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Constrained layer damping treatments promise to be an effective method to control vibration in flexible structures. Cutting both
the constraining layer and the viscoelastic layer, which leads to segmentation, increases the damping efficiency. However, this
approach is not always effective. A parametric study was carried out using modal strain energy method to explore interaction
between segmentation and design parameters, including geometry parameters and material properties. A finite element model
capable of handling treatments with extremely thin viscoelastic layer was developed based on interlaminar continuous shear stress
theories. Using the developed method, influence of placing cuts and change in design parameters on the shear strain field inside
the viscoelastic layer was analyzed, since most design parameters act on the damping efficiency through their influence on the
shear strain field. Furthermore, optimal cut arrangements were obtained by adopting a genetic algorithm. Subject to a weight
limitation, symmetric and asymmetric configurationswere compared. It was shown that symmetric configurations always presented
higher damping. Segmentation was found to be suitable for treatments with relatively thin viscoelastic layer. Provided that optimal
viscoelastic layer thickness was selected, placing cuts would only be applicable to treatments with low shear strain level inside the
viscoelastic layer.

1. Introduction

Real structures are made up of components possessing finite
levels of rigidity and mass. Vibration is inevitably provoked
when force is transmitted through a structure, eventually
leading to failure due to fatigue. Constrained layer damping
(CLD) treatments are usually applied to structures to improve
their dynamic behavior [1, 2]. This approach allows for
enhanced damping capabilities over a wide frequency range.
As a result, it is widely used in various engineering structures
such as ships, trains, automobiles, and commercial airplanes
[3–5]. A majority of the current work pertaining to CLD
treatments for structures is focused on optimizing CLD
configurations and related parameters tomaximize structural
damping rate. Moreover, initiating cuts into the treatment,
adopting active CLD treatments, or partially covering base
structureswithCLD treatments could further increase damp-
ing capacity [6, 7].

A key issue in design and optimization of CLD treatments
is related tomodeling of the treated structure and quantitative
assessment of system damping. Kinematics and theories
specific tomultilayered composite structures can be classified
as equivalent single layer (ESL) theories and layerwise (LW)
theories, based on the through-the-thickness description of
displacement and stress fields [8]. The number of unknown
variables in ESL theories is independent of the number of
layers. Classical laminated plate theory (CLPT) [9], first-
order shear deformation theory (FSDT) [10], and high-
order shear deformation theory (HSDT) [11] are all easy-to-
implement ESL theories.

A majority of composite structures contain soft cores and
the physical/mechanical properties in the thickness direction
are discontinuous. Thus, CLPT theories and FSDT theories
are of limited value in the analysis of composite structures
for poor descriptions of the high-shear deformation inside
the soft cores. Alternatively, LW theories can guarantee
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a high degree of accuracy at the expense of computational
complexity.Thenumber of unknown variables in LW theories
increases with the number of layers and zigzag effects are
considered intrinsically [12, 13]. The zigzag effect of displace-
ment and the interlaminar continuity of shear stress in the
thickness direction are crucial for accurate description of the
shear deformation [14–17]. High-order theories including the
zigzag effect and the interlaminar continuity of shear stress
accurately predict the shear stress as well [18, 19].

CLD treatments are characterized by sandwiching a
viscoelastic core between two stiff face layers, that is, the
base structure layer and the constraining layer. Kerwin et al.
[20, 21] provided a simple analytical method based on zigzag
theories for analyzing three-layered beams. This method is
known as the RKU equation. However, the method is only
applicable to simply supported beams. Mead and Markus
[22] derived a sixth-order differential equation of motion in
terms of transverse displacement for sandwich beams. Rao
[23] solved these equations exactly for different boundary
conditions. The RKU equation is a typical zigzag model,
which describes piecewise continuous displacement fields. A
majority of the subsequent models developed for analysis of
three-layered CLD treated structures are based on Kerwin’s
hypotheses, which does not take the interlaminar continuity
of shear stress into consideration [24–30]. A spectral finite
element is developed for linear viscoelastic laminates and
it focuses on an exact description of the through-thickness
deformation [31–34]. Based on this, Zigzag theories can
be classified into two categories: interlaminar discontinuous
shear stress (IDSS) zigzag theories and interlaminar continu-
ous shear stress (ICSS) zigzag theories.

Hu et al. [35] compared several theories used for the
modeling of sandwich structures to address the applicability
and validity of these theories. It was shown that ICSS zigzag
theories could be used for modeling all types of three-layered
structures whereas IDSS zigzag theories were inadequate for
modeling sandwich structures with thick or rigid viscoelastic
layers. According to Huang et al. [7], an extremely thin
viscoelastic layer would cause difficulty in the solution for
models based on Kerwin’s hypotheses. Lesieutre and Lee [30]
presented a finite element model for beams with segmented
active constrained layers based on IDSS theories. In this
study, the interlaminar continuity of shear stress was further
included to model segmented three-layered beams.

A layered shell/solid/shell model using classical finite
elements available in most commercial software is often
used to model structures with CLD treatments. Plouin and
Balmes [36] demonstrated the validity of the shell/solid/shell
model by correlation with experimental results and Moreira
and Rodrigues [37] further assessed the performance of the
shell/solid/shell model. Johnson and Kienholz [38] proposed
themodal strain energy (MSE)method to calculate loss factor
for each mode of the structure using the shell/solid/shell
model. The modal strain energy method has been proven to
be an accurate and flexible tool for quantitatively determining
damping of structures. Zhang and Chen [39] proposed
an iterative method which took the frequency dependent
properties of viscoelastic materials into consideration. Koruk
and Sanliturk [40] assessed the performance of the MSE

method and concluded that accuracy of theMSEmethod was
strongly dependent on mode shapes of the base structures.

Initiating cuts into the damping treatment could signif-
icantly improve structural damping rate. However, such an
approach has been found not to be effective for all cases.
Efficiency of segmenting a constrained layer damping treat-
ment relies on the fact that a high-shear region is created in
the viscoelastic layer. Such phenomenon is called edge effect.
Plunkett and Lee [41] invented the concept of segmenting the
constraining layer and derived an expression for optimum
distance of equidistant cuts arrangements assuming pure
extension of the treated structure. Trompette and Fatemi [42]
determined an optimal distribution of cuts for maximum
damping of a flexural sandwich beam with selected param-
eters. Al-Ajmi and Bourisli [43] used a genetic algorithm to
investigate the relationship of the viscoelastic layer thickness,
the constraining layer thickness, and the number of cuts. It
was found that the optimum number of cuts decreased with
increasing thickness of the viscoelastic layer. Lepoittevin and
Kress [44] analyzed the mechanism of cuts and developed an
optimization algorithm to optimize distribution of cuts for
simultaneously damping multiple modes [44]. Hujare et al.
[45] conducted an experimental analysis of the effect of seg-
mentedCLD treatments based on thework of Lepoittevin and
Kress [44]. Kadam and Hujare [46] carried out a literature
review related to methods on segmented CLD treatments.

Segmentation enhances damping capacity of active con-
strained layer damping treatments. Kapadia and Kawiecki
[47] demonstrated the effect of active constrained layer
segmentation on the damping efficiency in flexible beams.
Experimental results demonstrated improved damping in
the beams due to active constraining layer segmentation.
Improvement in damping at lower natural frequencies was
found to be significantly higher in comparison to high natural
frequencies. Trindade et al. [48] analyzed the performance
of segmented hybrid active-passive damping of a cantilever
beam as compared to passive one for some parametric
variations such as viscoelastic layer thickness and treatment
length. Liu and Wang [49] investigated the effect of multiple
active and passive constraining section distributions and the
effect of mode shapes for host structure on the treatment per-
formance. Segmentation is not always effective in increasing
structural damping efficiency. Kristensen et al. [50] found
that creating a cut in the center of a simply supported beam
results in a decrease of the loss factors.

