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Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of
nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aber-
ration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between
the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the
off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated
that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field depend-
ence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with
500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is
designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike
terms. The design results show that the nodes of third-order astigmatism and coma move back into the field
of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter
(lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance
for aberration correction in off-axis freeform system design. © 2016 Optical Society of America

OCIS codes: (080.1010) Aberrations (global); (080.4228) Nonspherical mirror surfaces; (220.1250) Aspherics.
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1. INTRODUCTION

Due to the limitations of traditional rotationally symmetric
reflective systems, an off-axis optical system was designed to
remove the obscuration for increasing the total intensity of light
[1]. Several strategies can be employed to obtain an off-axis
system, such as (1) the aperture stop can be offset from the
mechanical axis, (2) the biased field of view (FOV) can be opti-
mized, (3) the surfaces themselves can be tilted [2]. In most
cases, the third method is seldom adopted because of the
near-field constant astigmatism and coma aberrations induced
by tilting surfaces. These kinds of aberrations may not be easily
corrected by conventional rotationally symmetric surfaces.
However, the freeform surfaces provide greater control to
the off-axis aberrations than the rotationally symmetric surfa-
ces. Additionally, with the development of computer-controlled
machining processes, freeform surfaces are no longer prohibi-
tive [3]. Based on the above reasons, freeform surfaces are
widely used in off-axis system design.

Because the traditional aberration theory is not appropriate
for the freeform system anymore, optical designers lack intui-
tive insights on the contribution of aberrations induced by the
freeform surfaces. Until recently, Fuerschbach et al. derived

expressions for the aberration theory of systems with freeform
surfaces described by Zernike polynomials [4]. The theory built
upon the vector aberration theory (VAT) introduced by
Thompson [5]. Based on the work of Fuerschbach, Yang an-
alyzed the nodal aberration properties of Zernike polynomial
surfaces in a coaxial imaging system [6]. However, the total
third-order wave aberration expressions when the freeform sur-
faces were introduced into an off-axis system were not derived.
The relationship between the freeform shape and the off-axis
acting on the aberration nodal position was not revealed either.
In order to provide essential guidance for off-axis aberration
correction when using freeform surfaces, the contribution of
freeform surfaces in an off-axis system needs to be developed
urgently.

This paper is organized as follows: in Section 2, the wave
aberration formulations are derived for an off-axis system in-
cluding freeform surfaces described by Zernike polynomials.
When each Zernike term is added to an off-axis system, the
nodal properties of astigmatism and coma are analyzed in detail.
The relationship between the off-axis and surface shape acting
on the nodal distributions is revealed for the first time. The full-
field displays (FFDs) generated by CODE V are utilized to
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validate the derivation. In Section 3, in order to demonstrate
the applicability of the theoretical derivations, an optical system
with two tilted Zernike mirrors is optimized. The first-order
starting point parameters are considered and computed accord-
ing to basic mechanical requirements. In order to balance the
field constant aberrations induced by tilting surfaces, the node-
based analysis approach is employed in the optimization proc-
ess of the optical design. The strategy of selecting Zernike terms
is guided by the off-axis freeform aberration distribution
discussed in Section 2. The design results and the imaging per-
formance of the off-axis freeform system, which works in the
long-wave infrared spectrum (8 ∼ 12 μm), are reported at the
end of this section. Conclusions are finally given in Section 4.

2. NODAL ABERRATION PROPERTIES OF
FREEFORM SURFACES IN AN OFF-AXIS
SYSTEM

In order to account for the effects of tilt and decenter pertur-
bations on the wave aberration expansion for a rotationally
symmetric optical system completely, Thompson presented a
vector formulation of wave aberration [5]. By inducing the field
decentration vector σ⃗j, which determined the center of each
surface contribution in the image plane, the wave aberration
expansion to the third-order, including decenters and tilts,
can be expressed as

