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Abstract: Current diagnosing phase shifting interferometry is a time and funds consuming process.
Hence a brief and effective method is necessary to satisfy the real-time testing. In this paper,
mathematical solutions for errors were deduced from the difference of intensity patterns. Based on
the diversity of error distributions, an effective method for distinguishing and diagnosing the error
sources is proposed and verified by an elaborative designed simulation. In the actual comparison
experiment, vibration, phase-shift error and intensity fluctuation were imposed to demonstrate this
method. The results showed that this method can be applied into the real-time measurement and
provide an in situ diagnosing technique.
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1 Introduction

The phase shifting interferometer is a widely used optical testing instrument with high accuracy [1,
2]. Its systematic errors in the reference can be calculated by absolute testing, achieving an accuracy
of 0.1 nm [3]. However, its precision always suffers from various error sources, whose effect can be
reduced by average methods [4] but cannot be eliminated. When the precision exceeds strict limits,
the worn components should be repaired or replaced. The remaining problems are to determine
what are influencing the precision and where the error sources lie. Generally, this process is costly
and time-consuming. A brief and effective in situ method is necessary.

To diagnose error sources, the characteristics of different errors must be analyzed. During the
past decades, various algorithms have been used to investigate the errors in phase shifting inter-
ferometry [5–7]. J. Schwider developed error source formulas for phase-shift error and vibration,
based on a common 5-step algorithm [5]. J. van Wingerden gave the formulas of the errors in
a linear approximation considering light source instability, imperfect phase shifting, mechanical
vibrations, nonlinearity of the detector, and quantization of the detector signal [7]. Meanwhile,
H. Schreiber and J.H. Bruning summarized the error functions [8]. However, these solutions are
based on 3∼5 step algorithms. Fourier description of digital phase shifting interferometry was
applied [9, 10]. Based on Fourier analysis, C.P. Brophy studied the phase error caused by intensity
instability [11]. But this solution is complicated and does not fit to the description of other errors.
Peter J. de Groot focused on the amount of errors and proposed the phase-error transfer function
caused by vibration [12]. The 2D error distribution is more intuitive for error diagnosing. A simple
and universal solution is needed.

First, variations of intensity patterns caused by different error sources were assorted in sec-
tion 2. Built on the diversity of intensity patterns, the error distributions are distinct and can be
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distinguished. In section 3, the mathematical solutions of errors were derived. To demonstrate these
solutions, the various error distributions were simulated and shown in section 4. The simulation
proves that different error sources will cause the diversity of error distributions. An in situ method
for diagnosing the error sources is proposed. To verify this method, a comparison experiment was
implemented. In section 5, the vibration, phase-shift error and intensity fluctuation were imposed
separately, and the diversity of error distributions was distinguished.

2 Error sources in phase shifting interferometry

In a phase shifting interferometer, the sample beam and reference beam combine together. The
path difference, i.e., the difference in the distance traveled by each beam, creates a phase difference
between them, which in turn creates an interference pattern. If the optical path is changed artificially
(phase shifting), the phase can be reconstructed from a set of interference patterns based on a phase
shifting algorithm.

For two-beam interferometry with the same frequency, the pattern of interference fringes In
can be written as follows:

In(ϕ, t) = 1 + V × cos(ϕ + φn). (2.1)

V is the contrast of the interference fringes, φn=2πv0t is the phase shifting at the time t, v0 is the
frequency, n is the frame sequence, and ϕ is the tested phase difference between the two beams.
Phase shifting algorithms extract the phase from the intensity patterns. The phase extraction
function is

ϕ = tan−1

∑
n

Insn∑
n

Incn
, (2.2)

where sn and cn are the weight factors of the filter function. Literature [13] show a relationship
between sn and cn:

sn = wn sin(−φn), cn = wn cos(φn);∑
n

sn = 0,
∑
n

cn = 0;∑
n

sn sin (−φn) =
∑
n

cn cos (φn);∑
n

sn cos (φn) = −
∑
n

cn sin (−φn),

(2.3)

wherewn is the real window function. Eq. (2.2) can be derived to different phase shifting algorithms.
But there are many error sources reduce the measurement accuracy, such as manufacture error

in the reference surface, phase-shift error caused by the piezoelectric transducer, position deviation
caused by vibration, unstable intensity of the light source (laser), and frequency fluctuation of the
light source. These error sources vary the intensity patterns, and the result of phase extraction will
be changed. Meanwhile, the manufacture error in the reference is a systematic error, which can
be eliminated by absolute calibration. However, Phase-shift error, position deviation caused by
vibration, unstable intensity of laser and frequency fluctuation of laser are unusual error sources.
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Their error will vary on the tested phase ϕ so that they are difficult to deal with. These error sources
are what we focus on.

