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The images captured by an airborne range-gated imaging system are degraded by many factors, such as light
scattering, noise, defocus of the optical system, atmospheric disturbances, platform vibrations, and so on.
The characteristics of low illumination, few details, and high noise make the state-of-the-art restoration method
fail. In this paper, we present a restoration method especially for range-gated imaging systems. The degradation
process is divided into two parts: the static part and the dynamic part. For the static part, we establish the physical
model of the imaging system according to the laser transmission theory, and estimate the static point spread
function (PSF). For the dynamic part, a so-called light vein feature extraction method is presented to estimate
the fuzzy parameter of the atmospheric disturbance and platform movement, which make contributions to the
dynamic PSF. Finally, combined with the static and dynamic PSF, an iterative updating framework is used to
restore the image. Compared with the state-of-the-art methods, the proposed method can effectively suppress
ringing artifacts and achieve better performance in a range-gated imaging system. © 2016Optical Society of America

OCIS codes: (110.4850) Optical transfer functions; (110.1080) Active or adaptive optics; (010.3310) Laser beam transmission;

(010.7295) Visibility and imaging.

http://dx.doi.org/10.1364/AO.55.007229

1. INTRODUCTION

Range-gated imaging systems are normally used in low light
scenes, such as underwater and at night. The imaging quality
is reduced by backscattering, speckle noise, imaging jitter,
atmospheric turbulence, etc. Better visibility is required
by the following target recognition and tracking. Therefore,
it is necessary to carry out research on image restoration tech-
nology for range-gated imaging systems.

The goal of image restoration is to recover a sharp image
according to some prior of the imaging process (e.g., the
PSF of the system, the distribution of noise), which plays an
important role in many image processing tasks. Traditional re-
storation methods include iterative blind deconvolution (IBD),
non-negativity and support constraint recursive inverse filtering
(NAS-RIF), Wiener Filtering, etc. These methods perform
well in some cases with sufficient illumination and abundant
imaging details. However, with the decrease of details and con-
trast, these approaches perform poorly in laser active imaging.

In recent years, a large number of scholars have done sig-
nificant research in image restoration and many algorithms
and frameworks have been proposed. Cai et al. [1] normalized
the kernel under a tight-wavelet framework and proposed an
adaptive split Bregman method to solve the energy function.
Cho and Lee [2] extracted image structure through strong edges

for establishing the regularization equation and achieved a
fast restoration speed. Krishnan et al. [3] presented a low-
complexity method which maintained the high-frequency
component of the image by constructing a scale invariant regu-
larization sparse equation. Fergus et al. [4] constructed a joint
posterior probability function between the latent and degraded
image, then maximized the function to calculate the blur
kernel. Shan et al. [5] proposed a local smoothing approach
applied in low-contrast regions to suppress ringing artifacts.
Xu et al. [6] constructed a new l0 sparse expression and applied
it into a MAP framework. They achieved a good restoration
performance for noisy images without an extra filtering process.
Yuan et al. [7] estimated the blur kernel with two images, and
put forward a secondary deconvolution approach to remove
ringing artifacts brought by single deconvolution. Goldstein
and Fattal [8] proposed a whitening spectrum formula to es-
timate the spectrum distribution of the fuzzy kernel. Tai and
Lin [9] proposed a blind deconvolution algorithm for iterative
restoration of noisy images. These above approaches normally
estimate blur kernel using edge, texture, or gradient, so that in
conditions of adequate illumination and sharp texture, they can
obtain good performance. However, in laser active imaging it is
difficult to accurately extract edge or texture details because of
the poor illumination. On the other hand, speckle noise would
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introduce artificial edges, which leads to larger errors in blur
kernel estimation.

In this paper, a novel model-derived approach based on the
static and dynamic degradation PSF of the imaging system is
established. First, considering beam propagation, diffraction
limit, and other individual components, the physical model of
the imaging system is established to estimate the static PSF.
Second, a light vein feature extraction method is proposed to es-
timate dynamic PSF. Finally, according to the blur model of
range-gated imaging systems, the two PSFs are applied into an
iterative restoration framework based on expectation maximiza-
tion (EM) algorithm. In the experiment part, the comparison with
state-of-the-art approaches proved the validity of our algorithm.