W � ΔW 20�ρ⃗ · ρ⃗� � ΔW 11�H⃗ · ρ⃗� �
X
j

W 040j�ρ⃗ · ρ⃗�2

�
X
j

W 131j ��H⃗ − σ⃗j� · ρ⃗��ρ⃗ · ρ⃗�

�
X
j

W 222j ��H⃗ − σ⃗j� · ρ⃗ �2

�
X
j
W 220j ��H⃗ − σ⃗j� · �H⃗ − σ⃗j���ρ⃗ · ρ⃗�

�
X
j
W 311j ��H⃗ − σ⃗j� · �H⃗ − σ⃗j����H⃗ − σ⃗j� · ρ⃗�; (1)

where H⃗ denotes a normalized vector for the field height in the
image plane, and ρ⃗ denotes a normalized vector describing the
position in the pupil. The subscript j is the index for the sum-
mation over each optical surface. Here, the wave-front focus
(ΔW 20) and tilt (ΔW 11) are induced for completeness, which
will not be considered in the following discussion. The rest of
the terms, W 040, W 131, W 222, W 220, and W 311, denote the
third-order of spherical aberration, coma, astigmatism, field
curvature, and distortion according to their ranks, respectively.
The coefficient of each term will not be affected by tilts and
decentrations. Due to the introduction of vector σ⃗j, the aber-
rations’ field dependence behaviors have been perturbed.
Consequently, the locations and the amount of zero aberration
(nodal) will be changed.

In the numerous descriptions of optical freeform surfaces,
Zernike polynomials have a close relationship with the wave-
front expansion terms. They allow designers to directly leverage
the optical design insight provided by VAT [5,7]. Additionally,
Zernike polynomials are widely used in the existing commercial
optical design software, such as CODE V [8]. Therefore, the

aberration distribution of the freeform surfaces described by
Zernike polynomials is mainly discussed. There are two parts
in the Zernike polynomial expressed in Eq. (2). One is the basic
shape for extracting the spherical/aspheric contribution, the
other is the expansion polynomial with coefficients.

Z � c�x2 � y2�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − �1� k�c2�x2 � y2�

p �
Xn
i�1

CiZ i�ρ; θ�; (2)

where c is the surface curvature, k is the conic constant, Z i is
the ith Zernike polynomial, and Ci is the corresponding coef-
ficient. The Fringe Zernike polynomial form is applied in this
paper because it could correspond with the traditional Seidel
aberration. It is important to recognize that the Zernike poly-
nomial portion is the mainly perturbing source of the asymmet-
ric aberration distribution. So, we mainly focus on discussing
the aberration properties introduced by various Fringe Zernike
polynomial terms.

It is critical to realize that the aberration contributed by free-
form surfaces is not only indicated by surface shape, but also by
the location of the stop [4]. Fuerschbach and Yang have inves-
tigated the aberration distribution when the Fringe Zernike
terms were added to the nonstop surface in a coaxial system
[4,6]. The modified pupil vector ρ⃗ 0 relates the beam displace-
ment vector Δh⃗ to the original pupil vector ρ⃗. The vector Δh⃗ is
proportional to H⃗ in a small FOV case. So the contribution of
the Zernike surface can be expressed as

δ⃗m∕n �
�n2 − n1�

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

m � C2
n

p
ei arctan

�
Cn
Cm

�
Z �ρ⃗ 0�

� V⃗ m∕n · Z �ρ⃗� Δh⃗�; (3)

where n1 and n2 denote the refractive index of the front and the
back surface, respectively. In the reflective case, the surface is in
air so that n1 � −n2 � 1. V⃗ m∕n denotes the surface coefficient
vector calculated by corresponding Zernike terms. Based on the
theoretical basis above, the induced astigmatism and coma can
be integrated as Eq. (4) when the Fringe Zernike terms, up to
the ninth, are added to the nonstop surface:

FZW asti�coma � V⃗ 5∕6 · ρ⃗2�3ΔhV⃗ 7∕8H⃗ · ρ⃗2�3�V⃗ 7∕8 · ρ⃗��ρ⃗ · ρ⃗�

�12V⃗ 9Δh2H⃗
2 · ρ⃗2�24ΔhV⃗ 9�H⃗ · ρ⃗��ρ⃗ · ρ⃗�:

(4)

The first term is the field constant astigmatism induced by
C5∕6. The second and third terms are the field-linear astigma-
tism and field constant coma, respectively, which are induced
by C7∕8. The C9 term induces the field quadratic astigmatism
and field-linear coma. With the higher-order Zernike terms
being used, the field-dependent behavior becomes more
complex.