First, the variation of intensity patterns caused by error sources should be studied. If these
error sources are considered, the interference pattern in eq. (2.1) will become

I ′n(ϕ, t) = In(ϕ, t) + ∆In(ϕ, t). (2.4)

a) For the case of phase-shift error caused by the error in the piezoelectric transducer or piston
vibration along the Z axis, the intensity is

I ′n(ϕ, t) = 1 + V × cos(ϕ + φn+∆Pn) . (2.5)

∆Pn is the phase-shift error at step n, and φn is the phase at the step n.

b) For the case of position deviation caused by tip-tilt vibration in the (x, y) plane,

I ′n(ϕ, t) = 1 + V × cos(ϕ(x + ∆x, y + ∆y) + φn)

≈ 1 + V × cos
(
ϕ(x, y) +

d2ϕ(x, y)
dxdy

∆x∆y + φn

)
.

(2.6)

∆x, ∆y are the displacement.

c) For the case of unstable intensity of the light source,

I ′n(ϕ, t) = (1 + ∆nI) × (1 + V × cos(ϕ + φn)), (2.7)

∆nI is the intensity instability at step n.

d) For the case of frequency fluctuation of the light source,

I ′n(ϕ, t) = 1 + V × cos ((1 + ∆n f ) × (ϕ + φn)) . (2.8)

∆n f is the frequency variation of the light source.

Based on eqs. (2.6)–(2.8), it is obvious that various error sources have different intensity
patterns, and it is believed that different error sources cause the diversity of error distributions.

3 Relationship between errors and error sources

The error will change as the variations of intensity patterns caused by different error sources. ∆In
is the variation of the intensity patterns caused by different error sources and it can be evaluated by

∆In = I ′n − In ≈
(
dIn

/
dx

)
dx, (3.1)

where x is the variable parameter caused by error source. The extracted phase ϕ changed into the
following equation:

tan ϕ′ =

∑
n

(In + ∆In) sn∑
n

(In + ∆In) cn
=

N ′

D′
, ϕ′ = tan−1 N ′

D′
, (3.2)
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where N ′ =
∑

(In + ∆In) sn, D′ =
∑

(In + ∆In) cn. Using the formulas d
[
tan−1 (δ)

] /
dδ =

1
/ (

1 + δ2
)
, δ = tan ϕ and sin 2ϕ = 2 tan ϕ

/ (
1 + tan2 ϕ

)
, the measurement error is calculated as

follows:

∆ϕ = ϕ′ − ϕ ≈
d tan−1(δ)

dδ
∆δ =

sin 2ϕ
2 tan ϕ

×
[
tan(ϕ′) − tan(ϕ)

]
=

sin 2ϕ
2 tan ϕ

×

(
N ′

D′
− tan ϕ

)
=

sin 2ϕ
2

(
N ′

tan ϕ × D′
− 1

)

=
sin 2ϕ

2




∑
n1

(In1 + ∆In1) sn1 ×
∑
n2

In2cn2∑
n1

(In1 + ∆In1) cn1 ×
∑
n

In2sn2
− 1




≈
sin 2ϕ

2

∑
n
∆Insn ×

∑
n

Incn −
∑
n
∆Incn ×

∑
n

Insn(∑
n

Insn

) (∑
n

Incn

)

= k


∑
n

∆Insn × cos ϕ −
∑
n

∆Incn × sin ϕ

.

