# **RSC Advances**

## PAPER



Cite this: RSC Adv., 2016, 6, 28484

Structure and electronic properties of C<sub>2</sub>N/ graphene predicted by first-principles calculations

Dandan Wang,<sup>a</sup> DongXue Han,\*<sup>a</sup> Lei Liu<sup>b</sup> and Li Niu<sup>a</sup>

The zero band gap of pristine graphene hinders its application in high-performance field effect transistors (FETs) at room temperature. The symmetry breaking of the sub-lattice, originated from the influence of substrates such as silicon carbide, hexagonal boron nitride as well as graphitic carbon nitride ( $C_3N_4$ ), can produce a band gap in graphene. Herein, another novel kind of substrate,  $C_2N$ , is employed to break the symmetry of the graphene sub-lattice, resulting in a band gap of about 0.40 eV in graphene. In combination with  $C_2N$  through the weak van der Waals (vdW) interaction, graphene keeps its structural integrity and charge mobility. A band opening as large as 0.72 eV could be achieved through reducing the layer spacing to 3.2 Å. This is because the amount of electron transfer from graphene to  $C_2N$  and the interaction between  $C_2N$  and graphene increase with the decreasing interlayer spacing. Moreover, though the band gap of  $C_2N$  is slightly altered, its electronic properties especially the direct band gap in visible region and the band dispersions are almost preserved. Thus, our theoretical results predict the promising multifunctional applications of  $C_2N/graphene$  ( $C_2N/G$ ) heterostructures, including high-performance FETs and metal-free photocatalytic materials for water splitting.

Received 16th December 2015 Accepted 11th March 2016 DOI: 10.1039/c5ra26873g

www.rsc.org/advances

## 1. Introduction

Graphene has attracted a lot of attention due to its structural features and excellent electron transport properties.<sup>1-3</sup> What's more, high quality large-area graphene sheets can be obtained through a number of techniques, for example, mechanical exfoliation of pyrolytic graphite,<sup>1,3</sup> chemical reduction of graphene oxides,<sup>4,5</sup> confinement controlled sublimation of silicon carbide,<sup>6,7</sup> chemical vapor deposition (CVD) on metal substrate<sup>8</sup> *etc.* Thus graphene has been considered as a strong contender for a channel material, replacing silicon, in the next generation of high-speed and low power consumption optoelectronic devices.<sup>9-12</sup> However it's utilization in electronic devices especially in high speed FETs is limited because logic devices with channels made of large-area graphene cannot be switched off due to the zero band gap.<sup>3,13</sup>

It has been demonstrated that the lack of band gap originates from the sub-lattice symmetry in graphene.<sup>14</sup> To open the band gap of graphene, many techniques have been utilized to break the symmetry, such as defect generation,<sup>15,16</sup> chemical doping<sup>17,18</sup> and graphene ceramics<sup>19</sup> *etc.* However, the structural integrity of graphene is usually damaged by those approaches and as a result the charge transport in graphene is negatively

influenced.<sup>20,21</sup> Fortunately, an alternative route to induce the sub-lattice symmetry breaking while preserve the structural integrity and the electronic properties in graphene is placing graphene on an appropriate substrate. For example, Zhou et al. have demonstrated that a band gap of about 0.26 eV is created for the graphene which was epitaxially grown on SiC substrate<sup>22</sup> owing to the graphene-substrate interaction. Moreover, the atomically flat two-dimensional materials which are free from dangling bonds are alternative substrates for graphene. Previous first-principles calculations suggested that a band gap of 0.1 eV can be opened up when graphene is Bernal stacked on hexagonal boron nitride (hBN) substrate.<sup>23</sup> Experimentally, the mobility of charge carriers in hBN supported graphene is improved compared to that of SiO<sub>2</sub> supported graphene.<sup>24</sup> Though the band gap is opened without degrading the electronic properties in graphene through those approaches, the obtained band opening is usually smaller than 0.34 eV,25 not big enough for the application in the channel material in a FET.13 Therefore new strategies are required to develop for bigger band opening in graphene.