When the freeform surfaces are added to an off-axis optical
system, the departure of the freeform surfaces from a spherical
surface can be treated as a thin plate without power. The con-
tribution to the net aberration fields is not dependent on the
system’s first-order parameters, but on the intersection height of
the optical axis ray (OAR) with respect to the freeform vertex
[9]. The concept of the off-axis freeform aberration field dis-
tribution is demonstrated in Fig. 1. According to Thompson’s
VAT [5], when a spherical surface tilts by an angle of ω, the
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OAR which determines the field center on the Gaussian image
plane, is no longer coincident with the mechanic coordinate
axis (MCA). The center of the aberration field would move
away from the coaxial aberration field center because of the vec-
tor σ⃗j. If Zernike terms are added to a nonstop surface in this
off-axis system, the freeform contribution, indicated as δ⃗m∕n,
will be the projection of the ρ⃗ 0 on the image field that is already
displaced by the off-axis situation. Therefore, the total aberra-
tion field distribution of an off-axis freeform system is modified
by the combination of vector σ⃗j and δ⃗m∕n.

Various Fringe Zernike terms will induce diverse aberration
contributions, so the total wave aberration of off-axis freeform
system should be analyzed according to each Zernike term.
First, discussion starts from the Zernike C5∕6 terms. The
third-order astigmatism of an off-axis system with C5∕6 terms
can be expressed as

5∕6W asti
� 1

2

X
W 222j ��H⃗ − σ⃗j�2 · ρ⃗2� � V⃗ 5∕6 · ρ⃗2

� 1

2
W 222��H⃗ − tilta⃗222�2 � tiltb⃗

2
222 � 5∕6b⃗

2
222� · ρ⃗2

� 1

2
W 222��H⃗ − tilt5∕6a⃗222�2 � tilt5∕6b⃗

2
222� · ρ⃗2; (5)

where 8>>><
>>>:

tilt5∕6a⃗222 � tilta⃗222 ≡
P

W 222j σ⃗j
W 222

;

5∕6b⃗
2
222 � 2V⃗ 5∕6

W 222
;

tiltb⃗
2
222 �

P
W 222j σ⃗

2
j

W 222
− tilta⃗

2
222:

(6)

As the field quadratic dependence behavior shown in
Eq. (5), there will be two astigmatic nodes through the aberra-
tion field. Here, tilt5∕6a⃗222 denotes a normalized vector from the
center of the field to the midpoint between the two astigmatic
nodes. From Eq. (6), it can be seen that tilt5∕6a⃗222 is the same as
the vector tilta⃗222 that was defined in Ref. [5]. It means that the
C5∕6 terms in an off-axis system do not modify the location of
the midpoint between the two astigmatic nodes, but the two
nodes are located at the two normal components of the vector

tilt5∕6b⃗222, which is calculated by including both σ⃗j and V⃗ 5∕6.
The nodal properties of the off-axis freeform system analyzed
above are discovered for the first time and they are essential

information for controlling the aberration nodes during the
off-axis freeform design.

The two-mirror coaxial system with stop located at the pri-
mary mirror is built to validate the derivations above, shown in
Fig. 2. Furthermore, in order to demonstrate the distribution
properties of the aberration field directly, the FFDs generated
by CODE V are utilized to display the nodal aberration field
behavior. Since FFDs are based on the real ray-tracing data
without freeform aberration theory, it is an excellent validation
of the theoretical developments [10,11].

Figure 3 shows the astigmatism field map in FFDs. For
simplicity, it is assumed that only the primary mirror tilts just
about the sagittal direction. Consequently, two astigmatic
nodes can be found on the field y axis, shown in Fig. 3(a). This
situation had been explained by Thompson [5]. If the C5∕6
terms are added to the secondary mirror in the coaxial system,
binodal astigmatism will be located at both symmetrical sides of

5∕6b⃗222 calculated in Eq. (6), shown in Fig. 3(b). While the
C5∕6 terms are added to the secondary mirror of the case (a),
the nodal locations in the field map are shown in Fig. 3(c).
It can be seen that the binodal astigmatism response still re-
mains, but the locations are redistributed. The midpoint of the
two nodes does not move compared to case (a). As a result, the
nodal locations are still symmetric about the field y axis, but
the distance between the two nodes is recomputed by the vector

tilt5∕6b⃗222. Figure 3 validates that the distribution of astigmatic
nodes is coincident with the derivation in Eq. (5).