(3.3)

Here is an approximation that makes this solution brief and efficient.
In eq. (3.3), k is a constant, and we set k= 1 to analyze the 2D error distribution ∆ϕ. The errors

in the phase shifting interferometer are discussed below based on eqs. (3.1) and (3.3).
For the case of phase-shift error caused by the detuning error of the piezoelectric transducer or

introduced by the vibration along the z axis (ray axis), the variation of the intensity patterns ∆In is

∆In(ϕ) = I ′n − In ≈ −V × sin(ϕ + φn) × ∆Pn. (3.4)

∆Pn is the phase-shift error at step n, and φn is the phase at the step n. The phase error ∆ϕ is

∆ϕ =
∑
n

∆Pn × V
wn

2
[
1 − cos (2ϕ + 2φn)

]
. (3.5)

This solution coincides with the eq. (45) of literature [9], if the approximation is neglected.
For the case of position deviation caused by vibration in the (x, y) Cartesian coordinates plane,

the variation of the intensity patterns ∆In is

∆In(x, y) = I ′n − In ≈ −V × sin(ϕ + φn) ×
d2ϕ

dxdy
∆x∆y, (3.6)

where ∆x, ∆y are the displacement. The phase error ∆ϕ is

∆ϕ =
∑
n

d2ϕ

dxdy
∆x∆yV

wn

2
[
1 − cos (2ϕ + 2φn)

]
. (3.7)

For the case of unstable intensity of the light source, the variation of the interference patterns
∆In is

∆In(ϕ) = ∆nI × (1 + V × cos(ϕ + φn)), (3.8)
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where ∆nI is the intensity instability at step n. Replace ∆In in eq. (2.8) with eq. (3.8), and the error
∆ϕ is formulated as

∆ϕ =
∑
n

∆nI (−wn)
[
sin (ϕ + φn) +

V
2

sin (2ϕ + 2φn)
]
. (3.9)

This solution coincides with the eq. (2.7) of literature [11], if the approximation is neglected.
For the case of frequency fluctuation of the light source, the variation of the intensity patterns

∆In is
∆In(ϕ) = −V sin(ϕ + φn) × (ϕ + φn) × ∆n f . (3.10)

∆n f is the frequency variation of the light source. Replace ∆In in eq. (2.8) with eq. (3.11), and the
error ∆ϕ is obtained:

∆ϕ =
∑
n

∆n f × (ϕ + φn)V
wn

2
[
1 − cos (2ϕ + 2φn)

]
. (3.11)

Comparing with eqs. (3.5), (3.7), (3.9), (3.11), it is clear that the error distributions vary with the
different error sources. To verify these mathematical solutions, the various error distributions are
simulated in the next section.

4 Simulation verification and diagnosing method

The tested wavefront map for the simulation is shown in figure 1. The wavefront ϕ is shown on the
left and the tilt is removed. The intensity patterns are shown on the right. The Zernike coefficients
of the wavefront are listed in table 1. The errors, including phase-shift error, position deviation
caused by vibration, unstable intensity of the light source, and frequency fluctuation of the light
source, are injected respectively into the intensity patterns. Peter de Groot proposed a thirteen-step
algorithm (the phase-shifting step ∆φn = π/2) [14] with better robustness:

ϕ = tan−1
(
−3 (I1 − I13) − 4 (I2 − I12) + 12 (I4 − I10) + 21 (I5 − I9) + 16 (I6 − I8)
−4(I2 + I12) − 12 (I3 + I11) − 12 (I4 + I10) + 16 (I6 + I8) + 24I7

)
. (4.1)

Using this thirteen-step algorithm, the wavefront is extracted from the erroneous intensity patterns.
The error ∆ϕ between the extracted wavefront and the real wavefront ϕ is calculated (figure 2). The
error distributions ∆ϕ caused by different error sources are separately illustrated in figure 2.

Figure 1. Wavefront map (tilt removed) and intensity patterns with tilt corresponding to the Zernike
coefficients listed in table 1. There are two fringes in the intensity patterns.
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a) For the case of phase-shift error caused by the detuning error of the piezoelectric transducer
or introduced by the vibration along the ray axis (figure 2 (A)), periodic ripples with doubled-
frequency appears in the error distribution, comparing with the intensity patterns shown in
figure 1. This result corresponds to the term 1 − cos(2ϕ + 2φn) in eq. (3.5).

b) For the case of position deviation caused by vibration (figure 2 (B)), the doubled-frequency
ripples appears, but the same peak line is skewed in the other direction due to the terms
1 − cos(2ϕ + 2φn) and d2ϕ

/
(dxdy) in eq. (3.7).

c) For the case of unstable intensity in the light source (figure 2 (C)), there are modulated
doubled-frequency ripples, and different ripples have different amplitudes (some are smaller,
and some are larger, in a sine signal). This result is related to the term sin(ϕ + φn) +
V/2 sin(2ϕ + 2φn) in eq. (3.9).

d) For the case of frequency fluctuation in the light source (figure 2 (D)), the doubled-frequency
ripples are also present. The amplitude of these ripples is not regular because of the term
(ϕ + φn) in eq. (3.11). The amplitude of the ripple will increase in the tilt direction.