Recently, J. Mahmood *et al.* successfully synthesized a layered two-dimensional network structure of  $C_2N$ -h2D and the single-layer  $C_2N$ -h2D crystal was also obtained by them on a Cu(111) substrate under ultrahigh vacuum conditions.<sup>26</sup> Subsequently,  $C_2N$ -h2D has been demonstrated to be potential candidates for porous membrane for hydrogen purification,<sup>27</sup> visible light responding photocatalyst for water splitting,<sup>28</sup> nanoscale electronic and other optoelectronic devices.<sup>29</sup> Considering the flat two-dimensional structure of  $C_2N$ -h2D,<sup>26</sup>



View Article Online

View Journal | View Issue

<sup>&</sup>lt;sup>a</sup>State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022, Jilin, China. E-mail: dxhan@ciac.ac.cn; Fax: +86 431852628 00; Tel: +86 4318526 2425

<sup>&</sup>lt;sup>b</sup>State Key Laboratory of Luminescence and Applications, CIOMP, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun, 130033, Jilin, China

it's expected intuitively that the C<sub>2</sub>N-h2D can be used as a substrate for graphene and the sub-lattice symmetry in graphene will break due to the evenly distributed holes and nitrogen atoms in C<sub>2</sub>N-h2D. We should also note that the epitaxial growth of graphene on Cu(111) surfaces *via* chemical vapor deposition is known to be one of the most reliable routes toward high-quality large-area graphene.<sup>30,31</sup> Therefore the obtain of C<sub>2</sub>N/G heterostructures is possible *via* chemical vapor deposition technique.

In this work, we design  $C_2N/G$  heterostructures and perform first-principles calculations to investigate their structure and electronic properties. To obtain the accurate electronic structures, hybrid functional calculations using HSE06 functional have been employed. Our calculations demonstrate, for the first time, that a gap of about 0.40 eV is opened in  $C_2N$  supported graphene and there is a significant electron transfer from graphene layer to  $C_2N$  layer. The interlayer interaction can induce tunable band gap in graphene by altering the interlayer spacing. We also find that the electric properties of  $C_2N$ , especially the direct band gap in visible region, are almost preserved. These results suggest that the  $C_2N/G$  heterostructures can be used both as an electric material for high-performance FETs and as a visible light responding photocatalyst in water splitting.

## 2. Computational method

Our theoretical calculations are based on density functional theory (DFT) within the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation<sup>32</sup> and the projected augmented wave (PAW) method as implemented in the Vienna ab initio simulation package (VASP).33,34 In all calculations, the cutoff energy for the plane wave basis set is 400 eV, and a vacuum region of 15 Å is used in building the slab models to avoid the interaction between two adjacent periodic images. For the structure optimization, the special K-point sampling with a K-point separation of <0.04  $Å^{-1}$  is applied for the Brillouinzone integration, and atomic positions are relaxed until their residual forces are less than 0.01 eV  $Å^{-1}$ . To describe the longrange van der Waals (vdW) interactions, the second version of vdW-DF (vdWDF2) of Langreth and Lundqvist groups35-38 is used. What's more, we have employed hybrid functional calculations using HSE06 functional<sup>39</sup> to obtain the accurate electronic structures.

## 3. Results and discussion

#### 3.1. Structure properties of C<sub>2</sub>N/G

We simulate the C<sub>2</sub>N/G heterostructures by combining  $(2\sqrt{3} \times 2\sqrt{3})$  unit cells of graphene and  $(1 \times 1)$  unit cell of C<sub>2</sub>N in a supercell. Two stacking sequences are considered, as shown in Fig. 1. Fig. 1(a) exhibits AA stacking arrangement with all C and N atoms of C<sub>2</sub>N layer right above C atoms of graphene layer. Fig. 1(b) has AB stacking sequence with half of the C or N atoms of the C<sub>2</sub>N right above C atoms of graphene, while another half of the atoms are on the top of the centers of graphene hexagons. Binding energies are estimated to determine the interlayer interaction using the equation  $E_{\rm b} = E_{\rm HS} - E_{\rm G} - E_{\rm C,N}$ , where  $E_{\rm b}$  is



Fig. 1 Top (top panels) and side (bottom panels) views of lattice structures of the C<sub>2</sub>N/G heterostructures: (a) AA stacking sequence, (b) AB stacking sequence. The C atoms of graphene layer are represented by the light gray balls and those of C<sub>2</sub>N layer are denoted as dark gray balls. The N atoms are indicated by blue balls.