Next, the aberration distribution caused by the C7∕8 terms,
which will not only lead to a change in astigmatism distribu-
tion, but also in coma distribution, is discussed. When the C7∕8
terms are added to the tilted nonstop surface, the third-order
astigmatism is computed by

7∕8W asti �
1

2

X
W 222j ��H⃗ − σ⃗j�2 · ρ⃗2� � 3ΔhV⃗ 7∕8H⃗ · ρ⃗2

� 1

2
W 222��H⃗ − tilt7∕8a⃗222�2 � tilt7∕8b⃗

2
222� · ρ⃗2: (7)

In this case, since the highest-order field dependence in the
equation has not changed compared to the third-order astigma-
tism, the astigmatic field still contains two nodes properties.

Fig. 1. Concept of off-axis freeform aberration field distribution.

Fig. 2. Optical layout of the two-mirror system for validation.
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However, it is worth noting that the midpoint between the two
nodes has moved on account of the field-linear astigmatism in-
duced by the C7∕8 terms. The midpoint location is calculated as

tilt7∕8a⃗222 � tilta⃗222 �
1

2 7∕8b⃗222; (8)

where

7∕8b⃗222 �
−6ΔhV⃗ 7∕8

W 222

: (9)

The certain positions of the two nodes are located at both
symmetric sides of vector tilt7∕8b⃗222. As shown in Eq. (10), the
vector is determined by the combination of the field decentra-
tion vector and surface coefficient vector:

tilt7∕8b⃗
2
222 � tiltb⃗

2
222 −

�
tilta⃗222 �

1

2 7∕8b⃗222

�
2

: (10)

Figure 4(a) shows the binodal astigmatism response induced
by the C7∕8 terms in a coaxial system, which had been analyzed
by Yang et al. [6]. When the C7∕8 terms are added to the sec-
ondary mirror in the case of Fig. 3(a), the midpoint between
the two nodes moves away from the field y axis, and the two
nodes are not symmetric about the field y axis anymore, as
shown in Fig. 4(b).

The third-order coma of an off-axis system that has added
Zernike C7∕8 terms to the nonstop surface can be expressed as

7∕8W coma �
X

W 131j ��H⃗ − σ⃗j� · ρ⃗��ρ⃗ · ρ⃗��3�V⃗ 7∕8 · ρ⃗��ρ⃗ · ρ⃗�
� �W 131�H⃗ − tilta⃗131 − 7∕8a⃗131� · ρ⃗��ρ⃗ · ρ⃗�
� �W 131�H⃗ − tilt7∕8a⃗131� · ρ⃗��ρ⃗ · ρ⃗�; (11)

where

tilta⃗131 ≡
P

W 131j σ⃗j

W 131

; (12)

is a normalized vector. It determines the coma node position in
an off-axis system, which was defined by Eq. (4.8) in
Ref. [5]. Since the contribution of the C7∕8 terms is field-
independent [6], the total coma distribution remains field-
linear. It can be seen from Eq. (11) that only one coma node
can be developed in this case. However, the node will shift to a
new location, which is given by

H⃗ � tilta⃗131 � 7∕8a⃗131; (13)

where

7∕8a⃗131 �
3V⃗ 7∕8

W 131

: (14)

For the two-mirror system example, when the primary mir-
ror tilts about the sagittal direction, the single coma node shifts
along the orientation of vector σ⃗j from the original field center,
shown in Fig. 5(a). If the C7∕8 terms are added to the coaxial
case, the coma node is located at the endpoint of 7∕8a⃗131, shown
in Fig. 5(b). Furthermore, the resultant combination of pri-
mary mirror tilt and C7∕8 terms on the secondary mirror is then
shown in Fig. 5(c). It can be noted that the field dependence of
the coma is essentially unchanged compared with the Figs. 5(a)
and 5(b), but the coma node is displaced according to the com-
bination of field decentration vector and the freeform surface
coefficients.