Thickness and material properties of each layer have an
obvious influence on the effectiveness of segmentation. A
majority of the research reported in literature on segmented
CLD treatments emphasizes finding the best cut distribution
for treatments with specific parameters [42–45]. However,
the applicability of segmentation in these cases has not been
taken into account. The effectiveness of segmentation is an
important issue for practical design considerations while
applying segmentation to enhance damping capabilities of
CLD treatments. Initiating a cut into the treatment would
reshape the shear strain field inside the viscoelastic layer.
The shear strain field and the volume of the viscoelastic
material are directly responsible for energy dissipation in
the viscoelastic layer and consequently for the damping
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efficiency. Thickness variation of the viscoelastic layer does
alter the volume of viscoelastic material and the shear strain
field. Sher and Moreira [51] studied the relationship between
the viscoelastic layer thickness and the damping efficiency.
It has been shown that the shape of the damping efficiency
versus viscoelastic layer thickness curve is different according
to the shear strain level inside the viscoelastic layer.Moreover,
design parameters have an effect on the shape of the efficiency
curve. For this reason, damping efficiency curves for CLD
treatments with different parameter values are generated
to predict the shear strain level. Based on these curves,
relationship between the effectiveness of segmentation and
the shear strain field is studied.

In the present study, a finite element model capable of
handling treatments with extremely thin viscoelastic layer
was developed on the basis of interlaminar continuous shear
stress theories. Interaction between the effectiveness of cuts
and design parameters is explored. Dimensionless param-
eters are utilized to allow generalization of the results and
allow universal applicability of the results. Section 2 presents
the finite element model for segmented CLD treatments
based on the ICSS theory and briefly introduces the MSE
method. Section 3 compares the finite element model with
that based on the IDSS theory and validates the model
by comparison with the shell/solid/shell model. Section 4
explores the relationship between the effectiveness of seg-
mentation and the shear strain field inside the viscoelastic
layer. The influence of an arbitrarily placed cut on the shear
strain field is discussed.The effect of other design parameters
on the shear strain field is analyzed. A genetic algorithm
is then utilized to determine the best distribution of cuts.
Additionally, symmetric and asymmetric configurations are
compared (a symmetric configuration implies a constraining
layer with the same thickness as the base beam). Section 5
discusses application of segmentation to CLD treatments.

2. Finite Element Development

2.1. CLD Configuration and Kinematic Assumptions. A can-
tilever beam with segmented CLD treatments is consid-
ered here. General configuration of the treated beam is
depicted in Figure 1.The three-layered beam consists of three
components, namely, the base beam, viscoelastic layer, and
constraining layer, denotedwith subscripts 𝑏, V, and 𝑐, respec-
tively. All points are denoted using independent coordinates
𝑥 and 𝑧, with the origin of the coordinate system located at the
center of the left end of the base beam. Length and thickness
of the beam are denoted by 𝐿 and ℎ, respectively.

The model is based on the following assumptions.
(1) All displacements are small compared to the struc-

tural dimensions. Linear theories of elasticity and
viscoelasticity are applicable. All layers are perfectly
bound and no slip occurs between layers.

(2) The Bernoulli-Euler bending assumptions are valid
for the base beam. Transverse normal stress in the
base beam is neglected.

(3) The viscoelastic layer carries transverse shear. Trans-
verse normal stress and longitudinal normal stress are
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Figure 1: Cantilever beam with segmented CLD treatments.
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Figure 2: Deformation of the beam with segmented CLD treat-
ments.

neglected. Shearmodulus is frequency dependent and
complex.

(4) All points in the cross section undergo the same
transverse deflection.

(5) The constraining layer is elastic. The transverse shear
stress is continuous at the interface of the viscoelastic
layer and the constraining layer and vanishes at the
top surface of the constraining layer.

2.2. Displacement Fields. The deformation of the treated
beam is illustrated in Figure 2. Longitudinal and transverse
displacements are denoted by 𝑢 and 𝑤, respectively. The
superscript 󸀠 denotes the partial derivative with respect to 𝑥

and𝑤
󸀠 denotes the transverse rotation.The shear angle in the

viscoelastic layer is denoted by 𝛽.
Lesieutre and Lee [30] developed a finite element model

for beams having segmented active constrained layers based
on the IDSS zigzag theory. The displacement field is given by
the following equation:

𝑢
𝑏
(𝑥, 𝑧, 𝑡) = 𝑢

0
(𝑥, 𝑡) − 𝑧𝑤

󸀠

(𝑥, 𝑡) ,

𝑢V (𝑥, 𝑧, 𝑡) = 𝑢
0
(𝑥, 𝑡) − 𝑧𝑤

󸀠

(𝑥, 𝑡) − (𝑧 −
ℎ
𝑏

2
)𝛽 (𝑥, 𝑡) ,

𝑢
𝑐
(𝑥, 𝑧, 𝑡) = 𝑢

0
(𝑥, 𝑡) − 𝑧𝑤

󸀠

(𝑥, 𝑡) − ℎV𝛽 (𝑥, 𝑡) ,

𝑤 (𝑥, 𝑧, 𝑡) = 𝑤 (𝑥, 𝑡) ,

(1)

where 𝑢
0
denotes the longitudinal displacement at the refer-

ence axis and 𝛽 denotes the shear angle in the viscoelastic
layer. The displacement of each layer is given in terms of
the above four variables, namely, 𝑢

0
, 𝑤, 𝑤

󸀠, and 𝛽. The
constraining layer can be segmented simply by not enforcing
element-to-element continuity of 𝛽. Models based on IDSS
theories present erroneous results when the viscoelastic layer
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thickness approaches zero. Therefore, the displacement field
is refined by including continuity conditions and free surface
conditions of transverse shear stress. If segmentation is
realized by discontinuity of 𝛽, the continuity condition and
the free surface condition of transverse shear stress cannot be
satisfied simultaneously at cut’s location.Thus, the transverse
shear stress continuity condition between the base beam
and viscoelastic layer was not taken into account. It was
assumed that transverse shear stress was just continuous at
the interface between the viscoelastic layer and constraining
layer. In addition, shear stress was assumed to vanish at
the top surface of the constraining layer. Moreover, the
displacement continuity condition needs to be considered.
Hence, the second-order displacement field was employed in
the constraining layer tomeet the above three conditions.The
refined displacement field is given by

𝑢
𝑏
(𝑥, 𝑧, 𝑡) = 𝑢

0
(𝑥, 𝑡) − 𝑧𝑤

󸀠

(𝑥, 𝑡) ,

𝑢V (𝑥, 𝑧, 𝑡) = 𝑢
0
(𝑥, 𝑡) − 𝑧𝑤

󸀠

(𝑥, 𝑡) − (𝑧 −
ℎ
𝑏

2
)𝛽 (𝑥, 𝑡) ,

𝑢
𝑐
(𝑥, 𝑧, 𝑡) = 𝑢

0
(𝑥, 𝑡) − 𝑧𝑤

󸀠

(𝑥, 𝑡)

+ (𝑘
2
𝑧
2
+ 𝑘
1
𝑧 + 𝑘
0
) 𝛽 (𝑥, 𝑡) ,

𝑤 (𝑥, 𝑧, 𝑡) = 𝑤 (𝑥, 𝑡) ,

(2)

where 𝑘
2
, 𝑘
1
, and 𝑘

0
are three unknown parameters.

Longitudinal normal and transverse shear strains at any
point in the treated beam can be found using the following
definition:

𝜀
𝑥𝑥

=
𝜕𝑢

𝜕𝑥
,

𝜀
𝑥𝑧

=
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
.

(3)

Based on the above three conditions, three equations can
be derived, which are stated as follows:

𝐺V (
𝜕𝑢V

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=ℎ𝑏/2+ℎV

= 𝐺
𝑐
(
𝜕𝑢
𝑐

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=ℎ𝑏/2+ℎV

,

𝐺
𝑐
(
𝜕𝑢
𝑐

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=ℎ−ℎ𝑏/2

= 0,

𝑢V (𝑥, 𝑧, 𝑡)
󵄨󵄨󵄨󵄨𝑧=ℎ𝑏/2+ℎV

= 𝑢
𝑐
(𝑥, 𝑧, 𝑡)

󵄨󵄨󵄨󵄨𝑧=ℎ𝑏/2+ℎV
.