2. IMAGING MODEL

The schematic diagram of our range-gated imaging system is
shown in Fig. 1, which consists of three parts: a laser emitting
device, an optical imaging system (optical lens and intensified
charge-coupled device, ICCD), and a range-gated control
board. The optical axis of the laser is parallel to that of the
ICCD. The light source is a diode-pumped solid pulse laser
with a laser pulse width of 8 nS, wavelength of 532 nm, and
single pulse energy ranges from 10 to 40 mJ. In order to sup-
press the backscattered light and increase the detection range,
a pulse sequence generator is used to control the opening and
closing of the ICCD gate.

The Gaussian beam from the pulsed laser belongs to a
spherical wave. Due to the imaging range, which is far greater
than the Rayleigh length Z � πω2

0∕λ, the laser can be regarded
as a point light source. The transmission of the laser beam is as
follows: emitted by the laser, passed through the atmosphere,
reflected by the object, then into the lens and arrived at the
ICCD’s imaging plane.

The goal of our static imaging model is to estimate the static
point spread function of the imaging system, so that we can pre-
dict the intensity of each pixel according to the source power,
reflectance properties of targets, sensor characteristics, and other
factors. According to the transmission path in Fig. 1, we proposed
an imaging model suitable for imaging system in atmosphere.
The flowchart of our method is shown in Fig. 2.

The analysis of image degradation involves noise, atmos-
pheric attenuation, atmospheric turbulence, system distortion,
diffraction limit, platform vibration, and many other reasons.
In this paper, we divided them into two parts: static ones and
dynamic ones. The static factors are relatively stable during the
imaging, while the dynamic factors keep changing among each
frame. In the next section we try to analyze and model the
two parts.

3. ESTIMATION OF STATIC PSF

In this section, the static imaging process is modeled and its
PSF is established by the transmission path of the light. Generally
speaking, the modulation transfer function (MTF) of the whole
static imaging system is composed of theMTF of the atmosphere,
the MTF of the diffraction limit, and the MTF of the sensor.

A. MTF of Atmosphere
According to [10,11], the light energy E rcv received by the
ICCD consists mainly of three parts, which are target-reflected
light Ed , forward-scattered light Ef , and backscattered light
Eb, respectively, as is expressed in Eq. (1):

E rcv � Ed � Ef � Eb: (1)

The target-reflected light exponentially decayed in the trans-
mission path. Regarding the target as a Lambert emitter, Ed can
be calculated as

Ed �x; y� �
n2P0T 1T 2ρD2 cos3 φ cos4 φ 0

16πl2d f
2 sin2

�
α
2

�
exp�kl d �sec φ� sec φ 0�� ; (2)

where n denotes the refractive index of the atmosphere;
P0 denotes the output peak power of the laser; T 1 and T 2

are, respectively, the optical transmittance of the laser
transmitting and receiving system; ρ denotes the average reflec-
tivity of the target; D denotes the receiving aperture of
the optical system; k denotes the attenuation coefficient of
the atmosphere; l d denotes the transmission distance of the
reflected light; f denotes the focal length of the receiving
optical system; α denotes the divergence angle of the

expanding laser; φ � arccos
h
l d∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x � d 0�2 � y2 � l 2d

q i
;

φ 0 � arccos
h
l d∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2 � l2d

q i
; and (x, y) denotes the

coordinates on the ICCD imaging plane. The attenuation
coefficient in the atmosphere is related to factors such as
molecular absorption, molecular scattering, atmospheric aero-
sol absorption, and atmospheric aerosol scattering, and is sen-
sitive to changes of altitude, weather, temperature, and
humidity. It is difficult to accurately model the attenuation co-
efficient. In this paper, the atmospheric attenuation coefficient
k is considered as a constant during the experiment because of
the relatively stable environment.

The forward-scattered light is the light reflected by the target
and arriving at the ICCD through the atmosphere, which can
be calculated as

Ef �x; y� �
�
e−Glf − e−kl f

e−kl f
× Ed �x; y; l f �

�
� g�x; y; l f �; (3)

where g�x; y; l f � denotes the atmospheric point spread
function, which can be calculated as g�x; y; l f � �
F −1�e−Blf f θ�∕ RR F −1�e−Blf f θ�dxdy; f θ � l f ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
x � f 2

y

q

Fig. 1. Schematic diagram of range-gated imaging system.

