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� PVP-coated Prussian blue
nanoparticles are used as a
photothermal agent.

� The nanoparticles are not cytotoxic to
cells under NIR irradiation.

� The nanoparticles are highly efficient
for bacteria eradication.
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A 980 nm laser-driven antimicrobial photothermal therapy using poly(vinylpyrrolidone) -coated Prussian
Blue nanoparticles (PVP/PB NPs) is demonstrated. This approach allows an efficient eradication of a vir-
ulent strain of Gram-negative Escherichia coli (E. coli) associated with urinary tract infection as well as for
the ablation of antibiotic resistant pathogens such as methicillin resistant Staphylococcus aureus (MRSA)
and extended spectrum b-lactamase (ESBL) E. coli. Interestingly the 980 nm irradiation exhibits minimal
effect on mammalian cells up to a PVP/PB NPs concentration of 50 lg mL�1, while at this concentration
bacteria are completely eradicated. This feature is certainly very promising for the selective targeting of
bacteria over mammalian cells.
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1. Introduction

The increase of multidrug-resistant bacteria infections has
become a major problem in modern healthcare. Indeed, bacteria
replicate very rapidly and any mutation that facilitates the survival
of the pathogen in the presence of an antibiotic drug will quickly
become predominant in the microbial population. The treatment
of bacterial infections withmulti-resistant germs is extremely diffi-
cult, as the development of new antimicrobial drugs is hardly catch-
ing up with the development of antibiotic-resistant bacteria [1–3].
Several reports have shown that various nanomaterials could be
considered as viable alternative candidates to antibiotics [4–7],
which are in addition able to overcome the resistance problem
underwent by conventional drugs [8–10]. A different strategy for
the inactivation of bacteria is photothermal therapy (PTT), based
on the use of strong light-absorbingmaterials,which upon exposure
to laser radiation create local hyperthermic effects. The involve-
ment of near infrared (NIR) light in 700–1100 nm range is of partic-
ular interest for PTT, because absorption of NIR photons in biological
tissues is minimal and the penetration depth is optimal. The wave-
length range of 700–900 nm is considered as a spectral transparent
window, exhibiting lower absorbance and scattering by molecules
like melanin and hemoglobin [11]. The wavelength of 980 nm,
widely used in the construction of biomedical lasers, does not fall
within this range due to the onset of the vibration of water mole-
cules with consequently higher absorption cross section. However,
the absorption by water molecules at 980 nm is not causing prob-
lems in most cases [12,13]. The advantage of PTT at 980 nm excita-
tion is associated with deeper tissue penetration and a low level
degradation of biomolecules and cellular photodamage.

Urinary tract infections (UTI) caused by Escherichia coli (E. coli)
present a major economic and societal burden. The practiced and
therapeutics proposed for UTI management include the prophylac-
tic and phytotherapy treatments, and the use of vaccination or
drug therapies [14]. It is well-known that antibiotics resistance
in bacteria has developed at an accelerated rate due to pathogenic
adaptation. Today, extended spectrum b-lactamase-producing
(ESBL) E. coli [15] and methicillin-resistant Staphylococcus aureus
(MRSA) became significant threats in both health care–associated
and community-associated infections. Research aiming at the
management of the most common clinical syndromes encountered
by adult and pediatric clinicians who care for patients with MRSA
infections has been reported [15,16].

Here, we describe an interesting finding that polyvinylpyrro-
lidine coated Prussian blue nanoparticles (PVP/PB NPs) allow effec-
tive photothermal ablation of bacteria at 810 or 980 nm. PB-based
nanostructures, clinically approved agents which can be produced
at low cost and large quantities, proved to be efficient PTT agents
due to their high optical absorbance peak at �700 nm. PB NPs have
thus been explored in the last few years as PTT agent for cancer
treatment [17–24]. In contrast to gold nanorods, the NIR absorp-
tion is derived from charge transfer transition between Fe(II) and
Fe(III) instead of localized surface plasmon resonance, providing
PB NPs with improved photothermal stability. Although, the effi-
cacy of PB NPs for cancer cells killing has been demonstrated, there
is no report on the utilization of such a nanosystem for the PTT
bacteria ablation. In this work, we demonstrate the high potential
of PB NPs upon laser irradiation at 810 or 980 nm for the eradica-
tion of Gram-positive and Gram-negative pathogens.