(4)

Young’s modulus and shear modulus are denoted with 𝐸

and 𝐺, respectively. 𝐺V is the shear storage modulus.
Solving the above equations, the three unknown param-

eters are obtained as follows:

𝑘
2
=

𝐺V

2𝐺
𝑐
ℎ
𝑐

,

𝑘
1
= −

𝐺V

𝐺
𝑐
ℎ
𝑐
(ℎ − ℎ

𝑏
/2)

,

𝑘
0
= −ℎV − 𝑘

2
(ℎV +

ℎ
𝑏

2
)

2

− 𝑘
1
(ℎV +

ℎ
𝑏

2
) .

(5)
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Figure 3: Nodal degrees of freedom for a finite element.

2.3. Shape Functions. Displacement at any point is denoted
using nodal displacements with the help of shape functions.
Displacement at a point in the treated beam is represented
using four variables, namely, longitudinal displacement at
the reference axis 𝑢

0
, transverse displacement 𝑤, transverse

rotation𝑤
󸀠, and shear angle in the viscoelastic layer 𝛽. Nodal

degrees of a finite element to be developed are depicted in
Figure 3. Length of the element is 𝐿

𝑒
.

Transverse displacement𝑤was interpolated using a cubic
polynomial in 𝑥 and is given by

𝑤 (𝑥, 𝑡) = [𝑁
𝑤
] {𝑤} ,

[𝑁
𝑤
] = [1 − 3(

𝑥

𝐿
𝑒

)

2

+ 2(
𝑥

𝐿
𝑒

)

3

, ((
𝑥

𝐿
𝑒

) − 2(
𝑥

𝐿
𝑒

)

2

+ (
𝑥

𝐿
𝑒

)

3

)

⋅ 𝐿
𝑒
, 3 (

𝑥

𝐿
𝑒

)

2

− 2(
𝑥

𝐿
𝑒

)

3

, (−(
𝑥

𝐿
𝑒

)

2

+ (
𝑥

𝐿
𝑒

)

3

)𝐿
𝑒
] ,

{𝑤} = [𝑤
1
(𝑥, 𝑡) , 𝑤

󸀠

1
(𝑥, 𝑡) , 𝑤

2
(𝑥, 𝑡) , 𝑤

󸀠

2
(𝑥, 𝑡)]

𝑇

.

(6)

Longitudinal displacement at the reference axis 𝑢
0
and

shear angle in the viscoelastic layer 𝛽 were interpolated
consistent with 𝑤

󸀠 using a quadratic polynomial in 𝑥, using
an internal node. Thus, the element will not shear lock:

𝑢
0
(𝑥, 𝑡) = [𝑁

𝑢
] {𝑢} ,

[𝑁
𝑢
] = [1 − 3(

𝑥

𝐿
𝑒

) + 2(
𝑥

𝐿
𝑒

)

2

, 4 (
𝑥

𝐿
𝑒

) − 4(
𝑥

𝐿
𝑒

)

2

,

− (
𝑥

𝐿
𝑒

) + 2(
𝑥

𝐿
𝑒

)

2

] ,

{𝑢} = [𝑢
1
(𝑥, 𝑡) , 𝑢

2
(𝑥, 𝑡) , 𝑢

3
(𝑥, 𝑡)]

𝑇

,

𝛽 (𝑥, 𝑡) = [𝑁
𝑢
] {𝛽} ,

{𝛽} = [𝛽
1
(𝑥, 𝑡) , 𝛽

2
(𝑥, 𝑡) , 𝛽

3
(𝑥, 𝑡)]

𝑇

.

(7)

The local nodal displacement vector for the element is
given by the following:

{𝑞
𝑒
} = [𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑤
1
, 𝑤
󸀠

1
, 𝑤
2
, 𝑤
󸀠

2
, 𝛽
1
, 𝛽
2
, 𝛽
3
]
𝑇

. (8)
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2.4. Stiffness and Mass Matrices. Associated stiffness and
mass matrices were developed using the energy expression.
The potential energy is associated with the stiffness matrix
and the kinetic energy is associated with the mass matrix.

The potential energy stored in a deformed element of
width 𝑏 and length 𝐿

𝑒
is given by

𝑈 = 𝑈
𝐸
+ 𝑈
𝐺
,

𝑈
𝐸
=

1

2
𝑏∫

𝐿𝑒

0

(∫

ℎ𝑏/2

−ℎ𝑏/2

𝐸
𝑏
(
𝜕𝑢
𝑏

𝜕𝑥
)

2

𝑑𝑧

+ ∫

ℎ−ℎ𝑏/2

ℎ𝑏/2+ℎV

𝐸
𝑐
(
𝜕𝑢
𝑐

𝜕𝑥
)

2

𝑑𝑧)𝑑𝑥 =
1

2
{𝑞
𝑒
}
𝑇

[𝐾
(𝑒)

𝐸
]

⋅ {𝑞
𝑒
} ,

𝑈
𝐺
=

1

2
𝑏∫

𝐿𝑒

0

(∫

ℎ𝑏/2+ℎV

ℎ𝑏/2

𝐺V (
𝜕𝑢V

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑧

+ ∫

ℎ−ℎ𝑏/2

ℎ𝑏/2+ℎV

𝐺
𝑐
(
𝜕𝑢
𝑐

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑧)𝑑𝑥

=
1

2
{𝑞
𝑒
}
𝑇

[𝐾
(𝑒)

𝐺
] {𝑞
𝑒
} ,

(9)

where 𝑈
𝐸

is the potential energy due to extension and
bending and 𝑈

𝐺
is the potential energy due to shear strain.

The element stiffness matrix is given by

[𝐾
(𝑒)

] = [𝐾
(𝑒)

𝐸
] + [𝐾

(𝑒)

𝐺
] . (10)

The kinetic energy of a moving element of width 𝑏 and
length 𝐿

𝑒
is given by

𝑇 = 𝑇
𝑤
+ 𝑇
𝑢
,

𝑇
𝑤

=
1

2
𝑏∫

𝐿𝑒

0

(𝜌
𝑏
ℎ
𝑏
+ 𝜌VℎV + 𝜌

𝑐
ℎ
𝑐
) (

𝜕𝑤

𝜕𝑡
)

2

𝑑𝑥

=
1

2
{�̇�
𝑒
}
𝑇

[𝑀
(𝑒)

𝑤
] {�̇�
𝑒
} ,

𝑇
𝑢
=

1

2
𝑏∫

𝐿𝑒

0
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ℎ𝑏/2

−ℎ𝑏/2

𝜌
𝑏
(
𝜕𝑢
𝑏

𝜕𝑡
)

2

𝑑𝑧

+ ∫

ℎ𝑏/2+ℎV

ℎ𝑏/2

𝜌V (
𝜕𝑢V

𝜕𝑡
)

2

𝑑𝑧

+ ∫

ℎ−ℎ𝑏/2

ℎ𝑏/2+ℎV

𝜌
𝑐
(
𝜕𝑢
𝑐

𝜕𝑡
)

2

𝑑𝑧)𝑑𝑥 =
1

2
{�̇�
𝑒
}
𝑇

⋅ [𝑀
(𝑒)

𝑢
] {�̇�
𝑒
} ,

(11)

where 𝑇
𝑤
is the kinetic energy associated with transverse

motion and 𝑇
𝑢
is the kinetic energy associated with longitu-

dinalmotion.Material density is denotedwith 𝜌.The element
mass matrix is given by

[𝑀
(𝑒)

] = [𝑀
(𝑒)

𝑤
] + [𝑀

(𝑒)

𝑢
] . (12)
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Figure 4: Frequency dependent properties of 3M ISD112 at 0∘C.

Detailed expressions for the element stiffness and mass
matrices are given in the appendix.

