>>>>>:

; ð12Þ
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where iAfr; g; bg, Riðx; yÞ is the ith channel of logarithmic dis-
tribution of scene reflectance after color restoration computed by
Eq. (11). When the value of the gamma coefficient [27] γi is greater
than 1, the correction produces a concave downward function, and
consequently bright parts of the image are compressed and the
dark parts are extended; while the value is less than 1, the
opposite effects are produced. The saturated points Rlowi and
Rhighi of the ith channel are estimated as follows:

Rlow
i ¼ μi�val � σi;

Rhigh
i ¼ μiþval � σi; ð13Þ

where μi and σi are the mean and the mean-square deviation of
the pixel intensities in the ith channel, respectively; and val is a
truncation factor. It is observed in our experiments that both the
gamma coefficient γi and the truncation factor val directly have
significant influence on the contrast and lightness of the enhanced
image. Different from [28] where the truncation factor is fixed for
all the input images, we employ an adaptive learning method to
determine the optimal values of γi and val for each image by
maximizing the value of the modified Contrast–Naturalness–Col-
orfulness (MCNC) function (described in Section 3.3.2). Thus, our
method is more robust and can obtain pleasant enhanced results
for various kinds of degraded outdoor images.
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3.3.2. Modified Contrast–Naturalness–Colorfulness (MCNC) function
The human vision system is highly sensitive not only to the con-

trast, but also to the color quality [22] which measures both the
naturalness and colorfulness of the images [29]. As an objective
measurement for image quality, the Contrast–Naturalness–Color-
fulness (CNC) function [22] achieves favorable performance against
other methods [30–32] by simultaneously considering the following
three indexes: contrast, naturalness and colorfulness. In practice,
however, we found that the measurement of contrast in [22], com-
puting the ratio of the cardinal numbers of visible edges of the
enhanced image and the input image, cannot work well when block
effects appear or some noise is enhanced in the result images. Thus
we modify it by adopting an efficient objective criterion [20,33]. The
definitions of the three indexes are listed below:

Contrast: In [20,33], the contrast of the enhanced image is
assessed by the performance measures including entropy, sum of
edge intensities and number of edge pixels. We measure the
modified contrast index (MCI) in a similar way as follows:

MCIðIÞ ¼ log ðlog ðEðIvisÞÞ �
neðIvisÞ
M � N

� HðIvisÞ; ð14Þ

where I is the gray-level of the enhanced image of M � N pixels;
Ivis is the visible edge image of I, which is computed as [30]; Eð�Þ
represents the sum of intensities; neð�Þ denotes the number of
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Fig. 7. Haze Example 1. (a) Original image and its results processed by the (b) DCP [4], (c) Visibresto [5], (d) WD [7], (e) MSRCR [14] and (f) proposed. The regions (indicated
by red bounding box) are zoomed in and demonstrated on the right. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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edges; and Hð�Þ indicates the entropy value of the histogram. Note
that, though in a similar spirit, the proposed contrast measure-
ment differs from [20,33] in that we utilize the visible edge map
[30] rather than the Sobel or Canny edge detector, since the former
is more consistent with the human vision.

Naturalness: The naturalness of the image indicates the degree of
correspondence between human perception and the reality world
[29,34]. In this paper, the color naturalness index (CNI) is evaluated
using the method in [29], and belongs to range of ½0;1�. As CNI
increases towards 1, the color of the image becomes more natural.

Colorfulness: The colorfulness of the image, denoted as CCI,
reflects the richness and vivid degree of color [29,34] and is
measured by the metric proposed in [35]. When CCI is in the range
of ½20;30�, the color of image is suitable for human vision [34].

The modified CNC function incorporating the three indexes
above is defined as

MCNCðIÞ ¼ ðMCIðIÞ1=n1 þCCIðIÞ1=n2 Þ � CNIðIÞ; ð15Þ

where the hyperparameters n1 and n2 are both set to be
5 according to [22].

An image with good quality, i.e., with high contrast, natural and
vivid color which are consistent with the human vision, should
have a high MCNC value. Therefore, we employ the MCNC function
of the output image as the objective function, which is maximized
to obtain the final enhanced image and the corresponding optimal
parameters (the gamma coefficient γi and the truncation factor
val). The optimization process is conducted by the QDPSO algo-
rithm, which is an effective optimization method and will be
explained next.
3.3.3. Parameter optimization by QDPSO
Based on the above observation, we formulate the searching for

the optimal parameters as the maximization of the MCNC function
as follows:

〈γnr ; γ
n

g ; γ
n

b; val
n
〉¼ arg max

γr ;γg ;γb ;val
MCNCðRoutðγr ; γg ; γb; valÞÞ;

s:t: 0:5rγir2:0; iAfr; g; bg
2:5rvalr3:0 ð16Þ

where γi represents the gamma coefficient for the ith color channel;
val denotes the truncation factor (shared across different color
channels); and Rout ðγr ; γg ; γb; valÞ is the enhanced output computed
by Eq. (12) with parameters γr, γg, γb and val. We solve the optimi-
zation problem in Eq. (16) using the quantum delta-potential-well-
based particle swarm optimization (QDPSO) method [23]. Specifically,
the four parameters are treated as the 4-D position of a particle. The
position of the particles are first randomly initialized according to the
constraints in Eq. (16). In each iteration, the particle with the maximal
MCNC value is regarded as the current best one, that is, its corre-
sponding enhanced image is currently better than the others with
respect to the quality of contrast, naturalness and colorfulness. The
locations of all particles are updated until the termination criterion is
met. Then the current best particle in the last iteration is the global
optimal one, whose corresponding enhanced image is most con-
sistent with the human vision and will be output as the finally
enhanced image. Detailed algorithm is outlined in Algorithm 1.

Algorithm 1. Biologically inspired image enhancement based on
Retinex.

Input: I: the original image; N: the number of particles; K: the
number of iterations;
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Input: I: the original image; N: the number of particles; K: the
number of iterations;
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d bounding box) are zoomed in and demonstrated on the right. (For interpretation
n of this paper.)
Input: I: the original image; N: the number of particles; K: the
number of iterations;
) Visib
of th
pbestnðkÞ ¼ arg max MCNCðRout
n ðjÞÞ; j¼ 1;2;…; k

Rout
bestðkÞ ¼ arg max MCNCðpbestnðkÞÞ;n¼ 1;2;…;N

Update all the XðkÞ
n ðn¼ 1;2;…;NÞ according to [23];

k¼ kþ1;
end while

Routn ¼ Rout
bestðKÞ;

return Routn ;
15:

4. Experiments and results

In this section, experiments and evaluations are conducted
from three aspects. We first evaluate the robustness of the pro-
posed method on a large dataset, and then compare our method
with state-of-art algorithms qualitatively and quantitatively on
some specific instances.
resto [5], (d) WD [7], (e) MSRCR [14] and (f) proposed. The regions (indicated
e references to color in this figure caption, the reader is referred to the web
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4.1. Evaluation on a large dataset

To validate the robustness of our image enhancement method,
especially the proposed guided filter (Section 3.1) and the para-
meter optimization technique (Section 3.3.3), we evaluate the
proposed method on a large dataset consisting of 1000 images
randomly sampled from 27 aerial videos. Each image demon-
strates a different outdoor scene, which makes our dataset cover
1000 different outdoor scenes in total.

We use four indexes to quantitatively evaluate the performance
of our method, including the contrast MCI, the naturalness CNI, the
colorfulness CCI and the MCNC values (see Section 3.3.2). As
mentioned above, with the increase of the value of CNI towards 1,
the image looks more natural. When the value of CCI is within
½20;30�, the colorfulness of the image is moderate to human eyes.
When the contrast and color quality of the image are improved,
Fig. 9. Low-light examples. (a) Original image, and its results processed by the (b) CLAH
bounding box) are zoomed in and demonstrated on the right. (For interpretation of the r
this paper.)
the values of both MCI and MCNC will increase. Fig. 6 depicts the
statistical results, where the blue dots stand for original images
and the red asterisks for the enhanced results. It is clear that the
four indexes of the original images are distributed randomly with
low values, while the indexes of the enhanced results are clustered
with high values. The results show that our method is effective
and robust to various kinds of outdoor scenes, which can be
attributed to the adaptive parameter optimization approach and
that the guidance image we utilized for the guided filter can better
reflect the luminance of the real scene.
4.2. Qualitative evaluation

In this section, two kinds of challenging weather conditions,
including overcast and low-light, are considered for qualitative
evaluation.
E [9], (c) RRE [36], (d) MSRCR [14] and (e) proposed. The regions (indicated by red
eferences to color in this figure caption, the reader is referred to the web version of



Table 1
CNC, MCNC and evcm of the result images produced by five methods on two haze examples.

Test image DCP Visibresto WD MSRCR Proposed

CNC MCNC evcm CNC MCNC evcm CNC MCNC evcm CNC MCNC evcm CNC MCNC evcm

Suburb 2.25 2.41 2.35 1.64 1.78 1.24 2.14 2.24 2.17 2.22 2.31 3.11 2.56 2.77 3.65
Airport 1.59 1.78 1.31 1.27 1.34 1.15 2.07 2.32 2.39 2.45 2.75 4.88 2.67 2.99 4.23

Table 2
CNC, MCNC and evcm of the result images produced by four methods on three low-light examples.