Next, the aberration distributions due to inducing the
Zernike C9 term to the off-axis system are investigated. It is
shown from Eq. (4) that adding a C9 term to a nonstop surface
in a coaxial system will induce field quadratic astigmatism and a
field-linear coma. As the field dependence of these induced
aberrations is the same as that of the corresponding third-order

Fig. 3. Binodal astigmatism response for the case of (a) tilting the
primary mirror 2° in the sagittal plane, (b) adding freeform (C5 � 0,
C6 � 1 × 10−6) to the secondary mirror in the coaxial system, and
(c) adding the freeform of case (b) in the off-axis system of case
(a). The field angles have been normalized and the following is the
same.

Fig. 4. Astigmatic field map of case (a) when freeform
(C7 � −1×10−7, C8 � −1×10−7) is added to the secondary mirror
in the coaxial system, (b) when the freeform (C7∕8) of case (a) is added
to the secondary mirror, and the primary mirror is tilted 2°.
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aberrations in a coaxial system, the node is still located at the
center of each aberration field [4,6]. However, if the C9 term is
added to an off-axis system, the location properties of aberra-
tion nodes will be transformed accordingly. First, the third-or-
der astigmatism distribution will be converted into

9W asti �
1

2

X
W 222j ��H⃗ − σ⃗j�2 · ρ⃗2� � 12V 9Δh2H⃗

2 · ρ⃗2

� 1

2
kW 222��H⃗ −

1

k tilta⃗222�
2

� 1

k
�tiltb⃗2222 �

�
k − 1
k

�
tilta⃗

2
222�� · ρ⃗2

� 1

2
kW 222��H⃗ −

1

k tilta⃗222�
2 � tilt9b⃗

2
222� · ρ⃗2; (15)

where k � 1� 24Δh2V 9

W 222
is a scalar that is irrelevant to the aber-

ration field decentration vector. Referring to Eq. (15), the
binodal astigmatism response can still be found, and the ori-
entation pointing to the midpoint from the field center is solely
governed by the aberration field vector tilta⃗222, while the mag-
nitude is computed involving the C9 term. Figure 6 shows the
FFDs of the third-order astigmatism when the C9 term is added
to the secondary mirror and the primary mirror is tilted. Since
the surface tilts only about the sagittal direction, the midpoint
between the two nodes is located at the field y axis, but shifts
away from the field center. If j 1k tiltb⃗

2
222j > j�k−1k2 �tilta⃗2222j, the two

nodes will be located on the field y axis, shown in Fig. 6(a).
Otherwise, the nodes will be located at two symmetric sides
of the field y axis, shown in Fig. 6(b).

Finally, the total third-order coma distribution of an off-axis
system with a C9 term freeform surface is computed as

9W coma �
X

W 131j ��H⃗ − σ⃗j� · ρ⃗��ρ⃗ · ρ⃗�
�24ΔhV 9�H⃗ · ρ⃗��ρ⃗ · ρ⃗�

� W 131

���
1� 24ΔhV 9

W 131

�
H⃗ − tilta⃗131

	
· ρ⃗


�ρ⃗ · ρ⃗�:

(16)

Since the field-linear behavior of the coma has not been
modified, the single node property still remains. The field point
goes to zero at

H⃗ � 1

m tilta⃗131; (17)

where

m � 1� 24ΔhV 9

W 131

: (18)

m is also a scalar which is calculated by the C9 coefficient.
When m > 0, the node is located at the orientation of the field
decentration vector, otherwise, the node is located at the oppo-
site orientation. For the two-mirror example, when the primary
mirror is tilted and the C9 term is added to the secondary mir-
ror, the nodal point in the field map of the coma is shown in
Fig. 7. Since the mirror tilts only about the sagittal direction,
the coma node just produces displacement along the field
y axis.