2. Experimental section

2.1. Materials

Hydrochloric acid (HCl), Potassium hexacyanoferrate(III) [K3Fe
(CN)6], polyvinylpyrrolidone (PVP10, average Mw 10,000) were
obtained from Sigma-Aldrich and used without any further
purification.
2.2. Preparation of PVP-coated Prussian blue nanoparticles (PVP/PB
NPs)

The PVP/PB NPs investigated in this work were synthesized by
addition of PVP (1 g) and potassium ferrocyanide (0.2 g) to an
aqueous solution (20 mL, pH = 2 adjusted with HCl) [25]. After
30 min of stirring, a clear solution was obtained, which was aged
at 80 �C for 3 h. The resulting precipitate was collected by centrifu-
gation, washed in distilled water and ethanol several times and
dried at 100 �C for 12 h.
2.3. Characterization

Powder X-ray diffraction (XRD) patterns were collected on a
Bruker D8 advance diffractometer (Cu-Ka radiation, 1.54056 Å)
with an applied voltage of 40 kV and an anode current of 40 mA
in the 2h range of 10–80�.

Transmission electron microscopy (TEM) and high resolution
TEM (HRTEM) images were acquired using a FEI Tecnai G2-F20
transmission electron microscope operating at an acceleration
voltage of 200 kV. The samples were drop-coated from ethanolic
dispersion of PVP/PB NPs onto carbon-coated copper TEM grids
and the solvent was evaporated under ambient conditions.

UV/Vis Absorption spectra were recorded using a Perkin Elmer
Lambda UV/Vis 950 spectrophotometer in quartz cuvettes with
an optical path of 10 mm. The wavelength range was 200–
1100 nm.
2.4. Measurement of the photothermal effect

All irradiations were performed in standard 96-well plates. The
temperature changes were captured by an Infrared Camera (Ther-
movision A40) and treated using ThermaCam Researcher Pro 2.9
software. A 810/980 nm-CW LASER (Gbox model, Fournier Medical
Solution, France) was used for the photothermal experiments. This
laser was injected into a 400 mm core fibre which output was
placed around 6 cm away from the bottom of the wells. This output
was not collimated and the resulting beam divergence allowed us
to illuminate uniformly up to 4 wells.
2.5. Cytotoxicity assay

The HeLa cell line was cultured and maintained in Dulbecco’s
Modified Eagle’s medium (DMEM, Gibco�) supplemented with
10% fetal bovine serum (FBS, Gibco�) and 1% penicillin-
streptomycin (Gibco�) in a humidified incubator at 37 �C and 5%
CO2. HeLa cells were seeded at a density of 104 cells/well in a 96-
well plate and grown for 48 h before assay. The culture medium
was replaced with a fresh medium that contains the PVP/PB
nanoparticles at different concentrations. After 24 h, the old med-
ium was aspirated and cells were washed three times with PBS.
The cell viability was evaluated using Cell Counting Kit-8 (CCK-8,
Sigma Aldrich) assay. Briefly, 10 lL of the CCK-8 solution were
added to each well containing 100 lL of DMEM with 10% FBS
and the plate was incubated for 3 h in the humidified incubator.
The absorbance of each well at 450 nm was measured using a
microplate reader (PHERAstar FS, BMG LABTECH GmbH, Germany).
Each condition was replicated five times and the mean absorbance
value of non-exposed cells was taken as 100% cellular viability.
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2.6. Photothermal ablation of cells

HeLa cells were seeded in 96 well plates (100 lL, DMEM) at a
density of 5 � 104 cells per well 24 h before assay. PVP/PB NPs
were added at different concentrations and the wells were irradi-
ated at 810 or 980 nm for 10 min at 1 W cm�2. Cell viability was
evaluated using the CCK-8 assay, where the absorbance at
450 nm is measured using a microplate reader, as above.
2.7. Photothermal ablation of bacteria