Test image CLAHE RRE MSRCR Proposed

CNC MCNC evcm CNC MCNC evcm CNC MCNC evcm CNC MCNC evcm

Bridge 2.08 2.28 7.44 1.59 1.69 4.79 1.72 1.59 8.11 2.09 2.33 8.83
Greenbelt 1.89 1.87 5.19 2.26 2.16 3.99 2.89 2.97 9.24 2.82 3.09 10.05
Lamplight 2.12 2.18 3.93 2.24 2.38 4.34 2.45 2.41 10.53 2.81 3.10 11.59
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For the overcast condition, we compare our method with four
state-of-art algorithms: the Dark Channel Prior (DCP) method [4], the
fast visibility restoration (Visibresto) method [5], the Wiener defog
(WD) method [7], and the MSRCR method [14]. Among them, the
first three methods are based on the physical model, which can well
handle mist but perform poorly for other kinds of degenerations,
such as low-light condition. Thus, for the low-light condition, we
adopt three other enhancement algorithms for comparison, including
the contrast-limited adaptive histogram equalization (CLAHE) [9],
Retinex with a robust envelope (RRE) method [36], and MSRCR [14].

Figs. 7 and 8 show two examples under overcast condition,
where the original images are both from NASA's web site. From
this figure, we can observe that the DCP method performs well on
haze removal, but its haze-free results are dark overall with small
dynamic range. For the Visibresto method, there still exist residual
haze more or less in the results, whose lightness are also insuffi-
cient. The WD method performs well on the second example but
failed on the first one. Compared to the first three methods which
are all based on the physical model, the MSRCR and the proposed
method perform better in terms of contrast and lightness. In
addition, our results expose more amount of information, and look
more pleasant with vivid color and good dynamic range.

Fig. 9 shows three low-light examples, where the first original
image is from the internet and the other two are captured by
ourselves. Overall, all the four methods work well and improve the
visibility of the images. However, the darkness in the results of the
MSRCR method and our method is removed more thoroughly. In
comparison, the results obtained by our method reveal the most
amount of information, with pleasant color quality and contrast.

4.3. Quantitative evaluation

The methods are quantitatively assessed using three indexes
which are all based on the human vision system: (1) the Contrast–
Naturalness–Colorfulness (CNC) value [22], (2) the Modified Con-
trast–Naturalness–Colorfulness (MCNC) value (see Section 3.3.2),
(3) the evcm value, which is the ratio of the VCM values [19] of
images after and before the enhancement, and (4) the visually
optimal area [37]. Among them, CNC is a kind of comprehensive
measure system, combining contrast, naturalness and colorfulness
of images. Visual contrast measurement (VCM) provides a gross
measure of the regional contrast variations. In order to measure
the degree of improvement on the contrast, we compute the VCM
value for both the original image and its enhanced result, and then
take their ratio evcm as a compare index. The visually optimal area
is a region in a 2D space of the mean and the local standard
deviation of images. And the quality of lightness and contrast of
images belonging to this area are visually optimal.

Table 1 shows the evaluated results of CNC, MCNC and evcm on
the two haze examples in Figs. 7 and 8. we can see that the pro-
posed method achieves the best results regardless of the condition
of color, lightness and contrast. Note that in the second row, the
evcm of MSRCR is higher than ours, since the color of the road is
little saturated (see Fig. 8(e)).

Table 2 shows the evaluations of CNC, MCNC and evcm for the
three low-light examples in Fig. 9, which also demonstrates the
effectiveness of the proposed method compared with the other
three enhancement algorithms.

Fig. 10 shows the evaluation in terms of the visually optimal
area, where (a) is the result of five methods on the two haze
examples and (b) is the result of four methods on the three low-
light examples. It can be seen that our enhanced results lie either
inside or closest to the visually optimal region and outperform the
others, which again indicates that the proposed method is more
consistent with human visual systems compared with the others.

Through further analysis, we find that images captured under
overcast with extreme haze often suffer from low illumination and
poor contrast. Methods based on the physical model often fail under
such condition due to the removal of the atmospheric light [4]
which plays a important role of lighting the scene. Especially when
there exist some white objects in the original image, the atmo-
spheric light is easily overestimated, leading to more dim areas of
the result images. As for the MSRCR method and the proposed
method, they both perform well on improving contrast and light-
ness, but ours is empirically shown to be superior. For images cap-
tured under low-light condition, the proposed method can extract as
much information as possible with pleasant color compensation.
5. Conclusion

This paper presents a biologically inspired adaptive image
enhancement method, consisting of illumination estimation,
reflection extraction, color restoration, and postprocessing. Dif-
ferent from previous works, we utilize the smoothed Y channel as
the guidance image for the guided filter, which can better reflect
the luminance of the real scene. In order to further improve the
robustness of our method, we devise a learning scheme to
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adaptively determine the optimal value of the parameters for
postprocessing by maximization the MCNC function. Numerous
experiments show its effectiveness on degraded outdoor images,
especially those captured under extremely hazed or low-light
conditions. Compared with some state-of-the-art methods both
qualitatively and quantitatively, the proposed method is demon-
strated to be adaptive and more robust to outdoor images and
achieves better performance. In the future, we aim to find a more
direct relationship between the parameters of the postprocessing
and the MCNC function, rather than utilizing the QDPSO method
to conduct the optimization.
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