Table 1. Zernike coefficients used for the construction of a tested wavefront with tilt. The unit is radians.
Zernike coefficient Amount (rad)
Z3 y tilt 4
Z4 defocus 0.2
Z6 primary astigmatism 0.1
Z7 primary coma 0.2
Z10 trefoil 0.5
Z12 secondary astigmatism 0.5

The five-step algorithm is simulated in the same way and has a same error distribution. The
difference between the two algorithms lies only in the amount of the error. Due to space limitations,
the detailed results of the five-step algorithm are not presented in this paper.

So that, an in situ method for diagnosing the error sources in phase shifting interferometer is
proposed. The detail is listed as below:

a) A perfect tested surface (< λ/20 RMS, λ is the wavelength) is selected for measurement. Tilt
is added, and there are 2–4 fringes on the intensity patterns.

b) A method of averaging1 is utilized for reduce the errors in several repeated measurements.
Then, the error distribution ∆ϕ is obtained from the average result subtracting one measure-
ment result.

c) According to the characteristics shown in figure 2, the error distribution can be distinguished
and the error sources can be diagnosed.

1http://www.dtic.mil/dtic/tr/fulltext/u2/a258990.pdf.
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d) When the phase-shift error is constant, this processing needs more steps. One present
measurement result subtracts the previous measurement result which was obtained when the
interferometer worked well. The diversity between these two measurement results will show
the phase-shift error (figure 2 (A)).

The method can be applied to fast diagnose and distinguish the error sources as follows:
phase-shift error, position deviation caused by vibration, intensity instability of the light source,
and frequency fluctuation of the light source.

Item Error source Error Distribution ∆ϕ

A Phase-shift error ∆ϕ =
∑
n
∆Pn × V wn

2 [1 − cos(2ϕ + 2φn)]

B
Position deviation
caused by vibration

∆ϕ =
∑
n

d2ϕ

dxdy
∆x∆yV

wn

2

× [1 − cos(2ϕ + 2φn)]

C
Unstable intensity of

the light source

∆ϕ =
∑
n

∆nI (−wn)
[
sin(ϕ + φn)

+
V
2

sin(2ϕ + 2φn)
]

D
Frequency

fluctuation of the
light source

∆ϕ =
∑
n

∆n f (ϕ + φn)

× V
wn

2
[1 − cos(2ϕ + 2φn)]

Figure 2. The 3D error distribution ∆ϕ caused by different error sources. (A) Phase-shift error, (B) Position
deviation caused by vibration, (C) Unstable intensity of the light source, (D) Frequency fluctuation of the
light source.

5 Verification testing

We impose vibration, phase-shift error, and intensity fluctuation into the comparison experiments
by testing the same mirror with a ZYGO interferometer to verify this diagnosing method and those
mathematical solutions.

– 7 –
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5.1 Position deviation caused by vibration

A plane with astigmatism (PV: 28.90 nm, RMS: 3.22 nm) was vertically placed on a stable platform.
Different amounts of vibration were introduced into the experiments. The peak vibration velocity
was 19.5 µm/s in the unstable situation, and 2 µm/s in the stable situation. To extract the errors
from measurement, the average result over 32 measurements was taken as the real value. The error
distribution ∆ϕ was obtained by subtracting one measurement from the average result. Figure 3
indicates the results of this experiment. Figure 3a shows the intensity patterns in the unstable
situation; figure 3b shows the intensity patterns in the stable situation; figure 3c shows the error
distribution ∆ϕ as the vibration velocity is 19.5 µm/s, and ∆ϕ is 0.02 λ PV (λ=632.8 nm); figure 3c
shows the intensity patterns in the stable situation; figure 3d is the wavefront error ∆ϕ caused by
error sources in the stable situation, and ∆ϕ is 0.003 λ PV; and figure 3e is the tested surface ϕ.