The reference strains uropathogenic E. coli UTI89 and the ESBL-
producing E. coli isolate S5 were grown at 37 �C with shaking in
Luria Bertani broth overnight. The preculture was diluted 50-fold
and allowed to continue for another 3–4 h, until the OD600nm had
reached 0.6–1.0 [15]. The culture was then diluted to 106 CFU mL�1

and aliquoted in a sterile 96-well plate. PVP/PB NPs were added at
different concentrations and the wells were irradiated at 810 or
980 nm. Afterwards, the resistant bacteria were counted on LB
agar.

The S. aureus ATCC25923 and MRSA ATCC43300 strains were
grown at 37 �C with shaking in Brain-heart-infusion (BHI) broth
for 3–4 h until the OD600nm reached 0.3–0.5. The cultures were ali-
quoted in a sterile 96-well plate at 106 CFU mL�1. PVP/PB NPs were
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Fig. 1. XRD pattern of PVP/PB nanoparticles.

A

Fig. 2. TEM (A) and HRTEM (B) of the PVP/PB NPs. The inset in (A) cor
added at different concentrations and the wells were irradiated at
810 or 980 nm. Following this treatment, bacteria were plated and
the resistant ones were counted on BHI agar.
3. Results and discussion

The PVP/PB NPs investigated in this work were synthesized
according to [25]. The PVP/PB NPs are highly stable in aqueous
solution without any apparent precipitation or aggregation for sev-
eral months at room temperature.

Fig. 1 depicts the XRD pattern of the as-obtained blue powder. It
consists of some sharp peaks at 17.6� (2 0 0), 24.8� (2 2 0), 35.3�
(400), 39.6� (420), 43.7� (422), 50.9� (440), 54.1� (600), 57.3�
(620), 66.2� (640), and 69.3� (642), which can be indexed to
face-centered cubic crystallographic phase of PB (ICDD File No.
52-1907). No additional unassigned peak was detected.

Transmission electron microscopy (TEM) imaging reveals that
the PB NPs are mainly in the form of uniform nanocubes �70–
90 nm in size (Fig. 2A).

Selective area electron diffraction (SAED) pattern (see the inset
of Fig. 2A) on a single nanocube comprises some diffraction rings,
indicating the polycrystallinity of the material. These rings could
be indexed to different crystal planes of the cubic phase of PB. High
resolution TEM image taken on the edge of a single nanocube fur-
ther confirms the polycrystallinity; some grains, �10 nm or smal-
ler in size, were imaged. The observed d-spacing of �0.50 and
0.31 nm agrees well with the lattice spacing of the (2 0 0) and
(2 2 0) planes of PB, respectively (Fig. 2B).

The UV–vis spectra of aqueous solutions of PVP/PB NPs display
strong light absorption in the range of 500–1000 nm, providing a
possibility to be exploited for bacteria photothermal ablation
under NIR irradiation (Fig. 3). The absorption of PVP/PB NPs in this
region is attributed to the charge transfer transition between Fe(II)
and Fe(III) in PB NPs.

The photothermal heating capacity of PVP/PB NPs suspensions
was determined by measuring the temperature changes under
NIR irradiation at 810 and 980 nm using a continuous wave laser.
For the same concentration, the final solution temperature reached
was �10 �C higher for the irradiation at 810 nm than that at
980 nm (see Fig. 4).