Following this method, the net aberration contribution by
the rest terms of Fringe Zernike polynomials can be demon-
strated. Since higher-order terms will provide higher-order field
dependence, the integrated field dependence will be more com-
plex for those higher-order aberrations. The number of nodes
in the third-order aberration field will be increased accordingly.
This reveals the reason that the freeform surfaces are useful in
balancing high-order aberrations.

Fig. 5. Coma field map for the case of (a) tilting the primary mirror
0.2° in the sagittal plane, (b) adding freeform (C7 � 3 × 10−8,
C8 � 3 × 10−8) to the secondary mirror in the coaxial system, and
(c) adding the freeform of case (b) in the off-axis system of case (a).

Fig. 6. Binodal astigmatism distribution when the primary
mirror tilts 1° and the secondary mirror converts to the freeform with
the C9 term, (a) two nodes located on the field y axis when
j 1k tiltb⃗

2
222j > j�k−1k2 �tilta⃗2222j, otherwise located symmetrically with

respect to the field y axis as (b) shown.
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3. DESIGN EXAMPLE

To demonstrate the applicability of the results of this work, an
unobscured freeform optical system with effective focal length
(EFL) of 500 mm and external pupil diameter of 300 mm is
designed. The system is compatible with an uncooled focal
plane array, which has a format of 384 × 288 pixels and a pixel
pitch of 25 μm. So the system can provide an FOV of 1.2° × 1°.
First, a suitable first-order starting point with two tilted spheri-
cal mirrors is developed based on the imaging focal length and
the geometry requirements. Once the initial configuration is
set up, the field distributions of the limiting aberrations are
analyzed by using FFDs. Then, according to the benefits of
Zernike terms discussed previously, the spherical mirrors have
been converted into freeform to promote the imaging quality.
During the whole process of optimizing, the system aberration
nodal properties are mainly concerned, especially the third-
order astigmatism and coma aberrations. The main purpose
of optimization is to move the aberration nodes back into
the FOV of interest by using freeform surfaces. The procedure
of selecting special Zernike terms will be illustrated in detail
within this section. In the last part of this section, the design
results are reported.

A. First-order Geometry Computation
It begins with developing a proper initial geometry for a two-
mirror system that is unobscured. Bauer designed a two-mirror
freeform off-axis system with a short EFL for the electronic
viewfinder [11]. Being inspired by that work, the blockage-free
configuration is adopted for our design example. However, to
minimize the package size of a system that contains a long EFL
and a large aperture size, the image plane is restricted to be
perpendicular to the entrance pupil plane, shown in Fig. 8.
An off-axis initial configuration can be derived from a coaxial
system. Generally, four pivotal parameters are needed to deter-
mine a coaxial two-mirror system, which are the primary mirror
(PM) obscuration ratio α caused by the secondary mirror (SM),
the SM magnification β, the distance between the PM vertex
and the SM vertex denoted by l1, and the distance between the
SM vertex and the focus denoted by l 2. Here, l1 and l 2 are
both intended to be positive. The SM magnification can be
defined by

β � f 0

f 0
1

; (19)

where f 0 is the effective focal length of system, and f 0
1 is the

focal length of the PM. By computing with the Gaussian geom-
etry, the obscured ratio is expressed by

α � −f 0
1 � l2 − l1
�β − 1�f 0

1

; (20)

where the distance l1 is given by

l 1 �
f 0

β
�α − 1�: (21)

Therefore, the radii of PM and SM can be obtained from�
R1 � 2f 0

1;
R2 � αβ

β�1R1:
(22)

To obtain the blockage-free configuration, PM and SM
need to be tilted by θ1 and θ2 with respect of their vertices at
the sagittal direction, respectively. By controlling the clearances
of the feature rays to the mirrors, especially d cs, the distance
between the lowest entrance rays and the edge of SM; d cf ,
the distance between the top ray and the focal plane; and
d cp, the distance of the marginal rays that are incident to the
focal plane and the edge of PM, the system structure is almost
restricted, as shown in Fig. 8. On the basis of the geometrical
relationship, these three important parameters are calculated by8>><

>>:
d cf � l2 −

�
l 1 − D

2 sin 2θ1

�
cos 2θ2 − D;

d cs �
�
l 1 − D

2 sin 2θ1

�
cos 2θ2 − l2�sin θe�2;

d cp � l1 sin 2θ2 −
D
2 tan θ1 − d cf tan θe ;

(23)

where D is the entrance pupil diameter. θe represents the inci-
dent angle of the marginal rays onto the focal plane, which is
related to the system relative aperture,

Fig. 7. Coma field map when the primary mirror is tilted 0.2° and
the secondary mirror is converted into freeform (C9 � 1 × 10−8).