the binding energy,  $E_{\rm HS}$  is the total energy of the heterostructure, and  $E_{\rm G}$  and  $E_{\rm C_2N}$  are the total energies of the isolated graphene and C<sub>2</sub>N constituent layer respectively. The equilibrium interlayer spacing of AA and AB stacking heterostructures is 3.60 Å and 3.57 Å with small binding energies of -42.7 meV and -45.3 meV per atom of graphene respectively. To validate these results, the interlayer distance of bilayer graphene is calculated to be 3.61 Å with the same method and this result agrees well with reported theoretical studies.<sup>40</sup> The small binding energies suggest that C<sub>2</sub>N and graphene combine through a weak vdW interaction without any new chemical bonds at the interfaces.

#### 3.2. Electronic properties of C<sub>2</sub>N/G

Besides the electronic properties  $C_2N/G$  heterostructures, we first calculate the electronic structures of graphene  $(2\sqrt{3} \times 2\sqrt{3})$  supercell and  $C_2N$  unit cell. For graphene  $(2\sqrt{3} \times 2\sqrt{3})$  supercell, the gapless characteristic is retained while the Dirac points move to the  $\Gamma$  point from the *K* point, as shown in Fig. 2(a). This



Fig. 2 Band structures for (a) monolayer graphene  $(2\sqrt{3} \times 2\sqrt{3})$  supercell, (b) monolayer C<sub>2</sub>N unit cell, (c) C<sub>2</sub>N/G heterostructure with AA stacking sequence and (d) C<sub>2</sub>N/G heterostructure with AB stacking sequence. The vacuum level is set at 0 eV.

Dirac point movement agrees with the 3*N* rule for the electronic properties of graphene, which has been verified.<sup>41</sup> Our calculations demonstrate that pristine C<sub>2</sub>N monolayer is a direct semiconductor and the calculated band gap is 2.49 eV, seen from Fig. 2(b), which is consistent with the previous experimental and theoretical results.<sup>26,29</sup>

Sequentially, we study the electronic properties of C<sub>2</sub>N/G heterostructures. The corresponding band structures for the two stacking configurations shown in Fig. 1 are presented in Fig. 2(c) and (d). Similar behaviors have been found for the two stacking structures and the band gap of the heterostructures is quite small (about 0.1 eV). Comparing the band structures of C<sub>2</sub>N/G heterostructures with those of isolated monolayers, as shown in Fig. 2, we find the CBM and VBM of the  $C_2N/G$  are localized in C<sub>2</sub>N and graphene respectively. Further analysis of total density of states (TDOS) and localized density of states (LDOS) as shown in Fig. 3 indicates the VBM originates from the  $p_z$  states of C atoms. Through the band-decomposed charge density calculations which are not shown here, we find these C atoms belong to the graphene component. Furthermore the CBM is constituted by the hybrid  $p_z$  states of C and N atoms which are from the C<sub>2</sub>N constituent layer.

Further examination on the band characterizations indicates that the band dispersion of  $C_2N$  in heterostructures is preserved while its band gap reduces to 2.20 eV. And a band gap of 0.47 eV and 0.41 eV at the  $\Gamma$  point emerges for the  $C_2N$  supported graphene in AA and AB stacking sequence, respectively. In order to understand the mechanism of the band gap opening for graphene, the interfacial electronic properties between the  $C_2N$ and graphene layers are analyzed. Fig. 4(a) presents the planeaveraged electrostatic potential along the perpendicular direction of the  $C_2N/G$  heterostructures. We find the potential drop



**Fig. 3** TDOS and LDOS of the C<sub>2</sub>N/G heterostructures. (a) TDOS, (b) the electronic states of C atoms, (c) the electronic states of N atoms. The red, blue, green and purple lines are representative for s,  $p_x$ ,  $p_y$ ,  $p_z$  states respectively. The electronic properties of AA and AB stacking sequence are similar, except for the small gap between the VBM of graphene and the CBM of C<sub>2</sub>N. Therefore only the DOS of C<sub>2</sub>N/G in AB stacking is shown here.