For the cantilever beamwith segmented CLD treatments,
through standard FEM assembling procedures and with
appropriate boundary conditions, the differential equation
for free vibrations can be expressed as

[𝑀] {�̈�} + [𝐾] {𝑞} = 0, (13)

where [𝑀], [𝐾], {�̈�}, and {𝑞} are the global mass matrix, the
global stiffness matrix, the global acceleration vector, and the
global displacement vector, respectively. The global stiffness
matrix is derived using the shear storage modulus of the
viscoelastic material.

2.5. MSE Method. Viscoelastic material representation is an
important issue when dealing with CLD treatments. The
complex modulus approach is adopted here to represent
viscoelastic materials, whose properties are frequency and
temperature dependent:

𝐺 (𝜔) = 𝐺V (𝜔) (1 + 𝑖𝜂 (𝜔)) , (14)

where 𝐺V and 𝜂 are shear storage modulus and loss factor of
viscoelastic materials. The viscoelastic material used in this
study is 3M-ISD112. Its material properties are provided in
the standard reduced temperature format in [52]. In Figure 4
are shown the shear storage modulus and loss factor of the
viscoelastic material at the ambient temperature (0∘C).These
parameters are extracted from the nomogram presented in
[52].

The base beam and constraining layer are made of
aluminum. Material parameters are listed in Table 1. Material
damping of the base beamand constraining layer is neglected.
Material density primarily affects the natural frequencies of
the treated beam and has no direct effect on the damping
efficiency of the CLD treatment.
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Table 1: Material properties.

Material type
Young’s
modulus
(MPa)

Poisson ratio Density
(kg/m3) Loss factor

Aluminum 68000 0.33 2800 0
ISD112 — 0.49 1200 —

The differential equation for free vibrations of the treated
beam is given by

[𝑀] {�̈�} + ([𝐾] + 𝑖 [𝐾V]) {𝑞} = 0, (15)

where [𝐾V] is the loss stiffness matrix associated with the
viscoelastic layer. The stiffness matrix is complex and the
eigenvalue problem can be written as

([𝐾] + 𝑖 [𝐾V]) {Φ
∗

𝑟
} = 𝜆
∗2

𝑟
[𝑀] {Φ

∗

𝑟
} , (16)

where [𝜆
∗

𝑟
] and [Φ

∗

𝑟
] are the 𝑟th complex eigenvalue and

eigenvector, respectively. The complex eigenvalue can be
written as

𝜆
∗2

𝑟
= 𝜆
2

𝑟
(1 + 𝑖𝜂

𝑟
) , (17)

where 𝜆
𝑟
and 𝜂

𝑟
are the 𝑟th real eigenvalue and loss factor,

respectively. If [Φ∗
𝑟
] is approximated by a undamped mode

shape [Φ
𝑟
], the 𝑟th loss factor can be approximated by

𝜂
𝑟
=

{Φ
𝑟
}
𝑇

[𝐾V] {Φ𝑟}

{Φ
𝑟
}
𝑇

[𝐾] {Φ
𝑟
}

. (18)

In order to take several modes into account simultane-
ously, a weighted function of loss factors is defined as follows:

𝐹 =

𝑁

∑

𝑗

𝛼
𝑗
𝜂
𝑗
, (19)

where 𝛼 is the weighted factor and 𝑁 is the number of
interested modes. In general, the vibratory energy in the low
frequency band is greater than that in high frequency band
and the value of 𝑁 in [51] is set as 3. Thus, the value of 𝛼 is 1
and the value of𝑁 is 3 here.

3. Finite Element Model Validation

Although the transverse shear stress continuity between the
base beam and the viscoelastic layer was not taken into
account, the finite element model presented in this study is
capable of handling CLD treatments with a relatively thin
viscoelastic layer. This is verified by comparing the model
presented here with that presented by Lesieutre and Lee [30].

A cantilever beam with length 𝐿 (500mm) and width 𝑏

(12mm) was used in this study. In this section, viscoelastic
material properties are considered to be constant for the sake
of simplicity. Values used for storage shear modulus and loss
factor are 𝐺V = 1.5MPa and 𝜂 = 1.1, respectively. The base
beam thickness and the constraining layer thickness are ℎ

𝑏
=

5mm and ℎ
𝑐
= 5mm, respectively.
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Figure 5: Comparison of Lesieutre’s model and the present model.

Comparison of the twofinite elementmodels is illustrated
in Figure 5. Lesieutre’s model was based on the IDSS theory,
whereas the model in this study incorporates the shear stress
continuity condition. Loss factor values were calculated from
the two models. It can be seen from the figure that the loss
factors match well except for treatments with relatively thin
viscoelastic layer. The IDSS theory based models result in
incorrect values due to singularities in the stiffness matrix.
This problem was observed once again in cases where the
beamparameters were changed.This renders the IDSS theory
based models inadequate for parametric analysis of CLD
treatments.

To further validate the finite element formulation, fre-
quency and loss factor results from the present model were
compared to those from the shell/solid/shell (SSS) model.
Results from the shell/solid/shell (SSS) model were obtained
using complex eigensolution and were assumed to be accu-
rate. Symmetric configurations were analyzed here since the
mode shape approximation involved in the MSE method
significantly affects the loss factor results for symmetric
configurations [51]. The following dimensional ratios are
defined to allow universal comparison of results. It is assumed
that the viscoelastic layer undergoes pure shear. As stated in
[7], this assumption is valid only when the viscoelastic layer
is relatively thin and the viscoelastic layer thickness is not
in the same order as the base beam. Thus, viscoelastic layer
thickness ratio is defined in terms of the base beam thickness:

𝐻
𝑏
= ℎ
𝑏
/𝐿, base beam thickness ratio.

𝐻
𝑐
= ℎ
𝑐
/𝐿, constraining layer thickness ratio.

𝐻V = ℎV/ℎ𝑏, viscoelastic layer thickness ratio.

𝑛, number of cuts.

0 < 𝑋
1
< ⋅ ⋅ ⋅ < 𝑋

𝑛
< 1, position of cuts (𝑋

𝑛
= 𝑥
𝑛
/𝐿,

where 𝑥
𝑛
is the 𝑥 coordinate of the cut).
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Table 2: Comparison between presentmodel and SSSmodel on frequencies and loss factors for various values of𝐻V and𝐺V (𝐻𝑏 = 𝐻
𝑐
= 0.001,

𝑛 = 0).

𝐻V = 0.2 𝐻V = 0.4 𝐻V = 0.6

Present SSS Error Present SSS Error Present SSS Error
𝐺V = 1.5

MPa
𝑓
1
(Hz) 3.57 3.57 0.0% 3.94 3.95 0.3% 4.30 4.31 0.2%

𝑓
2
(Hz) 21.4 21.5 0.5% 22.7 22.9 0.9% 23.9 24.2 1.2%

𝑓
3
(Hz) 56.5 56.9 0.7% 57.6 58.4 1.4% 58.7 59.9 2.0%

𝐹 (𝑁 = 3) 0.314 0.307 2.3% 0.531 0.507 4.7% 0.699 0.656 6.6%
𝐺V = 5

MPa
𝑓
1
(Hz) 3.59 3.59 0.0% 3.99 3.99 0.0% 4.38 4.38 0.0%

𝑓
2
(Hz) 22.2 22.2 0.0% 24.3 24.3 0.0% 26.7 26.4 1.1%

𝑓
3
(Hz) 60.7 60.8 0.2% 65.2 65.5 0.5% 69.2 69.6 0.6%

𝐹 (𝑁 = 3) 0.118 0.117 0.9% 0.227 0.223 1.8% 0.328 0.322 1.9%

Table 2 shows natural frequencies, loss factors, and corre-
sponding errors based on the two finite element models and
illustrates the effect of varying the viscoelastic layer thickness
and the storagemodulus of viscoelasticmaterial.The increase
of viscoelastic layer thickness does not significantly affect the
errors in natural frequencies but results in an increase in
loss factor errors. The finite element model presented in this
study is valid when 𝐻V is under 0.6. The storage modulus
variation significantly affects loss factor results. Thus, the
effect of frequency variation on storage modulus and loss
factor of viscoelastic material should not be overlooked. An
iterative method presented in [39] was adopted here to revise
the MSE method. The iterative method approaches accurate
storage modulus by updating the storage modulus and
corresponding natural frequency over multiple iterations.
The natural frequency approaches its accurate value after the
first iteration step and hence calculations were stopped after
the first iteration step. Flowchart illustrating the calculation
procedure for the modal loss factors is shown in Figure 6.

