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Abstract: In this study, the combining strategies are considered to be effective tools to improve the performance of the
image quality assessment (IQA) metrics. A new metric is proposed to evaluate the quality of test images of combined
degradation and individual degradation. The complex numbers are used to describe the image structure in the
proposed method. On the basis of that, the properties of the classical IQA method based on singular value
decomposition are analysed. The difference between energy visual map and structure visual map is shown. The
complex-number-based approach is different from the classical scalar-based techniques, which are insufficient to
describe image structure. The proposed C_SVDQ metric can be considered as a vectorial expansion of structure
similarity. In the experiments, an extensive comparison between the proposed C_SVDQ and other IQA metrics on
image quality database was performed. Both the overall tests and the individual distortion tests show the superiority of
this new approach in IQA.
1 Introduction

In many applications of image processing, the objective image
quality assessment (IQA) plays important roles. The objective IQA
metrics are necessary to be developed to automatically measure
image quality. For the complex task of objectively assessing
perceived image quality, many approaches, therefore, rely on the
hypothesis to which image distortions of the visual system of
human (HVS) is particularly sensitive. However, in practice, it is
hard to distinguish the complicated image distortions. They can be
discerned only when the specific processing method is known or
the distorted images are generated by predefined mathematical
models. In most of the applications, the simple predefined
distortions, such as the blur and noise distortion, are only used in
some experiments in order to evaluate the behaviours of the IQA
metrics. Generally, there are three main classes of objective IQA
metrics. The most widely used IQA methods are full reference
metrics. They utilise the similarity between the distorted image
and its corresponding reference image. Although the full reference
metrics require the availability of the reference image, they are
often used as important tools for experiments of image processing
algorithms. No reference metrics are more sensible as far as the
process of image perception because the quality prediction of the
HVS in real world is based on the output image only. Owing to
our limited knowledge on the HVS, it is a challenging work to
design no reference IQA metrics. On the basis of the direct
estimation on a specific type of distortion the no reference metrics
are proposed in [1–6], such as blurred images, noise distorted
images and some types of compressed images. However, as
mentioned previously, since the complicated distortions in real
world are hard to be classified into some separated ones, the no
reference IQA metrics may have some uncertain behaviour when
they are performed in the applications. The reduced reference IQA
metrics also need the availability of a reference image, but the
information transmitted from reference images to output images is
simpler than the full reference IQA metrics. In this paper, we
mainly discuss the full reference IQA methods, where the
reference images can be obtained when evaluating the distorted
images.

Since the sensible subjective IQA metrics cannot be easily
implemented in real-time and automated systems, the robust
objective IQA metrics are necessary to be designed to
automatically evaluate image visual quality. It is known to all that
the mean squared error (MSE) method is widely used in many
fields of image processing, but its performance is poorly correlated
with the perceived image quality. Only in some simple
applications, better performance can be achieved when they are
applied to the assessment of the non-structured distortions [7]. The
peak signal-to-noise ratio (PSNR) metric has the same behaviour.
Thus, many IQA metrics are designed using the HVS models. In
these models, the HVS sensitivities to different types of visual
signals are emphasised, such as the contrast and the frequency
properties in an image. The structure-based methods, such as the
structural similarity index (SSIM) [8, 9], are inspired by the
structure properties in an image, they are proposed to reflect more
complicated distributions in an image. In SSIM, the HVS is
considered as highly sensitive to the structural information in an
image. The SSIM outputs overall objective assessment results by
calculating the average of SSIM values for all the sliding blocks in
an image. The performance of our method is better than the
traditional full reference methods. In the last few decades,
considerable progress in HVS modelling has been made, and some
successful models are widely used in many IQA methods [10–12].
They assess the image quality by modelling the behaviours of the
HVS. In fact, it is an enormous task to describe all the HVS
characteristics and integrate them into a fine mathematical model.
Therefore, many of the simple HVS-based metrics do not show
any performance improvement in comparison with the traditional
methods in most of the applications.