Fig. 2. Flowchart of the proposed method.
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denotes the angular frequency; and l f denotes the transmission
distance of the forward-scattered light. The forward-scattered
light carries the information of the target surface, but it would
decrease the contrast of the image.

The backscattered light is the part of the light which returns
to the ICCD during the path to the target because of atmos-
pheric scatter. It will interfere with the target-reflected light.
Although the effect of backscattered light can been effectively
suppressed by range-gated technology, for the accuracy of the
model, it is significant to calculate the backscattered light re-
ceived during the opening of the gating. By the theory based on
time integral, the energy of the backscattered light can be
calculated as

Eb�x; y� �
πβP0T 1T 2d 2

Rn
2�1� cos θs�

4c2t2
P

dp�x; y�
exp�−2kl b�; (4)

where dp�x; y� denotes the pixel size of the sensor, l b denotes
the transmission distance of the backscattered light, and dR
denotes the radius of the receiving optical system.

The MTF of the atmospheric transmission is defined as the
ability to reproduce the target information in the process of
transmission. Since the reflected light and forward-scattered
light carry the information of the target, while the backscattered
light overwhelms the target information, the MTF of the
atmospheric transmission is defined as

MTFatmosphere �
π

4
F
�

Ed � Ef

Ed � Ef � Eb

�
: (5)

B. MTF of Diffraction Limit
Due to the limitations of the aperture of optical system, the
diffraction limit of the imaging system [12,13] needs to be con-
sidered as a factor of image degradation, and the MTF is

MTFdiffraction �
2

π

"
arccos

f so

f co

−
f so

f co

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
f so

f co

�
2

s #
;

0 < f so < f co; (6)

where f so denotes the spatial frequency, and f co denotes the
cutoff frequency of the imaging plane.

C. MTF of the Sensor
The projection of the object on the ICCD plane is distorted,
which is mainly determined by the pixel size. The MTF is
expressed as

MTFdistorted �
sin�πf sedp�
πf sedp

; (7)

where f se and dp denote the spatial frequency and the pixel size
of the ICCD, respectively.

D. Static PSF of the Imaging System
Considering the factors discussed above, the static MTF of the
imaging system can be calculated as

MTFstatic � MTFatmosphere ·MTFdiffraction ·MTFdistorted: (8)

Due to the circular symmetry of the optical device, the PSF
of the whole system can be calculated by a one-dimensional
integral, which is described in [14]:

PSFstatic�θ� � 2π

Z
J0�2πθf s�MTF�f s�f sdf s; (9)

where J0 denotes the Bessel function, f s denotes the spatial
frequency in cycles per radian, and θ denotes the offset with
respect to the optical axis.

4. ESTIMATION OF DYNAMIC PSF

In the airborne laser imaging system, atmospheric disturbance
and relative motion between the targets and the optical system
are also two components that are responsible for image
degradation. Due to the randomness and complexity of the tur-
bulence and mechanical vibration, the degradation details by
these two factors keep changing during the imaging process,
and we can hardly establish a constant physical model.
Therefore, it is necessary to determine the two factors for a
single image separately.

In this section, we put forward an approach to extract the
characteristic of the so-called light vein features from the image,
which are useful for estimating the dynamic PSF.

A. Light Vein
Definition: due to source jitter, defocus, and atmospheric
disturbance, some veins which are normally brighter than
the target and background would appear in the imaging plane.
We simply name them light veins. A light vein is like the mov-
ing trail of the point source. Using those veins that are gener-
ated by small enough light spots, the blur kernel of image
motion can be estimated.

The light vein regions meeting our requirements should
have some particular properties. The gray values in those areas
are relatively larger; some areas are even allowed to be saturated.
The highlight pixels are closely distributed with long, thin
stripes and relatively sharp edges. With the exception of light
veins, the rest of the sections which belong to the background
are clean enough. The light vein regions with the above proper-
ties contain less noise, which are suitable for estimating an
accurate motion trajectory.

In this paper, we propose a method to extract the light vein
patterns based on a multiscale pyramid, which consists of the
following steps.

(1) Convolve the image with a Gaussian kernel and build a
n-layer scale pyramid.

(2) Divide each layer of the pyramid into s × t small blocks
with overlapping. For each block, convert it into a binary image
Qij using Otsu’s method with a threshold T ij, where i �
1;…; n is the index of layers, j � 1;…s × t is the block index
in each layer.