Effect of varying base beam thickness and initiating a
cut at position 𝑋

1
= 0.5 is illustrated in Table 3. For full-

cover CLD beams, the base layer thickness variation has no
significant effect on calculation errors for natural frequencies
and loss factors. On the contrary, initiating a cut into the
treatment has a significant effect on the calculation errors in
loss factors. For symmetric CLD beams, the aforementioned
finite element model is valid when𝐻

𝑏
is under 0.012.

4. Parametric Analysis and Optimization

4.1. Effect of Geometry Parameters and Material Properties.
Theshear strain in the viscoelastic layer, promoted by the con-
straint effect of the constraining layer, is directly responsible
for the damping mechanism developed in CLD treatments.
The thickness variation of base beam layer has a direct
effect on the shear strain level, as discussed in preceding
sections. Relationship between the base beam thickness and
the effectiveness of an arbitrarily placed cut is first discussed.

Assemble stiffness and mass matrices [K0] [M0]
using reference storage modulus

GREF = 1.5MPa

Calculate eigenfrequency fr

Update storage modulus and loss factor through
G�(𝜔) and 𝜂(𝜔) curve according to fr

Assemble stiffness and mass matrices [K] [M]
using updated storage modulus

Calculate eigenfrequency fr and modal loss
factors 𝜂r using [K] [M]

Figure 6: Flowchart illustrating the 𝑟th modal loss factor calcula-
tion.

In this section, absolute layer thickness refers to calculations
under the condition that the length of the beam is 500mm.

As stated in [44], a cut should be placed at the maximum
flexural displacement where the bendingmoment is maximal
and the shear strain in the viscoelastic layer is not significant.
Mode shapes for full-cover CLD beams are illustrated in
Figure 7 and the position of maximum flexural displacement
for the third mode is identified. Based on the results, the cut
is placed at 𝑋

1
= 0.74.

Figure 8 shows the damping efficiency versus viscoelastic
layer thickness curves for symmetric CLD beams where the
line without marks represents full-cover and the line with
marks represents segmented beams. For the beam with ratio
𝐻
𝑏
= 0.001, placing a cut at position 𝑋

1
= 0.74 is always a

feasible way to increase damping efficiency. The shell/solid/
shell model was employed to analyze treatments with thicker
viscoelastic layer. Results show that segmentation remains
efficient when the viscoelastic layer has the same thickness
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Table 3: Comparison between presentmodel and SSSmodel on frequencies and loss factors for various values of𝐻
𝑏
and 𝑛 (𝐻

𝑏
= 𝐻
𝑐
,𝐻V = 0.4,

𝑋
1
= 0.5, 𝐺V = 1.5).

𝐻
𝑏
= 0.01 𝐻

𝑏
= 0.012 𝐻

𝑏
= 0.015

Present SSS Error Present SSS Error Present SSS Error
𝑛 = 0

𝑓
1
(Hz) 24.4 25.1 2.8% 27.2 28.0 2.9% 31.4 32.0 1.9%

𝑓
2
(Hz) 111 112 0.9% 129 130 0.8% 156 156 0.0%

𝑓
3
(Hz) 284 284 0.0% 335 335 0.0% 413 412 0.2%

𝐹 (𝑁 = 3) 0.8 0.749 6.8% 0.721 0.675 6.8% 0.611 0.575 6.3%
𝑛 = 1

𝑓
1
(Hz) 18.9 18.8 0.5% 21.5 21.3 0.9% 25.6 24.7 3.6%

𝑓
2
(Hz) 101 96.0 5.2% 119 112 6.3% 147 130 13.1%

𝑓
3
(Hz) 283 283 0.0% 334 333 0.3% 412 400 3.0%

𝐹 (𝑁 = 3) 0.542 0.545 0.6% 0.431 0.453 4.9% 0.313 0.412 24.0%
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Figure 7: Mode shapes for full-cover CLD beams.

as the base beam (ℎV = ℎ
𝑏

= 0.5mm). (To make a com-
parison between CLD beams with different 𝐻

𝑏
, the absolute

viscoelastic layer thickness ℎV is used here.) However, for
beams with ratios 𝐻

𝑏
= 0.012 and 𝐻

𝑏
= 0.005, segmentation

is inefficient for cases where the viscoelastic layer thickness
exceeds 0.2mm.

An efficiency curve illustrates a combination of the vol-
ume energy and the shear strain field inside the viscoelastic
layer [51]. The volume energy has a direct linear relation
with the viscoelastic layer thickness. For low shear strains,
the efficiency curve should be a monotonic increasing line,
similar to the solid line in Figure 8. As the ratio𝐻

𝑏
varies from

0.001 to 0.012, a sharp increase in the loss factor for very thin
viscoelastic layers was observed. This implies that the shear
strain level increases with increase in base layer thickness.
Whenever a cut is initiated in the damping treatment, the
shear strain field is reshaped. Provided that the viscoelastic
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Figure 8: Efficiency curves for full-cover and segmented CLD
beams with various values of 𝐻

𝑏
(𝐻
𝑏
= 𝐻
𝑐
).

layer is not particularly thin (ℎV > 0.2mm), placing a cut
at the position 𝑋

1
= 0.74 increased the damping efficiency

for the beam with ratio 𝐻
𝑏

= 0.001, whereas a decrease in
the damping efficiency was observed for ratio 𝐻

𝑏
= 0.012

or 𝐻
𝑏

= 0.005. Figure 9 shows a comparison of the shear
strain field for the full-cover CLDbeamwith ratio𝐻

𝑏
= 0.001

and the corresponding segmented one. It can be seen that
placing a cut creates a high-shear region at that position,
although the shear strain at other positions decreases slightly.
Comparisons for CLD beams with ratio 𝐻

𝑏
= 0.005 or

𝐻
𝑏
= 0.012 are depicted in Figures 10 and 11, respectively. It

is apparent that placing a cut reduces the global shear strain
especially at the tip of the beam.

For three CLD beams with different base beam ratios in
Figures 9–11, the viscoelastic layer thickness was 0.25mm. A
comparison among the three beams shows that a thicker base
layer thickness leads to a more intense shear strain pattern.
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Figure 9: Comparison of the shear strain field between full-cover
and segmented CLD beams with ratio𝐻

𝑏
= 𝐻
𝑐
= 0.001.

Segmentation is not always an effective method to increase
the shear strain in the viscoelastic layer. To a large extent,
the effectiveness of placing a cut is dependent on the original
shear strain level. For CLD treatments with high levels of
shear strain, placing a cut would reduce the original shear
strain field and consequently reduce the damping efficiency.
On the other hand, for CLD treatments with low levels of
shear strain, placing a cut would create a high-shear region
and thereby increase the damping efficiency.

Thickness variance of the viscoelastic layer also affects the
shear strain field. As a matter of fact, for the same flexural
pattern produced by two face layers, a thinner viscoelastic
layer will present more transverse shear strain than a thicker
one. Segmentation is effective when the viscoelastic layer
is relatively thin. As for CLD beams with extremely thin
viscoelastic layer (ℎV ≤ 0.2mm), segmentation is always
effective, although the shear strain level is high. This can be
attributed to the fact that segmentation is easier to reduce the
shear strain field in a thicker viscoelastic layer rather than a
thinner one. However, structural damping rate is relatively
low since volume of viscoelastic material is very small.