The general belief is that the HVS possesses image structure
sensitive property that plays an important role in image perception.
To further improve the performance of the IQA metrics, some
complicated transforms are used in some applications [13–16]. The
multiscale geometric analysis metric uses mathematical model to
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mimic the multichannel property of the HVS [14]. These solutions
are attractive since they provide more effective representation for
the structural information. Recently, many metrics have been
proposed to reflect image quality visually. Shnayderman et al. [17]
introduced an effective IQA algorithm called ‘MSVD’. The
grey-scale images are divided into some blocks and the singular
value decomposition (SVD) transform is performed on the blocks.
Then the singular value block is produced by this method.

The calculation of pixel errors is considered as an important basis
in full reference metrics. SSIM is a widely used IQA metric that has
many versions. Many researchers choose to expand the work of
SSIM in order to improve the performance of their models [18–
20]. In the spatial domain, the task can be performed by some
statistical models of locally normalised coefficients, such as the
gradient map and local variance distribution map. The gradient
map can reflect the HVS-sensitive information contained in an
image as changes in pixel values. The gradient-based IQA
approaches were proved to perform better than the pixel-to-pixel
approaches, such as the gradient structural similarity index
(GSSIM) [21, 22]. In addition, it is assumed in [23] that there is a
great amount of HVS-sensitive information in the local variance
distribution of an image. On the basis of that, the quality
assessment index based on local variance (QILV) was proposed
and proved to be highly sensitive to the changes of image detail
information [23]. The QILV can be considered as a general
framework, which can reflect the change of structural information
in an image.

From the experimental results of the previous work, it can be
found that many of the state-of-the-art IQA measures have some
uncertain behaviours. For instance, few of them can give the best
performance for all the specific types of artefacts in the LIVE
database [24]. The IQA metrics aim to correlate well with the
perceived quality of the HVS in all the possible types of image
degradation. However, with regard to different types of distortion,
the perceiving process of human is different. Therefore, due to our
limited knowledge on the HVS, few IQA metrics can give the best
result for all the possible types of distortion. In fact, the perceived
image quality should be considered as a well-balanced
combination of many types of the properties of HVS. However,
the artefacts in the distorted images can hardly be decomposed
into some simple types of distortion, such as noise or blur.
Therefore, the image structure description method simply defined
by some geometric analysis or spatial pixel data using predefined
transform functions cannot give a comprehensive interpretation to
the image distortion. In [25, 26] some metrological considerations
on the IQA metrics are given. They aim to give a solution for
uncertainty evaluation in image structure and measurement
modelling for IQA metrics. The vector root mean squared error
(VRMSE) method provides a new framework for IQA [25]. It can
measure the image quality by describing the structural information
using vector, such as detail preservation and noise cancellation.
The vector-based methods can also output numerical evaluation
results. However, the VRMSE is only used in the evaluation for
the distorted images corrupted by Gaussian noise.

To better correlate with the human subjective tests, we proposed a
combined IQA method using complex numbers. The images
degraded by noise distortion, blur, or a combination of both can be
evaluated or measured by the method. More importantly, the
performance of our new IQA method on all the types of
degradation is more sensible than the other state-of-the-art IQA
methods. In our study, the complex number is applied to represent
image structure. The proposed method is different from the
VRMSE approach. The complex matrix is considered as a
combination of the HVS-sensitive information and some other
unknown structural information. Owing to the limited knowledge
on the HVS, our approach is based on the hypothesis that the
image structural information cannot be described by a single
model. The proposed approach is different from the existing
vector-based approaches and provides a complex matrix that can
be used in many fields of image processing. The complex numbers
are used to construct complicated matrices for the test images.
Then the SVD is performed on the matrices. The standard
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deviation of the singular values corresponding to each block in the
matrices is considered as the representation of its structural
properties. Then the numerical result is obtained by calculating the
median value of the distortion map for the test images.

The rest of this paper is organised as follows. Section 2 discusses
the complex number representation for the image structure. In
Section 3, the traditional MSVD approach is analysed, then
another distortion map generating approach is given which can be
considered as an improvement for this method. We then give some
experimental results in Section 4 and conclusion is summarised in
Section 5.
2 Complex number-based image structure
representation

In practice, there are various forms of distortion that may affect
image structure, but it is impossible to describe all the artefacts
using fine mathematical models. Most of the IQA models aim to
output numerical results. The traditional calculation form meets the
users’ needs in most of the applications. The vector-based
approach for full reference IQA [25] was proposed in order to
study the behaviour of detailed preservation and noise cancellation
in an image. It was applied to evaluate the distorted images with
additive noise, such as the Gaussian and impulse noise. In fact, the
perceived quality of human observers can be considered as an
integration of some HVS-sensitive attributes, it is different from
the software quality assessment which inspired the VRMSE
approach [25].