(3) Add up the number of pixels with a gray value of 1 in
each block, which is labeled as N ij. Assuming that the total
number of pixels inQij isNT ij, ifN ij∕NT ij,<20%, go ahead
and jump to step (4). Otherwise, it means that the stripe is too
thick or has too much noise, and the block is discarded.

(4) Assuming that Pij is the block corresponding to Qij in
the degraded image, with a size of aij × bij. In the sub-block
with a size of aij∕2 × bij∕2 located in the center of Pij, search
for the pixel with the maximum gray value, which is labeled as
�xmaxij ; ymaxij�. Starting from �xmaxij ; ymaxij� in Qij, extend
along the direction of the pixel gray value of 1 to both ends, and
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add up the number of pixels to NRij. If the extending path is
beyond the boundary of the block, which means that the block
does not contain the entire light vein, discard the block. If
NRij∕N ij < 50%, which means there is too much noise or
more than one light vein in the block; discard these blocks
as well.

(5) Interpolate the eligible blocks to calculate the corre-
sponding location and size in the degraded image and we
get the candidate light vein φ � fCt�xij; yij�; W ij; H ijg, where
Ct , W ij and Hij denotes the center, width, and height of the
candidate patch.

After getting the candidate light vein patches, we need to
find the best light vein Pb. Then Pb is used to estimate the
dynamic blur kernel.

The light veins can be considered as the trajectories of small
light spots. With little noise, the histograms of the candidate
patches are similar. Therefore, we proposed a light vein select-
ing method: calculating the gradient histograms of all patches
in φ, and clustering the histograms using a K -means algorithm.
After a few number of iterations, similar histograms are divided
into the same cluster and different histograms are separated,
which ends up with a group of clusters ϕ � fP0; P1;…g.
Selecting the cluster with maximum members, denoted as
Pi, and calculating the local contrast of each patch in Pi,
we considered the patch with the largest contrast as the best
light vein patch Pb.

B. Estimating Dynamic PSF using the Best Light
Vein Patch
In order to estimate the blur kernel (dynamic PSF) in every
single frame, we use the framework in [2] and define an energy
function f hd as

f hd �hd � �
X

�x;y�∈rem
ω�‖hd � P� − g�‖2 � α‖hd‖2

� β
X

�x;y�∈Pb

‖Sb � hd − Pb‖2; (10)

�P�; g�� � f�Px; ∂xg�; �Py; ∂yg�;
�∂xPx; ∂xxg�; �∂yPy; ∂yyg�;
��∂xPy � ∂yPx�∕2; ∂xyg�g; (11)

where ω� � fω1;ω2g is a constant coefficient matrix,
Sb�rb; l b� denotes the source spot which generates pb; rb de-
notes the radius of Sb; l b denotes the gray value of Sb; h denotes
the dynamic PSF, P�; and g� denotes the gradient of the latent
and blurred image in all directions, respectively.

We call the first item in Eq. (10) the gradient fidelity term,
which ensures the similarity of the gradient between the blurred
image and latent image. The second item is called the smooth
term, which ensures that there is no mutation in the blur ker-
nel. The third item is called the numerical fidelity term, which
ensures the consistency of the estimated and observed light vein
pattern. According to Cho’s approach, P� can be calculated as
follows. First, a bilateral filter is used to suppress the noise in
the blurred image. Then a shock filter is used to enhance the
edge. Finally, a strong gradient suppression is used to further
remove the isolated noise. In our approach we set α � β � 5.

In the third item of Eq. (10), we use Pb to estimate dynamic
PSF. First we convolve the source spot Sb with current dynamic
PSF, which is labeled as hd ; then we calculate the subtraction
patch of the convolution result and Pb; and lastly we add up all
the pixels of the subtraction patch. A smaller value of this item
indicates that the estimated light vein by the model is more
close to the actual light vein, which means that hd is more
accurate.

Another problem is raised: how to determine the value of rb
and l b.