Fig. 8. Geometry of two-mirror unobscured system with design
parameters.
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sin 2θe � D∕f 0: (24)

In order to obtain a compact structure, the focal plane is
located above the PM and kept perpendicular to the entrance
pupil plane, which requires

θ1 � θ2 �
π

4
: (25)

So in this case, Eq. (23) can be simplified as8>><
>>:

d cf � l 2 − l 1 cos 2θ2 −
D
2 ;

d cs � l 1 cos 2θ2 −
D
2 − l 2�sin θe�2;

d cp � l1 sin 2θ2 −
D�1−tan θ2�
2�1�tan θ2� − d cf tan θe :

(26)

Based on these considerations above, if these three clearan-
ces have been estimated from the desired system with a certain
focal length and pupil diameter, the relative tilt angles and the
power distribution of these two mirrors can be adjusted.
Consequently, a good initial configuration with tilted spherical
mirrors is set up for optimization.

B. Design Process
Based on the discussions above, the starting parameters of the
unobscured two-mirror system are listed in Table 1. Then, the
first-order parameters listed in Table 2 can be yielded based on
the computation in Section 3.A.

In consideration of the stray light performance and the fea-
sibility of the structure, an external stop ahead of the PM with a
distance of 300 mm is placed. Since a large pupil is required for
sufficient entrance energy, the mirrors need to be tilted with
large angles to form an unobscured system, shown in Table 2.
Consequently, the astigmatism and coma contributions across
the full FOV are nearly field-constant with about 1000 waves,
shown in Fig. 9, which have become the dominant aberrations
for the imaging performance [12,13]. There are limited free-
dom degrees of a spherical-based system with only two mirrors
for balancing these residual aberrations. So the freeform surfa-
ces are adopted to increase the degrees of freedom for optimzing
the optical system. In this design example, a Fringe Zernike
polynomial is utilized to characterize the shape of the freeform
surfaces, which is applied in the CODE V software.

It is obvious that the aberration nodes have been moved out
of the intended FOV because of the tilted mirrors. By taking
the benefits of freeform surfaces discussed in Section 2, the
strategy for reducing the system aberration level is to move the
aberration nodes back into the field region of interest.

Moreover, in order to obtain a symmetric imaging perfor-
mance, the freeform coefficients should be chosen carefully.
Some coefficients which will cause the asymmetrical field dis-
tribution should be avoided. For example, the C6 and C7 terms
which are coupled with C5 and C8 terms should not be added
to the surfaces. The aberration distribution should be focused
through the FFDs during the whole process of controlling the
node positions. A convenient design procedure for adding
Fringe Zernike polynomial terms is introduced as follows.

From the computed parameters in Table 2, the light is
mainly converged by the SM, which will cause dominant aber-
rations of the system. Therefore, the SM is first picked to be
converted into a freeform surface. First, the C5 term is induced
to adjust the third-order astigmatism field distribution. After
one round of optimization with using the damped least-squares
method provided by the software, the nodes in the astigmatic
field are still away from the FOV. So the C8 term is induced
to further adjust astigmatism. After another round, it can be
found that the astigmatic nodes will move toward to the FOV,
but they are still out of the FOV region. However, at this time,
the coma node is already located at the center of the FOV. So it
can be predicted that the system coma is mainly corrected by
the SM. For the next round, the PM is converted into freeform
by inducing the C5 and C8 terms. As a result, the nodes in the
astigmatic and coma field both move back into the FOV re-
gion. The system astigmatism could be balanced by the PM.
Now, the residual spherical aberrations become the main limit-
ing factor. So the C9, C16, and C25 terms are induced to the
PM and SM to reduce the aberration level. Meanwhile, the as-
tigmatism and coma node positions are further adjusted. After
inducing these terms to the mirrors, the optimized astigmatic
field will have two nodes which are both on the field y axis, and
the single coma node will move along the y axis accordingly. It
is important to note that this kind of aberration redistribution
preserves the symmetry of the imaging performance. Since the
system requires a relatively large aperture, high-order aberra-
tions cannot be ignored. The rest of the higher-order terms,
such as C11, C12, C15, C20, C21, C24, and C27 are induced
to the mirrors for balancing the high-order aberrations. As a
consequence, the number of aberration nodes in the field will
be increased. Finally, a good imaging performance can be
achieved by iterative optimizations.