In figure 3c, there are 12 ripples in the error distribution, opposed to 6 fringes in the intensity
figure 3a. These ripples are skewed in another direction. The quasi- astigmatism in figure 3b
locates at 45◦ comparing the astigmatism at 0◦ in figure 3e. These features just coincide with the
case of deviation caused by vibration (figure 2 (B)). Eq. (3.7) can explain the problem. The term
1 − cos(2ϕ + 2φn) introduced the doubled-frequency ripples. The term d2ϕ

/
(dxdy), which is the

derivative of ϕ, produces the quasi-astigmatism at 45◦. The direction of vibration determines the
rotation direction of d2ϕ

/
(dxdy). When the vibration is depressed, that quasi-astigmatism vanishes

in figure 3d. It is certain that the error caused by vibration disappears.
In figure 3d, there are 4 ripples opposed to 2 fringes on the intensity patterns. These ripples

have different amplitudes, and fit the case of phase-shift error (figure 2 (C) and eq. (3.9)). But the
amount of error is very little to take charge.

(a) (b) (c)

(d) (e)

Figure 3. The intensity patterns and error distributions in different vibration situations. (a) Intensity patterns
as the vibration velocity is 19.5 µm/s. (b) Intensity patterns as the vibration velocity is reduced to 2 µm/s.
(c) The error distribution ∆ϕ as the vibration velocity is 19.5 µm/s. (d) The error distribution ∆ϕ as the
vibration velocity is reduced to 2 µm/s. (e) The tested surface ϕ.

5.2 Phase-shift error

In the comparison experiment, we imposed phase-shift error into the interferogram. The error
distribution was extracted and recorded following the method outlined in section 4. Figure 4

– 8 –



2
0
1
6
 
J
I
N
S
T
 
1
1
 
P
0
5
0
1
8

displays the result of the comparison experiment. Figure 4a displays the intensity patterns with
phase-shift error; figure 4b indicates the error distribution ∆ϕ with phase-shift error imposed, and
the error amount is 0.02λ; figure 4c shows the intensity patterns without phase-shift error. Figure 4d
is the error distribution ∆ϕ without phase-shift error, and the error amount dropped to 0.005λ.

In figure 4b, there are 4 periodic ripples in the error distribution, compared with 4 fringes in
the intensity figure 4a. This fits the case of phase-shift error explained in section 4, corresponding
to the term 1 − cos(2ϕ + 2φn) in eq. (3.5).

When the phase-shift error was removed, the periodic ripples disappeared in figure 3d with the
contrast of the intensity patterns in figure 3c.

(a) (b)

(c) (d)

Figure 4. The intensity patterns and error distributions in the comparison experiment for the case of phase-
shift error. (a) Intensity patterns with phase-shift error. (b) The error distribution ∆ϕ with phase-shift
error. (c) Intensity patterns without phase-shift error. (d) The error distribution Intensity patterns without
phase-shift error.

5.3 Unstable intensity

We imposed intensity fluctuation in the experiment. A silicon wafer wad tested with a GPI
interferometer. The error distribution ∆ϕ (0.01λ) and the intensity patterns are shown in figure 5a
and figure 5b respectively. Obviously, there are 8 ripples in figure 5a, comparing with 8 patterns in
figure 5b.

The contrast V of the intensity patterns is 0.2, eq. (3.9) is changed to: ∆ϕ =
∑

n ∆nI (−wn)
· [sin(ϕ+φn)+0.1 sin(2ϕ+2φn)], the term 0.1 sin (2ϕ + 2φn) becomes very tiny. This will explain
those 8 ripples in 2D error distribution.

6 Summary

To diagnose the error sources in phase shifting interferometry, the characteristics of errors must be
analyzed. First, the variations of intensity patterns caused by different error sources are discussed.
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(a) (b)

Figure 5. The error distribution and intensity patterns for the case of unstable intensity. (a) 2D error
distribution with the intensity fluctuation (b) the intensity patterns of the silicon wafer, the contrast V of the
interference fringes is about 0.2.

Phase extraction algorithm is based on the intensity patterns, and then the error distributions will
vary. Next, the mathematical solutions of errors caused by different error sources were derived.
The solutions show the diversity of error distributions. To demonstrate these solutions, the various
error distributions caused by different error sources were simulated. The characteristics of the
error distributions can be distinguished. An approach for diagnosing the error sources is proposed.
In section 5, we impose vibration, intensity fluctuation and phase-shift error into the comparison
experiments to demonstrate the validity of this approach. This in situmethod can also be applied into
an phase shifting interferometerwith high precision, such as point diffraction interferometer [15, 16].
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