We realized that l b is the gray value of the light source
reflected to the imaging plane, which could be approximated
by the average value of the light vein. Thresholding Pb using
the corresponding T b to get the binary imageQb, and l b can be
calculated as

l b � mean�Pb�x; y�j∀ Qb�x; y� � 1�: (12)

Equation (12) denotes that for the pixels in Qb with a value
of 1, calculate their average value in the corresponding coordi-
nates of Pb and regard it as the intensity of Sb. The thresholding
process reduces the influence of the background, while averag-
ing weakens the isolated noise. Therefore, the estimated value
of the formula is credible.

rb denotes the radius of Sb and can be calculated as

rb � round

�
NT ij∕

ffiffiffiffiffiffiffiffiffi
2N ij

q �
: (13)

Equation (10) can be rewritten as

f h�hd� � ‖Ahd − b‖2 � α‖hd‖2 � β‖Sh − p‖; (14)

where hd, A, b, S, p are vectors. In order to calculate hd,
compute the derivative of f h with respect to hd as follows:

∂f h�hd�
∂hd

� 2ATAhd�2βhd −2ATb�2STShd −2STp� 0:

(15)

By solving the equation above we can get the estimation of
hd, or, in other words, dynamic PSF.

5. FRAMEWORK OF RESTORATION

In the content above, we have already obtained the system’s
static and dynamic PSFs, and the PSF of the whole imaging
process is

h � PSFstatic � PSFdynamic: (16)

The energy function is defined as

f f �f � �
X
∂�

ω�‖h � ∂�f − ∂�g‖2 � γ‖∇f ‖2; (17)

where ω� � fω1;ω2;ω3g is the weighted gradient coefficient,
and ∂� � f∂o; ∂x ; ∂y; ∂xx ; ∂xy; ∂yyg denotes the calculating gra-
dient in the corresponding direction. Guidance in selecting
the typical value of ω� is provided in [15]. The first item in
Eq. (17) includes the numerical and gradient fidelity terms,
which ensure the similarity of the gray value and gradient
between the degraded and latent images. The second item is
a regular smooth term, which ensures the gradient smoothing
of the deblurred image. By minimizing the energy function we
can get the estimated deblurred image. Compared with the
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approaches in [1,8], the proposed method has a simpler calcu-
lation. After bilateral filter and shock filter in the blur kernel
estimation process, the noise and ringing artifacts are effectively
eliminated.

At this point, the main restoration process is finished. But
the quality of the restored image could be improved by an
iterative framework. To update the parameters of Sb, we define
an energy function as

f Sb�rb; l b� � ‖Sb � h − Pb‖2 � ‖Sb − f b‖2: (18)

By minimizing the energy function, we can get an updated
value of rb and l b in each iteration.

There are three steps included in an iteration. First, the PSF
of the whole system is calculated by Eqs. (15) and (16), during
which the static part is fixed and the dynamic part is updated.
Then based on h, Sb is updated by minimizing Eq. (18); finally,
the restored image is calculated by minimizing Eq. (17). After a
few iterations, we can get a restoration image with satisfactory
contrast and details.

6. EXPERIMENT

A. Experimental Results
We implement our approach in MATLAB and conduct experi-
ments on a PC with 3.4 GHz Core i7 CPU and 16 GB RAM.
For evaluating the performance of our approach, an image qual-
ity metric is needed. As the reference image cannot be obtained,
reference-based image quality assessments such as PSNR and
SSIM [16] are not suitable here. We choose information capac-
ity (IC) [17] as the metric of the restoration methods, which is
defined as a statistical description of the pixel relativity:

IC � log2

	
1�

X
w

log�p�i; j; d ; θ��
log�max�p�i; j; d ; θ���



; (19)

where d and θ denote the relative distance and angle between
pixels whose gray value is, respectively, i and j; and p denotes
the relativity between the pixels. The larger the IC is, the more
information the image takes. So we hope that the IC of the
restoration image is larger than that of the degraded image.

We chose a tower at a distance of 3.0 km, a roof at a distance
of 3.5 km, and a building at a distance of 2.8 km from the
imaging system as the targets. We illuminated them, respec-
tively, with a laser power of 35 mJ. Due to the divergence angle
of the laser beam (4 mrad), the images are cropped to 150 ×
150 pixels, which are shown in Fig. 3. As we can see, the edges
of the roof, tower, and building are seriously blurred, and
speckle noise distributes uniformly in the field of view. We
compared our approach with state-of-the-art restoration

methods [2,4,5,8,9]. The results are shown in Figs. 4(a)–4(f ),
and IC values are listed in Table 1.