The framework of many IQA metrics can be summarised as
follows. First, the local quality or distortion should be measured
by mathematical tools. Second, pooling is performed on the
results. The pooling stage is an important stage in the process,
which needs reliable computational models, but significant
progress is usually made in the first stage. Due to the lack of
theoretical principles, the pooling process is always done in simple
ways [16]. The overall output of the VRMSE is the pooling result
of the vector-based approach. However, this process in HVS is
much more different from the simple Minkowski pooling. The
simple Minkowski polling process seems to be quantitatively
manageable, but the results are not qualitatively sensible. Clearly,
an image quality measurement based on the vector method that
aims at inspecting the behaviour of image distortion should be
able to evaluate the image features separately. Nevertheless, it is
different from the traditional quantified method that the vector
approach provides a new image quality measurement tool. Many
properties of image quality can be described by the vectors. For
the purpose of measurement, some useful information that is
necessary for support decision can be provided by the
vector-based measurement.

The visual inspection of human eyes is more sensitive to some
types of structural information in an image. The concept of detail
information is often used to describe these types of structural
information, but it is obviously too extensive and complicated for
modelling. To describe the structural change in a distorted image,
a vector tool is used to describe the combination of the detail
information and other unknown information corresponding to the
pixel at location(x, y) of an image. The vector is defined as

IV (x, y)= IS(x, y), IP(x, y)
[ ]

(1)

where IS(x, y) and IP(x, y) denote the HVS-sensitive information and
other unknown structural information described by the local pixel
distribution at location (x, y) of image I, respectively. In this study,
the vector is considered as a combination tool to represent
structural information. When we perform the measurement of the
difference between two vectors a need for a combined IQA
method arose. Since the goal of the proposed approach is to obtain
a quantised overall measure, a simple implementation method for
vector measure is to resort the complex number. Then, the vector
component IV (x, y) in (1) can be defined by complex number as
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follows:

IV (x, y) = IS (x, y)+ IP (x, y)× i (2)

where IV (x, y) is the complex number corresponding to the pixel at
location (x, y) of image I. Respectively, IS(x, y) and IP(x, y) represent
the detail information and other unknown information described by
pixel distribution as what is discussed previously. Then the
combination of the HVS-sensitive information and the extensive
pixel distribution information in an image can be implemented
using the complex matrix composed of the components defined in
(2).

Application of the proposed approach is restricted within the
grey-scale image. The calculation for colour image can be
performed on its luminance layer, which can be obtained by
separating the luminance information from the input image.

In this study, the performance of our IQA method is highly
relevant to the representation of the image detail information. The
local variance distribution is proved to be a very effective tool to
describe the image structure by Aja-Fernandez et al. [23]. For the
sliding block Ix, y in image I that contains L pixels, namely ηp, the
local variance is expressed as follows:

Var(Ix, y) = E{(Ix, y− �Ix, y)2} (3)

where �Ix, y is defined as

�Ix, y = 1

L

∑L
p=1

hp (4)

�Ix, y is the mean value of the pixels in the image. Then the local
variance distribution is

Var(Ix, y) = 1

L

∑L
p=1

(hp − �Ix, y)
2

(5)

Var(Ix, y) and �Ix, y are estimated using a Gaussian weighed
neighbourhood centred on the pixel (x, y) in order to overcome the
‘blocking’ artefacts in the SSIM visual map [9]. Since the SSIM
visual map is not used in this work, (4) and (5) are directly used
to calculate these parameters.