Fig. 4 Charge transfer properties: (a) potential profile across the interface for the C<sub>2</sub>N/G heterostructures. (b) Front view and (c) top view of the isosurface of the difference charge density with the iso-value of 0.003 Å<sup>-3</sup>. The blue (yellow) color denotes loss (gain) of electrons.

 $(\Delta V)$  across the C<sub>2</sub>N/G interface is 6.57 V, which indicates a strong electrostatic field and electron/hole accumulation at the two different constituent layers. From the threedimensional charge density difference plots shown in Fig. 4(b) and (c), which are constructed by subtracting the  $C_2N/G$  electronic charge from those of the isolated components, we can clearly see that the graphene layer denotes electrons to the C<sub>2</sub>N layer. The amount of electron transfer is calculated to be 0.13 e (about 0.005 e per C atom of graphene). This electron transfer results in p-doping in graphene while n-doping in C<sub>2</sub>N. It is noteworthy that circular-shaped hole-rich regions periodically distribute in the graphene layer due to the periodic holes and nitrogen atoms in planar C<sub>2</sub>N. This charge periodicity implying the sub-lattice symmetry break disrupts the degeneracy of the  $\pi$ and  $\pi^*$  bands of graphene at the  $\Gamma$  point, which plays an important role in the band gap opening. What's more, the band curvature around the Dirac point of the C<sub>2</sub>N supported graphene is very similar to that of pristine graphene (see Fig. 2(a), (c) and (d)), which indicates that the effective mass of electron/ hole and the charge mobility are not significantly influenced by the C<sub>2</sub>N support.

Interestingly, artificially decrease the interlayer distance of C<sub>2</sub>N/G can result in an energy gap opening increase for graphene. The band gap change with interlayer distance is shown in Fig. 5(b). When the distance decreases to 2.8 Å, the band gap of graphene can be as large as 1.3 eV. Actually, it is challenging to decrease the interlayer distance to 2.8 Å which can be predicted from the big total energy difference of 1.7 eV, as shown in Fig. 5(a). Nevertheless, there might be the possibility that the interlayer distance decreases to 3.2 Å because the corresponding total energy difference is as small as 0.27 eV and the binding energy of C<sub>2</sub>N/G is 39 meV, seen from Fig. 5(a) and the inset. The band gap opening at 3.2 Å is 0.72 eV, making the graphene appropriate as FETs channel material. Note that such a large band opening of 0.72 eV in substrate supported graphene has not been reported previously. What's more, the total energy difference and binding energy variation in Fig. 5(a) suggest that the band gap of graphene can be tuned between 0.33 eV and 0.72 eV through altering the interlayer spacing of C<sub>2</sub>N/G from 4.0 Å to 3.2 Å. While, the band gap of  $C_2N$  decrease from 2.24 eV

**Fig. 5** (a) The total energy of  $C_2N/G$  heterostructure as a function of the interlayer distance and the zero of the energy scale is arbitrarily put at the equilibrium position. The inset shows the variation of the binding energy of  $C_2N/G$  with the interlayer spacing. (b) Energy band gaps against the interlayer distance of  $C_2N/G$ . The solid red circles denote the band gap openings of graphene, while the solid squares indicate the band gap of  $C_2N$ . The inset presents the variation of the amount of transferred charges per C atom in graphene with the interlayer spacing.

to 2.09 eV with the interlayer spacing decreasing from 4.0 Å to 3.2 Å, as shown in Fig. 5(b). In order to understand the origin of band gap alteration, we predict the charge transfer at different interlayer distances. The amount of transferred electron is found to be increased while the interlayer spacing is narrowed, which is shown in the inset of Fig. 5(b). The enhanced charge transfer implies that the interaction between the  $p_z$  state of graphene and  $C_2N$  is strong and the graphene is heavily p-doped, which results in a bigger band gap opening in graphene.

#### 3.3. Perspectives

On one hand, band gap opening and tailoring in graphene is one of the most important and urgent research topics in the graphene applications, especially in single-layer graphene (SLG) FETs.<sup>3,25</sup> In C<sub>2</sub>N/G heterostructures, the integrity of crystal structure and the charge mobility are preserved for graphene while its band gap is opened and tunable between 0.33 eV and 0.72 eV. Therefore, the C<sub>2</sub>N/G heterostructures are promising candidate channel materials for high performance SLG FETs.