Viscoelastic layer thickness variation affects the applica-
bility of segmentation in a different way and is considered
individually. Regardless of the influence of the viscoelastic
layer thickness variation, the effectiveness of segmentation
is dependent on the shear strain level inside the viscoelastic
layer. A coarse approximation for the shear strain in the
viscoelastic layer of full-cover CLD beams can bemade based
on the shape of the efficiency curve. As depicted in Figure 8,
peak values for very thin viscoelastic layers become increas-
ingly obvious with increase in the shear strain. Effect of

−1

0

1 Mode 1

n = 0
n = 1

Mode 2

N
or

m
al

iz
ed

sh
ea

r s
tr

ai
n

N
or

m
al

iz
ed

sh
ea

r s
tr

ai
n

−1

0

1

N
or

m
al

iz
ed

sh
ea

r s
tr

ai
n

0 0.2 0.4 0.6 0.8 1
−1

0

1

Normalized beam length

0 0.2 0.4 0.6 0.8 1
Normalized beam length

0 0.2 0.4 0.6 0.8 1
Normalized beam length

Mode 3

Figure 10: Comparison of the shear strain field between full-cover
and segmented CLD beams with ratio𝐻

𝑏
= 𝐻
𝑐
= 0.005.

the constraining layer thickness variation on the shear strain
field is shown in Figure 12. It can be seen that peak values
are increasingly observed as the thickness of constraining
layer is increased.This implies that thicker constraining layers
produce more shear strain and this conclusion is in line with
existing studies [7, 25]. Another observation is that placing
a cut at 𝑋

1
= 0.74 remains effective for CLD beams with

relatively thin viscoelastic layers.
Regardless of the influence of the viscoelastic layer thick-

ness variation, the shape of the damping efficiency curve
represents the shear strain level. Hence, it can be used
to explore the effect of other design parameters. Effect of
material properties on the shear strain field is shown in
Figure 13. A full-cover CLD beam with ratio 𝐻

𝑏
= 𝐻
𝑐

=

0.012 was adopted and values of 𝐺
0
and 𝐸

0
were 1.5MPa

and 68GPa, respectively. Results show that adopting stiffer
face layer material or softer viscoelastic material results in
increasing occurrence of the peak, which implies that the
shear strain level is higher.

In summary, increasing stiffness of the two face layers or
adopting relatively soft viscoelastic material would result in
higher levels of shear strain in the viscoelastic layer, which
renders segmentation useless. An example is presented to
further illustrate this point. Optimal cut arrangements were
obtained for a CLD beam with selected parameters in [42].
Parameters and properties of the CLD beam were 𝐿 =

500mm, 𝑏 = 30mm, ℎ
𝑏
= 5mm, ℎV = 2mm, ℎ

𝑐
= 0.5mm,

𝐸
𝑏
= 𝐸
𝑐
= 200GPa, 𝜌

𝑏
= 𝜌
𝑐
= 7800 kg/m3, 𝐺V = 24MPa,

and 𝜌V = 1616 kg/m3. Figure 14 shows the damping efficiency
curve, which was based on the finite element model in the
present work. The curve is approximate to a monotonically
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Figure 11: Comparison of the shear strain field between full-cover
and segmented CLD beams with ratio𝐻

𝑏
= 𝐻
𝑐
= 0.012.
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increasing line.This suggests that the shear strain level is low.
Therefore, placing cuts at appropriate position could improve
structural damping ratio, as long as the viscoelastic layer
thickness is within reasonable limits (ℎV ≤ ℎ

𝑏
).

4.2. Cuts Arrangement Optimization. In the previous subsec-
tion, the cut was placed arbitrarily. Furthermore, in order
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Figure 14: Efficiency curve for a selected CLD beam in [42].

to explore whether a cut placed at an optimum position
could further increase the damping efficiency, a genetic algo-
rithm was adopted to optimize cut arrangement. Thickness
variation in the viscoelastic layer affects the applicability of
segmentation in a different way. Thus, the optimum value
of the viscoelastic layer thickness was selected here. For a
full-cover beam with 𝐻

𝑏
= 𝐻
𝑐

= 0.012, as shown in
Figure 8, optimal thickness of viscoelastic layer is the value
corresponding to the peak of the loss factor. For 𝐻

𝑏
= 𝐻
𝑐
=

0.001, optimal thickness is the maximum value by taking
weight limitation into consideration. From Figure 8, it can
be seen that placing a cut would slightly shift the peak of
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Figure 15: Optimized loss factor results for symmetric and asym-
metric CLD configurations (𝐻

𝑏
+ 𝐻
𝑐
= 0.024).

the loss factor. As a result, viscoelastic layer thicknesswas also
regarded as an optimization variable.

Asymmetric constrained configurations are used exten-
sively as well as symmetric configurations. Subject to a weight
limitation, asymmetric and symmetric configurations were
compared. Weight of the viscoelastic layer was neglected.
Provided that total thickness of the base layer and that of
constraining layer were equal for different CLD configu-
rations, weight of these configurations was considered to
be the same. As stated previously, the MSE method uses
approximate undampedmode shapes to calculate loss factors.
This has a major effect on symmetric CLD configurations.
Therefore, the present model was assumed to be valid for
asymmetric configurations provided that it was valid for the
corresponding symmetric case.

Genetic algorithm used here is different from conven-
tional optimization procedures and does not require deriva-
tives. Moreover, it can be applied to any kind of objective
functions with any constraints. In addition, the ergodicity of
evolution operations renders the genetic algorithm effective
at performing global search.The algorithmwas implemented
using the Matlab optimization Toolbox. The optimization
solution was stopped after 100 iterations with a population
size of 40 and mutation probability equal to 0.8. For the case
that the sum of𝐻

𝑏
and𝐻

𝑐
is 0.024, the optimization problem

is written as follows:

Minimize: 1

𝐹 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
, 𝐻V)

,

Subject to: 0 < 𝑋
1
< ⋅ ⋅ ⋅ < 𝑋

𝑛
< 1,

0 < 𝐻V ≤ 0.4,

(20)

where 𝐹 is the weighted function of loss factors.
Figure 15 shows the optimized loss factor results for

different CLD configurations. Notice that if the constraining

Table 4: Final values of design variables (𝐻
𝑏
+ 𝐻
𝑐
= 0.024).

𝐻
𝑏
= 0.012 0.014 0.016 0.018 0.02 0.022 0.0235

𝑛 = 0

𝐻V 0.067 0.059 0.058 0.041 0.396 0.400 0.400
𝑛 = 1

𝐻V 0.052 0.046 0.042 0.042 0.061 0.400 0.400
𝑋
1

0.900 0.900 0.896 0.877 0.900 0.900 0.900
𝑛 = 2

𝐻V 0.051 0.044 0.042 0.027 0.056 0.394 0.400
𝑋
1

0.0891 0.891 0.890 0.844 0.877 0.887 0.891
𝑋
2

0.900 0.900 0.899 0.855 0.887 0.896 0.900
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Figure 16: Natural frequency results for symmetric and asymmetric
CLD configurations (𝐻

𝑏
+ 𝐻
𝑐
= 0.024).

layer thickness exceeds the base layer thickness, the two face
layers exchange their roles and the thinner one was cut all the
time. Thus, the optimized loss factor versus base beam ratio
curve in Figure 15 is symmetric. Three curves are illustrated
for different cut arrangements. It was observed for all cases
that symmetric configurations provided the largest damping,
subject to a weight limitation. In addition, it was seen that, for
a specific CLD configuration, placing no cut, one cut, or two
cuts in the damping treatment resulted in similar damping.
As shown in Table 4, optimal locations of cuts are at the tip
of the beam for all cases. This indicates that the continuity
of the constraining layer is of paramount importance for
maintaining a high-shear strain level in the viscoelastic layer.
In other words, segmentation is inadequate for improving
damping performance for the case where sum of 𝐻

𝑏
and 𝐻

𝑐

is 0.024. Corresponding modal frequency results are shown
in Figure 16. It can be seen that the stiffness of symmetric
configurations does not decrease significantly in comparison
to asymmetric configurations.