When the local variance distribution of a grey-scale image is
estimated by (5), it can be used as a description for the image
structure [23]. Although the results from experiments show that
the QILV index cannot provide a comprehensive description for
the image structure, it was proved to be highly relevant to the
changes of image detail information. The local variance
distribution can be considered as a claimed solution for the
representation of IS(x, y) in (2). Then the term IV (x, y) in (2) can
be expressed as follows:

IV (x, y) = Var(Ix, y)+ P(x, y)× i (6)

where P(x, y) is the value. According to (6), a complex matrix can be
generated to represent the image structure. Our hypothesis is that the
distortion in an image changes the characteristic statistical properties
of its corresponding complex matrix, and predicting the amount and
type of these changes will make it possible to perform the task of
IQA. The utilisation of complex numbers makes the process of
image quality measurement more sensible. Although the complex
matrix contains HVS-sensitive structural information, it is not a
visual map for perceiving. Complicated properties of the complex
matrix should be analysed by further decomposition.
3 Distortion map and numerical measure

SVD is an effective tool in the field of image processing. The
singular values were proved to be reasonably effective for the
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image texture classification [27]. A real or complex matrix A with
rank r can be decomposed into a product of three matrices as

A = U
Sr 0
0 0

( )
V ⊳ (7)

The real diagonal matrix is denoted by Σr. There are r non-null
entries si (1≤ i≤ r) on its diagonal. ⊳ denotes the
conjugate-transposition operator.

Let x be the singular value vector

x = (s1, s2, . . . , sr, 0, . . . , 0)
T (8)

where T is the transpose operator. The distance between the two
vectors can be calculated to generate the distortion map [17]. The
value of each pixel in the visual map of distortion can be obtained
by the function defined as

Dk = Sqrt
∑n
i=1

si − ŝi
( )2[ ]

(9)

It was pointed out by Narwaria and Lin [19] that each si denotes a
part of the matrix energy but not the image structure. The singular
value vector is not highly relevant to the structural information. In
other words, the change of x reflects the change of matrix energy
which should be discussed within the field of information theory
but not the field of human perception. In this paper, the
SVD-based approach is still used to evaluate image quality, but it
is implemented based on some improved mechanisms. They can
be summarised as follows:

First, as introduced in the previous sections, the SVD is performed
on the complex matrix composed of the components defined in (6).
The singular value vector can be considered as the representation for
the energy of the complex matrix. Since more HVS-sensitive
information is contained in the complex matrix, its singular value
vector is more relevant to the image structure. Therefore, the
importance of the singular value vector for the image structural
information is improved comparing with that of the simple real
matrix. Then, the improved consistency of the HVS with the
singular value vector is achieved by using the proposed complex
matrix.

Second, as the range of the singular values corresponding to a
given image block is related to its activity pixel level, all the
components in the singular value vector should be used in the
graphical measure [17]. In this paper, another approach is used to
perform the task. The standard deviation of the singular values
corresponding to each block is calculated as an estimation of its
structure change. It is defined as

Dk =
����������������∑r

i=1 (si − �s)2

r − 1

√
(10)

Fig. 1 gives an example to show the values of standard deviation
corresponding to some of the image blocks.

It can be seen obviously from the results in Fig. 1 that different
blocks have different activity levels and different standard
deviations. The lower the activity level is, the larger the standard
deviation is. In the visual perception point of view, the block with
highest activity level is block A, then the proposed method gives
the smallest standard deviation to it. Furthermore, the proposed
method also distinguished the activity level in blocks B and C
correctly.

The distortion map is obtained by calculating the standard
deviation of the blocks corresponding to the test images

DSk = Dk − D̂k

∣∣ ∣∣ (11)

where Dk and D̂k denote the standard deviations corresponding to the
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Fig. 1 Standard deviation of singular values in different blocks (luminance
layer of the colour image)
kth block in the test images, respectively. The generating approach of
the distortion map proposed in our study is different from the
traditional method [17]. It calculates the distance between the
standard deviation of singular values, but not the distance between
two singular value vectors. To visualise the difference, some
distortion maps are generated using the MSVD method in [17] and
Fig. 2 Comparison of distortion maps

a Reference image
b Noise distorted image
c Blurred image
d Distortion map for Fig. 2b obtained by MSVD [17]
e Distortion map for Fig. 2c obtained by MSVD [17]
f Distortion map for Fig. 2b obtained by the proposed method
g Distortion map for Fig. 2c obtained by the proposed method
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the proposed method for the two distorted images derived from the
same reference image. The comparison results are given in Fig. 2.