On the other hand, when integrated into the composites, the band structure characteristic of C<sub>2</sub>N is also preserved, as shown



**Fig. 6** Band edge alignments of isolated monolayer  $C_2N$ ,  $C_2N$  layer in  $C_2N/G$  heterostructures with AA and AB stacking sequence at equilibrium spacing,  $C_2N$  layer in  $C_2N/G$  heterostructures (AB stacking) with smaller and bigger interlayer spacing, respectively. The dashed lines are water redox potentials.

in Fig. 2(b)-(d). Fig. 5(b) indicates that the direct band gap is always in visible region when the interlayer spacing changes. What's more, though the CBM potentials of  $C_2N$  in the heterostructures are lower than that of pristine monolayer  $C_2N$ , they are still higher than the reduction potential of hydrogen, especially those of the  $C_2N/G$  heterostructures at equilibrium spacing. And all of the VBM potentials are lower than the oxidation potential of  $H_2O$ . The band edge alignments of pristine monolayer  $C_2N$  and  $C_2N$  in heterostructures are presented in Fig. 6. These results suggest that the  $C_2N/G$  heterostructures can be used as metal-free alternatives of photocatalytic materials in water splitting.

## 4. Conclusions

In summary, we investigated the structural and electronic properties of  $C_2N/G$  heterostructures using hybrid functional DFT methods. The heterostructures are found to be stabilized through vdW interactions and possess electron transfer from graphene to  $C_2N$ . A gap of about 0.40 eV is opened in graphene at equilibrium interlayer spacing, which is originated from the symmetry breaking. The interlayer interaction can induce tunable band gap between 0.33 eV and 0.72 eV in graphene by altering the interlayer spacing. We also find that the electronic properties of  $C_2N$ , especially the direct band gap in visible region, are almost preserved. These results suggest that the  $C_2N/G$  heterostructures can be used both as an electronic material for high-performance FETs and as a visible light responding photocatalyst for water splitting.

### Acknowledgements

This work was supported by NSFC, China (21225524, and 21475122 and 21205112) and the Department of Science and Techniques of Jilin Province (20150203002YY, 20150201001GX and SYHZ0006) and Chinese Academy of Sciences (YZ201354, YZ201355).

## References

- K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, *Proc. Natl. Acad. Sci. U. S. A.*, 2005, **102**, 10451.
- 2 K. S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab and K. Kim, *Nature*, 2012, **490**, 192.
- 3 K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang and S. Dubonos, *Science*, 2004, **306**, 666.
- 4 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, *Carbon*, 2007, **45**, 1558.
- 5 D. H. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida and S. H. Yoon, *Langmuir*, 2010, **26**, 16096.
- 6 W. A. De Heer, C. Berger, M. Ruan, M. Sprinkle, X. Li, Y. Hu,
  Z. Baiqian, H. John and C. Edward, *Proc. Natl. Acad. Sci. U. S.*A., 2011, **108**, 16900.
- 7 D. Wang, L. Liu, W. Chen, X. Chen, H. Huang, J. He, Y.-P. Feng, A. Wee and D. Shen, *Nanoscale*, 2015, 7, 4522.