Table 1. Design Example Starting Parametersa

Parameter f 0 D dcp d cf d cs

Value 500 300 70 30 30
aStarting parameters are in mm.

Table 2. Design Example Computed Parametersa

Parameter R1 R2 l 1 l 2 θ1 θ2

Value −2700 1270 270 400 27.3 17.7
aR1, R2, l1, and l2 are in mm while θ1 and θ2 are in degrees.

Fig. 9. Astigmatism (a) and coma (b) contributions across the full
FOV after tilting the surfaces to form a representative unobscured sys-
tem. Tilting the surfaces has resulted in significant amounts of a nearly
field-constant coma and astigmatism with about 1000 waves.
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C. Design Results
The layout of the optimized two-mirror freeform system is
shown in Fig. 10. The tilt angels of the two mirrors, θ1 and
θ2, which have been optimized, are 28° and 17°, respectively.
The sag difference of the freeform mirrors with respect to the
basic sphere for the two mirrors is shown in Fig. 11. Through
observation, it can be found that the main contribution from

the PM is astigmatism, and the contribution from the SM is
nearly a coma. Additionally, the surface shapes of the two cir-
cular apertures have been constrained to be symmetrical about
the y axis to achieve a bilateral symmetrical imaging perfor-
mance. The final third-order astigmatism and coma distribu-
tions are displayed in Fig. 12. It can be noted that the two
nodes of astigmatism are located just on the y field axis, and
one of the coma nodes is back to the FOV compared to the
initial spherical case. These third-order aberrations have re-
duced to a low level, about 0.1 waves at 10 μm. The results
of nodal locations are identical with our previous expectations.
As the low-order Zernike coefficients are dominant in the op-
timized system, the field dependence of the third-order aberra-
tions has not changed. When the 25 μm pitch sensor is adopted
in this optical system, the resulting Nyquist frequency is
20 lp∕mm, and at this frequency the MTF curves are nearly
greater than 0.4, shown in Fig. 13. The final optical perfor-
mance meets the imaging requirements.

4. CONCLUSION

In this paper, the distributions of the third-order aberrations
were analyzed theoretically based on the NAT, especially the
astigmatism and coma, with adding Fringe Zernike polynomial
surfaces to an off-axis system. The nodal aberration properties

Fig. 10. Optical layout of the optimized two-mirror freeform
system.

Fig. 11. Primary (a) and secondary (b) mirror sag difference with
respect to the basis spherical. The maximum apertures of the primary
and secondary mirrors are 350 mm and 300 mm, respectively.

Fig. 12. Astigmatism (a) and coma (b) distribution of optimized
system. The astigmatic nodes are located on the field y axis, and one
of the coma nodes is back into the FOV.

Fig. 13. MTF curves of the optimized system.
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of Zernike terms in a system with tilted surfaces were revealed
and validated, which could provide necessary insight and guid-
ance for off-axis aberration correction and optimization during
freeform system design. It had also been revealed that introduc-
ing low-order Zernike terms to the off-axis system, such as
C5∕6, C7∕8 and C9, would not change the field dependence,
but would modify the nodal positions with the combination
impacts of off-axis and surface shape. Based on these analysis
results, an off-axis two-mirror freeform system with an EFL
of 500 mm was designed. The field-constant aberrations intro-
duced by tilting surfaces had been balanced by specific Zernike
terms. The imaging performance was bilaterally symmetric and
met the requirements. This work could be of some help for
optical designers to analyze the contribution of aberrations
induced by the freeform surfaces.
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