To observe the distortion maps clearly, they were enlarged and the
value of the pixels in the distortion map was mapped to the range 0–
255. From the visual perception point of view, the observers can
intuitively perceive that the different distortion maps derive from
different types of distortion. The accurate numerical results need
further processing on the distortion maps. It can be seen from the
distortion maps in Fig. 2 that the MSVD method generates almost
the similar structure for the noise distorted image and the blurred
image. For instance, Fig. 2d is almost as visible as Fig. 2e. The
contours can be seen clearly in Figs. 2d and e whereas the
proposed method distinguishes them distinctly. The difference
between the distortion types can be discerned from the perceived
difference between Figs. 2f and g. Therefore, the proposed IQA
method performs better than that of the MSVD method in terms of
the visual perception of the distortion maps in Fig. 2.

Calculation of the proposed numerical measure C_SVDQ is also
derived from the distortion map. It is defined as

C SVDQ =
∑(N/k)×(M/k)

i=1 DSi − DSmid

∣∣ ∣∣
(N/k)× (M/k)

(12)

where k denotes the block size, DSmid denotes the median value of
DSi. Fig. 3 is the framework diagram of the proposed C_SVDQ
method.
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Fig. 3 Framework diagram of the proposed C_SVDQ method
4 Experimental results

Objective IQA aims to output measure results which have good
correlation with the HVS. The prediction is an automatical and
robust process. The most widely used way to demonstrate validity
of IQA metrics is to evaluate their consistency with the HVS by
using the test image database. To inspect the performance of the
C_SVDQ index, we use the LIVE test database [24]. It contains
779 distorted images. They are all from the 29 reference images in
the same database. There are five different distortion categories in
the database. They are compression database (JPEG2000 and
JPEG compressed images), distorted images with additive
Gaussian noise, blurred images and a Rayleigh fast fading channel
distortion data sets. The difference mean opinion score (DMOS)
value related to each test image represents its theoretical subjective
quality, in terms of in-lab test. To demonstrate the general
effectivity of the proposed C_SVDQ method, all the distorted
images in the five data sets were used for testing only. Testing and
comparison between C_SVDQ and other IQA methods were done
on the LIVE database. The process can show the superiority of the
C_SVDQ over other state-of-the-art IQA methods. We compared
our new C_SVDQ method, against common IQA methods, such
as MSE, PSNR, MSSIM [9], MSVD [17], and QILV [23].

On the basis of that, two special methods were also evaluated in
these experiments. They were named C_MSVD and S_MSVD.
C_MSVD was calculated using the complex representation
proposed in this paper, but its distortion map was generated using
the MSVD method [17]. S_MSVD is different from MSVD in that
its distortion map was obtained using the method as that in
C_SVDQ. To evaluate how well the IQA predictions agree with
human perception, the correlation between its prediction results
and subjective perception must be computed. The correlation of all
the IQA metrics in the experiment was calculated after
compensating for the non-linear mapping between the two types of
scores. A logistic function with three parameters recommended by
video quality experts group [28] was used to perform the
non-linear regression for all the metrics. It is defined as

DMOSq =
b1

1+ exp (− b2 × (C SVDQ− b3))
(13)

where b1, b2, and b3 can be obtained numerically using a non-linear
regression toolbox. In our method, the complex matrix is divided
into 8 × 8 blocks. Then the SVD transform is performed on each
block to produce a singular value block. We have two reasons to
define the block size. In the first instance, the same block size is
defined and widely used in JPEG compressed images and other
image processing applications. In the next place, many IQA
metrics, such as the MSVD and SSIM also use a sliding window
size of 8 × 8. Therefore, we define the block size not only for the
purpose of comparison but also under the consideration of
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rationality of the parameters. Fig. 4 shows the results of logistic
curves fitted for all the eight IQA metrics.

Fig. 4 gives the scatter distributions for the eight IQA indices on
the 779 distorted images in LIVE database. The curves show the
subjective DMOS scores versus the predicted scores by human
visual system. The curves were generated by implementing
non-linear fitting as defined in (13). From Fig. 4, we can see that
the measurement results give a demonstration that the correlation
between the DMOS scores and the scores of the proposed
C_SVDQ method are better than other methods. The further
investigation on the consistency and behaviours of the proposed
method acquires more quantised metrics. Then these competing
IQA metrics are evaluated by three performance metrics. They are
shown in the following, where x and y denote input signals,
respectively.