- 8 C.-M. Seah, S.-P. Chai and A. R. Mohamed, *Carbon*, 2014, **70**, 1.
- 9 C.-J. Shih, G. L. C. Paulus, Q. H. Wang, Z. Jin, D. Blankschtein and M. S. Strano, *Langmuir*, 2012, **28**, 8579.
- 10 F. Schwierz, J. Pezoldt and R. Granzner, *Nanoscale*, 2015, 7, 8261.
- 11 V. Apalkov and M. I. Stockman, *Light: Sci. Appl.*, 2014, 3, e191.
- 12 N. Papasimakis, S. Thongrattanasiri, N. I. Zheludev and F. G. de Abajo, *Light: Sci. Appl.*, 2013, **2**, e78.
- 13 F. Schwierz, Nat. Nanotechnol., 2011, 6, 135.
- 14 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, *Rev. Mod. Phys.*, 2009, **81**, 109.
- 15 A. Hashimoto, K. Suenaga, A. Gloter, K. Urita and S. Iijima, *Nature*, 2004, **430**, 870.
- 16 A. V. Krasheninnikov and F. Banhart, *Nat. Mater.*, 2007, **6**, 723.
- 17 D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang and G. Yu, *Nano Lett.*, 2009, **9**, 1752.
- 18 M. Telychko, P. Mutombo, P. Merino, P. Hapala, M. Ondráček, F. C. Bocquet, J. Sforzini, O. Stetsovych, M. Vondráček, P. Jelínek and M. Švec, ACS Nano, 2015, 9, 9180.
- 19 W. Strek, B. Cichy, L. Radosinski, P. Gluchowski, L. Marciniak, M. Lukaszewicz and D. Hreniak, *Light: Sci. Appl.*, 2015, 4, e237.
- 20 D. Elias, R. Nair, T. Mohiuddin, S. Morozov, P. Blake,
  M. Halsall, A. Ferrari, D. Boukhvalov, M. Katsnelson,
  A. K. Geim and K. S. Novoselov, *Science*, 2009, 323, 610.
- 21 M. Jaiswal, C. H. Yi Xuan Lim, Q. Bao, C. T. Toh, K. P. Loh and B. Ozyilmaz, *ACS nano*, 2011, 5, 888.
- 22 S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D.-H. Lee, F. Guinea, A. H. C Neto and A. Lanzara, *Nat. Mater.*, 2007, **6**, 770.
- 23 N. Kharche and S. K. Nayak, Nano Lett., 2011, 11, 5274.
- 24 R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl and M. F. Crommie, *Nano Lett.*, 2011, **11**, 2291.

- 25 R. Quhe, J. Zheng, G. Luo, Q. Liu, R. Qin, J. Zhou, D. Yu, S. Nagase, W.-N. Mei, Z. Gao and J. Lu, *NPG Asia Mater.*, 2012, 4, e6.
- 26 J. Mahmood, E. K. Lee, M. Jung, D. Shin, I.-Y. Jeon, S.-M. Jung, H.-J. Choi, J.-M. Seo, S.-Y. Bae, S.-D. Sohn, N. Park, J. H. Oh, H.-J. Shin and J.-B. Baek, *Nat. Commun.*, 2015, 6, 1.
- 27 B. Xu, H. Xiang, Q. Wei, J. Q. Liu, Y. D. Xia, J. Yin and Z. G. Liu, *Phys. Chem. Chem. Phys.*, 2015, **17**, 15115.
- 28 R. Zhang and J. Yang, 2015, arXiv preprint arXiv:1505.02768.
- 29 R. Zhang, B. Lia and J. Yang, Nanoscale, 2015, 7, 14062.
- 30 H. K. Yu, K. Balasubramanian, K. Kim, J.-L. Lee, M. Maiti, C. Ropers, J. Krieg, J. Kern and A. M. Wodtke, ACS Nano, 2014, 8, 8636.
- S. Gottardi, K. Müller, L. Bignardi, J. C. Moreno-López, T. A. Pham, O. Ivashenko, M. Yablonskikh, A. Barinov, J. Björk, P. Rudolf and M. Stöhr, *Nano Lett.*, 2015, 15, 917.
- 32 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
- 33 G. Kresse and J. Hafner, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1993, **47**, 558.
- 34 G. Kresse and D. Joubert, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1999, **59**, 1758.
- 35 M. Dion, H. Rydberg, E. Schröder, D. C. Langreth and B. I. Lundqvist, *Phys. Rev. Lett.*, 2004, **92**, 246401.
- 36 G. Román-Pérez and J. M. Soler, *Phys. Rev. Lett.*, 2009, **103**, 096102.
- 37 K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist and D. C. Langreth, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2010, 82, 081101.
- 38 J. Klimeš, D. R. Bowler and A. Michaelides, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, 83, 195131.
- 39 J. Heyd, G. E. Scuseria and M. Ernzerhof, *J. Chem. Phys.*, 2003, **118**, 8207.
- 40 I. Hamada and M. Otani, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2010, **82**, 153412.
- 41 Y.-C. Zhou, H.-L. Zhang and W.-Q. Deng, *Nanotechnology*, 2013, 24, 22570.