Subsequently, the damping optimization methodology
was applied to the casewhere the sumof𝐻

𝑏
and𝐻

𝑐
was 0.002.
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Figure 17: Optimized loss factor results for different CLD configu-
rations (𝐻

𝑏
+ 𝐻
𝑐
= 0.002).

For a beamwith ratio𝐻
𝑏
= 0.001, an increase in the damping

is mainly dependent on introducing additional viscoelastic
material. Thus, the volume of the viscoelastic material was
restricted and the absolute thickness of the viscoelastic layer
was regarded as a design variable instead of the thickness ratio
𝐻V.Then, the optimization problem can be written as follows:

Minimize: 1

𝐹 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
, ℎV)

,

Subject to: 0 < 𝑋
1
< ⋅ ⋅ ⋅ < 𝑋

𝑛
< 1,

0 < ℎV ≤ 0.3mm,

(21)

where 𝐹 is the weighted function of loss factors.
Optimized loss factor results are shown in Figure 17.

Maximum values of loss factors correspond to the symmetric
configurations. Moreover, an obvious improvement can be
observed when results for full-cover CLD beam and seg-
mented CLD beam are compared. Final values of design
variables are listed in Table 5. As expected, optimal thickness
of viscoelastic layer is the maximum value. It is proposed
that the cuts be placed in the middle of the CLD beam. This
implies that a high-shear region is created at this position.
First modal frequencies for the above CLD configurations are
presented in Figure 18 and it is apparent that placing cuts
increases compliance of the beam.

Table 6 lists optimized loss factor results for symmetric
sandwich beams with different base beam thickness ratios. It
can be seen that, for the cases where𝐻

𝑏
is greater than 0.002,

optimal locations of cuts are at the tip of the beam. Placing
cuts enhances the damping capacity for CLDbeamswith base
beam thickness ratio𝐻

𝑏
under 0.002, namely, flexible beams.

In summary, for the case that the original shear strain level
is high, segmentation is not an effective method to increase
structural damping rate even if the cut arrangement was
optimized.

Table 5: Final values of design variables (𝐻
𝑏
+ 𝐻
𝑐
= 0.002).

𝐻
𝑏
= 0.001 0.0012 0.0014 0.0016 0.0018 0.0019

𝑛 = 0

ℎV (mm) 0.300 0.300 0.300 0.300 0.300 0.300
𝑛 = 1

ℎV (mm) 0.300 0.300 0.300 0.300 0.300 0.300
𝑋
1

0.535 0.536 0.539 0.580 0.650 0.667
𝑛 = 2

ℎV (mm) 0.300 0.300 0.300 0.300 0.300 0.300
𝑋
1

0.167 0.171 0.172 0.192 0.171 0.337
𝑋
2

0.563 0.585 0.583 0.738 0.656 0.674

Table 6: Optimization results for symmetric CLD beams.

𝐻
𝑏
+ 𝐻
𝑐

𝐻
𝑏

𝐻
𝑐

𝐻V 𝑛 [𝑋
1
𝑋
2
⋅ ⋅ ⋅ 𝑋
𝑛
] 𝐹 (𝑁 = 3) 𝑓

1
/Hz

0.024 0.012 0.012 0.067 0 — 1.13 31.4
0.012 0.012 0.052 1 [0.90] 1.17 31.9

0.02 0.01 0.01 0.089 0 — 1.14 26.5
0.01 0.01 0.073 1 [0.95] 1.17 26.8

0.016 0.008 0.008 0.147 0 — 1.14 21.4
0.008 0.008 0.113 1 [0.93] 1.17 21.7

0.012 0.006 0.006 0.4 0 — 1.21 16.2
0.006 0.006 0.4 1 [0.96] 1.21 16.2

0.008 0.004 0.004 0.4 0 — 1.24 12.3
0.004 0.004 0.4 1 [0.93] 1.27 12.3

0.004 0.002 0.002 0.4 0 — 1.05 7.15
0.002 0.002 0.4 1 [0.90] 1.10 7.15

0.002 0.001 0.001 0.4 0 — 0.614 3.85

0.001 0.001 0.4 3 [0.17 0.56
0.84] 0.817 2.34

5. Conclusions

In the present study, a dimensionless analysis was con-
ducted on segmented CLD treatments. The effectiveness
of segmentation to enhance the damping capacity of CLD
treatments was discussed. A finite element model capable
of handling treatments with relatively thin viscoelastic layer
was developed based on interlaminar continuous shear stress
theories and themodel was validated by comparison with the
classical shell/solid/shell model. Structural damping ratios
were estimated using the modal strain energy method.

The applicability of segmentation was analyzed in terms
of shear strain.This is due to the fact that the shear strain field
inside the viscoelastic layer is responsible for the damping
efficiency of the treatment. It was found that the viscoelastic
layer thickness variation affected the effectiveness of seg-
mentation in a different way. Segmentation was found to be
effective only when the viscoelastic layer was relatively thin.
When the viscoelastic layer thickness was under 0.2mm (𝐿 =

500mm), placing cuts was found to be always effective in
increasing the damping efficiency. Provided that the optimal
thickness of viscoelastic layer was selected, the applicability
of segmentation was dependent on the shear strain level
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Figure 18: Natural frequency results for different CLD configura-
tions (𝐻

𝑏
+ 𝐻
𝑐
= 0.002).

inside the viscoelastic layer. If the shear strain level was high,
placing cuts would reduce the original shear strain field. If
the shear strain level was low, placing cuts would create a
high-shear region in the viscoelastic layer, thereby increasing
the damping efficiency. Moreover, adopting relatively soft
viscoelastic material or increasing stiffness of the two face
layers could build up a higher shear strain level in the
viscoelastic layer. The above conclusions were valid even if
the cut arrangement was optimized. In addition, symmetric
configurations were found to be superior to asymmetric ones
subject to a weight limitation.

When dealing with CLD beams, designers typically
choose relatively thin but not extremely thin viscoelastic
layers (under 0.2mm). Hence, the first key to improve the
damping efficiency is to raise the shear strain level inside
the viscoelastic layer. Adopting relatively soft viscoelastic
material and increasing stiffness of face layers are both
available strategies.However, this would lead to segmentation
being useless. For flexible CLD beams or asymmetric CLD
beams with relatively thin viscoelastic layer, the shear strain
level inside the viscoelastic layer is low. Placing cuts at
appropriate positions would improve the damping efficiency
but would also increase compliance of the beam.

Appendix

Mass and stiffness matrices for the CLD beam:

[𝐾
(𝑒)

] = [𝐾
(𝑒)

𝐸
] + [𝐾

(𝑒)

𝐺
] ,

[𝐾
(𝑒)

𝐸
] =

[
[
[

[

[𝐾
𝐸𝑢𝑢

] [𝐾
𝐸𝑢𝑤

] [𝐾
𝐸𝑢𝛽

]

[𝐾
𝑇

𝐸𝑢𝑤
] [𝐾
𝐸𝑤𝑤

] [𝐾
𝐸𝑤𝛽

]

[𝐾
𝑇

𝐸𝑢𝛽
] [𝐾

𝑇

𝐸𝑤𝛽
] [𝐾
𝐸𝛽𝛽

]

]
]
]

]

,

[𝐾
(𝑒)

𝐺
] =

[
[
[

[

[0] [0] [0]

[0] [0] [0]

[0] [0] [𝐾
𝐺𝛽𝛽

]

]
]
]

]