† Kendall’s rank correlation coefficient (KRCC): The metric can be
shortened to KRCC. It is a correlation metric and can be expressed as

KRCC = Nc − Nd

(1/2)N (N − 1)
(14)

The discordant and concordant signal pairs in the input signals are
denoted by Nd and Nc. The metric is used to evaluate the
prediction monotonicity.

† Spearman’s rank correlation coefficient (SRCC): The metric can
be shortened to SRCC. It is expressed as

SRCC = 1− 6
∑

d2i
n2(n2 − 1)

(15)

The difference between the ith input signals xi and yi is expressed
by di = xi− yi. It can be also used to evaluate the prediction
monotonicity.

† Root mean square error (RMSE): The metric can be shortened to
RMSE. It is expressed as

RMSE(x, y) =
���������������
1

n

∑
(x− y)2

√
(16)

RMSE is used to evaluate the prediction accuracy.
In the first place, all the 779 distorted images were used to perform

the task of IQA. The reference images are excluded in our tests in
order to avoid several problems in implementing the metrics.
Above all, when the reference image is same as the test image
some of the IQA metrics may have difficulties in outputting
results. For instance, some of the IQA metrics may have infinite
117



Fig. 4 Assessment method comparison

a MSE
b PSNR
c MSSIM
d MSVD
e QILV
f C_MSVD
g S_MSVD
h Proposed C_SVDQ
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Table 1 Performance comparison of IQA metrics for the 779 distorted images

MSE PSNR MSSIM MSVD QILV C_MSVD S_MSVD C_SVDQ

KRCC 0.5328 0.6171 0.6549 0.5713 0.5536 0.6472 0.5839 0.7063
SRCC 0.7347 0.8197 0.8510 0.7737 0.7582 0.8399 0.7874 0.8908
RMSE 10.94 9.379 8.152 10.25 10.43 9.079 10.05 7.549

Table 2 Performance comparison of IQA metrics on the individual data sets

MSE PSNR MSSIM MSVD QILV C_SVDQ

JPEG2000 KRCC 0.6016 0.7037 0.7633 0.6726 0.7426 0.7984
SRCC 0.8027 0.8898 0.9317 0.8621 0.9177 0.9481
RMSE 9.709 7.519 5.754 8.289 6.429 5.003

JPEG KRCC 0.5817 0.6355 0.7145 0.6523 0.7024 0.7179
SRCC 0.7911 0.8409 0.9028 0.8540 0.8959 0.9015
RMSE 9.894 8.5 6.02 8.085 6.738 5.658

Gaussian noise KRCC 0.8061 0.8941 0.8362 0.6588 0.8193 0.8496
SRCC 0.9490 0.9853 0.9629 0.8450 0.9581 0.9694
RMSE 5.126 2.742 3.976 8.404 6.035 5.48

Gaussian blur KRCC 0.5238 0.5847 0.7136 0.5847 0.5879 0.7577
SRCC 0.7104 0.7816 0.8942 0.7721 0.7794 0.9222
RMSE 10.98 9.878 7.722 9.932 10.2 6.201

fast fading KRCC 0.6435 0.7067 0.7814 0.7529 0.7580 0.7176
SRCC 0.8425 0.8903 0.9411 0.9190 0.9263 0.8768
RMSE 9.039 7.674 5.787 6.559 6.085 8.488
value, such as PSNR. Then the non-linear regression can hardly be
performed. Additionally, since it is assumed that all the original
images have perfect quality, the natural relative ranks between
them cannot be computed. There are considerable ambiguities in
the computing of SRCC and KRCC metrics [16]. Finally, it is
merely an assumption that the quality of the reference images is
perfect in terms of their DMOS value. Due to the complicated
properties of the HVS, further analysis is necessary for this
theoretical conclusion.

Theoretically, with the performance improvement of the objective
IQA metrics, their SRCC and KRCC values should be higher, while
the RMSE values should be lower. Table 1 shows our performance
comparison for the eight IQA measures of the 779 distorted images
in the LIVE database. The table provides an investigation for the
overall performance of the IQA measures under comparison. In
our experiments, the IQA metric achieving the best performance is
Table 3 Variance of numerical performance measure of the IQA
methods for the individual distortion type

MSE PSNR MSSIM MSVD QILV C_SVDQ

KRCC 0.0114 0.0138 0.0026 0.0082 0.0067 0.0032
SRCC 0.0076 0.0056 0.0008 0.0090 0.0053 0.0013
RMSE 5.0548 7.2606 1.7646 1.4352 3.0889 1.8685