The image quality in a range-gated imaging system is
strongly associated with laser power. In order to verify the
adaptability of the algorithm, we changed the laser power
and evaluated the restoration results, as shown in Fig. 7.

B. Discussion
Figures 4(a), 5(a), and 6(a) illustrate that the joint MAP
method by Fergus leads to unfavorable results with severe ring-
ing artifacts, which may be attributed to the difficulty of cal-
culating the gradient distribution model in conditions of weak
light and the lack of strong constraint. In Shan’s method, the
ringing artifacts are effectively suppressed. However, due to the
imposed contrast constraint in fuzzy parts, the restored image is
not sharp enough overall. In Cho’s method, which is based on
edge prediction, the ringing artifacts appear in some edges be-
cause of inaccurate edge estimation, as is shown in Figs. 4(c),
5(c), and 6(c). Meanwhile, the result suffers from fake edges
near the speckle spot, which leads to larger errors in kernel es-
timation. Goldstein’s method also suffers from ringing artifacts
and fuzzy edges due to the extremely high sensitivity of noise.
In Tai’s results, we can hardly find ringing artifacts, but fuzzy
edges still exist, as is shown in Figs. 4(e), 5(e), and 6(e). In Tai’s
approach, denoising and kernel estimating are simply separated
into two steps in every single iteration; the denoising process
would bring larger errors to the kernel estimation. Visually,
thanks to the accurate model of PSF, the restored image by
our proposed method has few ringing artifacts, better details,
and higher contrast. In Table 1, the IC values of the proposed
method are higher than others, which shows the advantage of
combining static and dynamic PSF, which leads to better kernel
estimation.

As is shown in Fig. 7, the proposed algorithm performs best
in conditions of different laser power. This can be explained by
that the laser power is included as a parameter in our static PSF,
and it brings the adaptability of our model. The experimental
results have proved that compared with other state-of-the-art
method, the proposed method is more suitable for image resto-
ration in range-gated imaging systems.

Fig. 3. Degraded image of (a) tower at distance of 3.0 km, (b) roof
at distance of 3.5 km, and (c) building at distance of 2.8 km.

Fig. 4. Restored image of tower by (a) Fergus’s method, (b) Shan’s
method, (c) Cho’s method, (d) Goldstein’s method, (e) Tai’s method,
and (f ) proposed method.
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7. CONCLUSION

Due to low contrast, high noise, and fuzzy edges, traditional
edge/gradient-based restoration methods cannot achieve satis-
factory performance in range-gated imaging systems. In this pa-
per, a new degradation model that contains both static and
dynamic factors is proposed. The static PSF is established
by considering atmospheric transmission, diffraction limit,

and distortion of the sensor, and the dynamic PSF is established
by proposed light vein features. Finally, the static and dynamic
PSF are combined together, and image restoration is performed
under an iterative framework. The proposed PSF model con-
tains the main factors of image degradation in a laser active
imaging system, which overcomes the defects of the existing
algorithms based on gradients or edges, so that it can achieve
good performance in the system. By changing the parameters,
the proposed algorithm can also be extended to underwater
laser imaging systems. Due to the small viscosity coefficient
of gas, atmospheric turbulence will affect the quality of the laser
beam. Because the trajectory of fluid particles is complex and

Table 1. IC Values of Restored Images Using Different Methods

Degraded image Fergus’s Shan’s Cho’s Goldstein’s Tai’s Our’s

tower 0.3826 0.6874 0.8055 0.7712 0.5635 0.6849 0.9125
roof 0.2579 0.5988 0.7236 0.6654 0.4312 0.4655 0.8268
building 0.4178 0.6623 0.7865 0.6497 0.5937 0.6821 0.9079

Fig. 5. Restored image of roof by (a) Fergus’s method, (b) Shan’s
method, (c) Cho’s method, (d) Goldstein’s method, (e) Tai’s method,
and (f ) proposed method.

Fig. 6. Restored image of building by (a) Fergus’s method,
(b) Shan’s method, (c) Cho’s method, (d) Goldstein’s method,
(e) Tai’s method, and (f ) proposed method.

Fig. 7. IC values of (a) tower, (b) roof, (c) building in different laser
power. IC increases with the laser power, and the values of our
approach are far larger than those of others.
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irregular, the atmospheric turbulence is not contained in our
model. We will try to take it into account in our future work.
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