,

[𝐾
𝐸𝑢𝑢

] = 𝐴
1
∫

𝐿𝑒

0

[𝑁
󸀠

𝑢
]
𝑇

[𝑁
󸀠

𝑢
] 𝑑𝑥,

[𝐾
𝐸𝑢𝑤

] = 𝐴
2
∫

𝐿𝑒

0

[𝑁
󸀠

𝑢
]
𝑇

[𝑁
󸀠󸀠

𝑤
] 𝑑𝑥,

[𝐾
𝐸𝑢𝛽

] = 𝐴
3
∫

𝐿𝑒

0

[𝑁
󸀠

𝑢
]
𝑇

[𝑁
󸀠

𝑢
] 𝑑𝑥,

[𝐾
𝐸𝑤𝑤

] = 𝐴
4
∫

𝐿𝑒

0

[𝑁
󸀠󸀠

𝑤
]
𝑇

[𝑁
󸀠󸀠

𝑤
] 𝑑𝑥,

[𝐾
𝐸𝑤𝛽

] = 𝐴
5
∫

𝐿𝑒

0

[𝑁
󸀠󸀠

𝑤
]
𝑇

[𝑁
󸀠

𝑢
] 𝑑𝑥,

[𝐾
𝐸𝛽𝛽

] = 𝐴
6
∫

𝐿𝑒

0

[𝑁
󸀠

𝑢
]
𝑇

[𝑁
󸀠

𝑢
] 𝑑𝑥,

[𝐾
𝐺𝛽𝛽

] = 𝐴
7
∫

𝐿𝑒

0

[𝑁
𝑢
]
𝑇

[𝑁
𝑢
] 𝑑𝑥,

𝐴
1
= 𝐸
𝑏
𝑏ℎ
𝑏
+ 𝐸
𝑐
𝑏ℎ
𝑐
,

𝐴
2
= −𝐸
𝑏
𝑏∫

ℎ𝑏/2

−ℎ𝑏/2

𝑧 𝑑𝑧 − 𝐸
𝑐
𝑏∫

ℎ−ℎ𝑏/2

ℎ𝑏/2+ℎV

𝑧 𝑑𝑧,

𝐴
3
= 𝐸
𝑐
𝑏∫

ℎ−ℎ𝑏/2

ℎ𝑏/2+ℎV

(𝑘
2
𝑧
2
+ 𝑘
1
𝑧 + 𝑘
0
) 𝑑𝑧,

𝐴
4
= 𝐸
𝑏
𝑏∫

ℎ𝑏/2

−ℎ𝑏/2

𝑧
2
𝑑𝑧 + 𝐸

𝑐
𝑏∫

ℎ−ℎ𝑏/2

ℎ𝑏/2+ℎV

𝑧
2
𝑑𝑧,

𝐴
5
= −𝐸
𝑐
𝑏∫

ℎ−ℎ𝑏/2

ℎ𝑏/2+ℎV

𝑧 (𝑘
2
𝑧
2
+ 𝑘
1
𝑧 + 𝑘
0
) 𝑑𝑧,

𝐴
6
= 𝐸
𝑐
𝑏∫

ℎ−ℎ𝑏/2

ℎ𝑏/2+ℎV

(𝑘
2
𝑧
2
+ 𝑘
1
𝑧 + 𝑘
0
)
2

𝑑𝑧,

𝐴
7
= 𝐺V𝑏ℎV + 𝐺

𝑐
𝑏∫

ℎ−ℎ𝑏/2

ℎ𝑏/2+ℎV

(2𝑘
2
𝑧 + 𝑘
1
)
2

𝑑𝑧,

[𝑀
(𝑒)

] = [𝑀
(𝑒)

𝑤
] + [𝑀

(𝑒)

𝑢
] ,

[𝑀
(𝑒)

𝑤
] =

[
[

[

[0] [0] [0]

[0] [𝑀
𝑤𝑤𝑤

] [0]

[0] [0] [0]

]
]

]

,

[𝑀
(𝑒)

𝑢
] =

[
[
[

[

[𝑀
𝑢𝑢𝑢

] [𝑀
𝑢𝑢𝑤

] [𝑀
𝑢𝑢𝛽

]

[𝑀
𝑇

𝑢𝑢𝑤
] [𝑀

𝑢𝑤𝑤
] [𝑀

𝑢𝑤𝛽
]

[𝑀
𝑇

𝑢𝑢𝛽
] [𝑀

𝑇

𝑢𝑤𝛽
] [𝑀

𝑢𝛽𝛽
]

]
]
]

]

,

[𝑀
𝑤𝑤𝑤

] = 𝐵
1
∫

𝐿𝑒

0

[𝑁
𝑤
]
𝑇

[𝑁
𝑤
] 𝑑𝑥,
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[𝑀
𝑢𝑢𝑢

] = 𝐵
1
∫

𝐿𝑒

0

[𝑁
𝑢
]
𝑇

[𝑁
𝑢
] 𝑑𝑥,

[𝑀
𝑢𝑢𝑤

] = 𝐵
2
∫

𝐿𝑒

0

[𝑁
󸀠

𝑤
]
𝑇

[𝑁
𝑢
] 𝑑𝑥,

[𝑀
𝑢𝑢𝛽

] = 𝐵
3
∫

𝐿𝑒

0

[𝑁
𝑢
]
𝑇

[𝑁
𝑢
] 𝑑𝑥,

[𝑀
𝑢𝑤𝑤

] = 𝐵
4
∫

𝐿𝑒

0

[𝑁
󸀠

𝑤
]
𝑇

[𝑁
󸀠

𝑤
] 𝑑𝑥,

[𝑀
𝑢𝑤𝛽

] = 𝐵
5
∫

𝐿𝑒

0

[𝑁
󸀠

𝑤
]
𝑇

[𝑁
𝑢
] 𝑑𝑥,

[𝑀
𝑢𝛽𝛽

] = 𝐵
6
∫

𝐿𝑒

0

[𝑁
𝑢
]
𝑇

[𝑁
𝑢
] 𝑑𝑥,

𝐵
1
= 𝜌
𝑏
𝑏ℎ
𝑏
+ 𝜌V𝑏ℎV + 𝜌

𝑐
𝑏ℎ
𝑐
,

𝐵
2
= −𝜌
𝑏
𝑏∫

ℎ𝑏/2

−ℎ𝑏/2

𝑧 𝑑𝑧 − 𝜌V𝑏∫

ℎ𝑏/2+ℎV

ℎ𝑏/2

𝑧 𝑑𝑧

− 𝜌
𝑐
𝑏∫

ℎ−ℎ𝑏/2

ℎ𝑏/2+ℎV

𝑧 𝑑𝑧,

𝐵
3
= 𝜌V𝑏∫

ℎ𝑏/2+ℎV

ℎ𝑏/2

(
ℎ
𝑏

2
− 𝑧)𝑑𝑧

+ 𝜌
𝑐
𝑏∫

ℎ−ℎ𝑏/2

ℎ𝑏/2+ℎV

(𝑘
2
𝑧
2
+ 𝑘
1
𝑧 + 𝑘
0
) 𝑑𝑧,

𝐵
4
= 𝜌
𝑏
𝑏∫

ℎ𝑏/2

−ℎ𝑏/2

𝑧
2
𝑑𝑧 + 𝜌V𝑏∫

ℎ𝑏/2+ℎV

ℎ𝑏/2

𝑧
2
𝑑𝑧

+ 𝜌
𝑐
𝑏∫

ℎ−ℎ𝑏/2

ℎ𝑏/2+ℎV

𝑧
2
𝑑𝑧,

𝐵
5
= 𝜌V𝑏∫

ℎ𝑏/2+ℎV

ℎ𝑏/2

𝑧(𝑧 −
ℎ
𝑏

2
) 𝑑𝑧

− 𝜌
𝑐
𝑏∫

ℎ−ℎ𝑏/2

ℎ𝑏/2+ℎV

𝑧 (𝑘
2
𝑧
2
+ 𝑘
1
𝑧 + 𝑘
0
) 𝑑𝑧,

𝐵
6
= 𝜌V𝑏∫

ℎ𝑏/2+ℎV

ℎ𝑏/2

(𝑧 −
ℎ
𝑏

2
)

2

𝑑𝑧

+ 𝜌
𝑐
𝑏∫

ℎ−ℎ𝑏/2

ℎ𝑏/2+ℎV

(𝑘
2
𝑧
2
+ 𝑘
1
𝑧 + 𝑘
0
)
2

𝑑𝑧.
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