Fig. 5 Variance of the assessment results for the individual distortion types, the nu
C_SVDQ, respectively

a Variance of their KRCC values
b Variance of their SRCC values
c Variance of their RMSE values
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highlighted in boldface. It can be seen from the table clearly that
our proposed C_SVDQ outperforms all the other IQA metrics in
our comparison experiments. This confirms our assumption that
C_SVDQ is an effective tool to measure the combined
degradation. Moreover, it can be seen that the two special methods
C_MSVD and S_MSVD perform better than MSVD, though they
are not as good as C_SVDQ. Therefore, it can be considered as a
demonstration that the two optimised mechanisms in our study
improve the performance of the conventional SVD-based IQA
methods.

The behaviours of the proposed C_SVDQ method should be
deeply investigated by individual types of distortion. The five
individual data sets in the LIVE database are used in our tests in
order to evaluate its different sensitivity to different types of
distortion. Table 2 shows the measurement results.

From the experimental results summarised in Table 2, we can see
clearly that the proposed method achieves the best results on most of
the individual data sets in the LIVE database. Obviously, the
C_SVDQ has better performance in dealing with the distortions of
JPEG2000 compressed images and Gaussian blurred images. In
addition, it produced the highest KRCC value and the lowest
RMSE value for the compressed images of JPEG, and the SRCC
value of C_SVDQ is very close to the highest value. The PSNR
metric performs much better than the other IQA indices for the
test of Gaussian noise distorted images, but the C_SVDQ and
PSNR have comparable performance for the metric of KRCC and
SRCC. For the fast fading images, the MSSIM outperforms the
mbers one to six in the X-axis denote MSE, PSNR, MSSIM, MSVD, QILV, and
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other IQA metrics used in comparison experiments. Nevertheless,
for most of the distortion types, the behaviours of the C_SVDQ
are better than those of the other IQA metrics. From Fig. 1 and
Table 2, one can see that the correlation between the objective
results given by C_SVDQ and the subjective results are much
better than the other methods.

In Table 3, the variance values of the numerical performance
measure for the IQA metrics to these distorted images with
specific types of distortion in Table 2 for KRCC, SRCC and
RMSE are shown. It is a rather simple method to measure the
fluctuation of their sensitivity to different distortion types. The
IQA metrics with lower variance values have more uniform
sensitivity to different distortion types. Obviously, the MSSIM has
the lowest variance for KRCC and SRCC, and the MSVD has the
lowest variance for RMSE. However, the variance of the proposed
C_SVDQ method is very close to the lowest value, which can be
seen more clearly in Fig. 5.
5 Conclusions

The combining strategies are considered as effective tools to improve
the performance of the IQA metrics in this paper. Aiming at finding
the appropriate strategies for IQA algorithms, we studied the
vector-based IQA metrics. We use the complex numbers to
describe image structure. The proposed method can be considered
as an extension of classical vector-based methods. Furthermore,
some metrological considerations on the IQA metrics are given.
They aim at uncertainty evaluation in image structure and
measurement modelling for IQA metrics. The standard deviation
of singular values corresponding to each block in the complex
matrix was used to represent its structure change. Then the
graphical measure and numerical measure were implemented. The
behaviours of the proposed method were evaluated using the
distorted images in the LIVE database. For the purpose of
comparison the proposed strategies and some other conventional
IQA methods are investigated in the experiments. The
experimental results show that this novel combining strategy
causes significant performance improvement of conventional
MSVD IQA algorithms. The proposed C_SVDQ algorithm
achieves the best performance in the overall test. For the
applications of images corrupted by individual distortion types, the
proposed method also achieves the best performance.

It can be easily seen from the theoretical analysis and experimental
results that the proposed C_SVDQ method is an attractive IQA
method. The two optimised mechanisms applied in C_SVDQ
improve the performance of the traditional SVD-based IQA
methods. The proposed method aims to extend the traditional
image structure representation methods which are widely used in
the field of IQA. The new framework is not only a combining
method, but also a new description method to evaluate image
quality. Since the proposed C_SVDQ method is restricted within
grey-scale images, improvement on this work will aim to use
colour information to perform the task.
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