In a control experiment, we have irradiated aqueous solutions
of PVP at 250 and 500 lg mL�1 at 810 nm (1W cm�2) for 10 min
(Fig. S2). Under these experimental conditions, the final tempera-
ture reached was comparable to that obtained using only water
(in absence of PVP). The results clearly indicate that the observed
photothermal effect was due to PB NPs.
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responds to the selective area electron diffraction (SAED) pattern.
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Prior to investigating the photothermal effect on bacteria, the
cytotoxicity of PVP/PB NPs was evaluated using HeLa and Caco-2
cell lines (Figs. 5 and S1). PVP/PB NPs showed low cell growth
inhibition for both cell lines up to 200 lg mL�1. The in vitro
cytotoxicity of PVP/PB NPs under irradiation by NIR was addition-
ally determined. HeLa cells were incubated with increasing
concentrations of PVP/PB NPs and irradiated for 10 min at 810 or
980 nm for 10 min at 1 W cm�2. As shown in Fig. 5, a dose depen-
dent cytotoxicity was observed. A PVP/PB NPs concentration of
25 lg mL�1 displays 30% cell viability when irradiated at 810 nm.
This is in sharp contrast to irradiation at a longer wavelength
(980 nm), where no significant decrease in cell viability was
observed up to a NP concentration of 50 lg mL�1. The higher cell
killing ability at 810 nm was attributed to the better photothermal
properties achieved at this wavelength.

To exclude cell killing under laser illumination, HeLa cells were
irradiated at 810 nm (1W cm�2) as a function of time in absence of
PVP/PB NPs (Fig. S3). Up to 25 min irradiation, the cell viability was
not affected, suggesting that under our experimental conditions
HeLa cells were not sensitive to laser irradiation; this also indicates
that the observed cell killing in presence of PVP/PB NPs was due to
photothermal effect.

Furthermore, we have examined the ability of PVP/PB NPs to
generate singlet oxygen (1O2) under 810 or 980 nm irradiation. Sin-
glet oxygen generation was monitored through the chemical oxi-
dation of an aqueous solution of 9,10-anthracenediylbis-
(methylene)dimalonic acid (ABDA) (10 lM) in the presence of
PVP/PB NPs (100 lg mL�1). Fig. S4 depicts the UV–vis absorption
spectra of an aqueous solution of (ABDA) (10 lM) and PVP/PB
NPs (100 lg mL�1) before and after irradiation at 1 W cm�2 for
10 min at 810 or 980 nm. The results indicate no 1O2 generation
under these experimental conditions, confirming that cell/bacteria
killing was mainly caused by a photothermal effect.

The efficiency of PVP/PB NPs to ablate pathogens was investi-
gated by mixing a suspension of E. coli (106 CFU mL�1) with PVP/
PB NPs at different concentrations followed by irradiation of the
suspension for 10 min at 810 nm or 980 nm (1W cm�2) and per-
forming a proliferation assay. Virulent strains of E. coli, associated
with urinary tract infection (UTIs), was photothermally treated as
recurrent urinary tract infections caused by E. coli UTI has shown
to significantly reduce the effect of ciprofloxacin treatments, with
a major threat for the development of antibiotic resistance.

As seen in Fig. 6, photothermal treatment of E. coli UTI with
100 lg mL�1 of PVP/PB NPs at 1 W cm�2 for 10 min completely
destroyed the pathogens regardless if 810 or 980 nm laser irradia-
tion was used. It is worthy to notice that a PVP/PB NPs concentra-
tion of 50 lg mL�1 resulted in a 5-log reduction of E. coli strains
upon laser irradiation at 810 or 980 nm, while at this concentration
range irradiation at 980 nm exhibited only a slight decrease of
HeLa cell viability (Fig. 5). It is well known that a good anti-
bacterial compound should selectively target bacteria over mam-
malian cells; the combination of PB particles with laser irradiation
at 980 nm should be a way in this direction. Herein the benefit of
PVP/PB NPs over other photothermal agents used for the ablation
of pathogens [26,27], is associated with the low laser power used,
making the approach more attractive.

Furthermore, we validated the concept of PTT at 980 nm using
PVP/PB NPs on other model pathogens. Among the several known
Staphylococcus species, methicillin-resistant S. aureus (MRSA) is a
pathogen of high clinical importance as it is known to be resistant
to a wide range of antibiotics, making its eradication a real chal-
lenge [28]. Fig. 7 shows that these antibiotic resistant bacteria
are completely killed after 10 min irradiation at 980 nm using a
PVP/PB NPs concentration as low as 20 lg mL�1. Conversely to S.
aureus ATCC25923, where the viability decreased by almost 6
log10 between PVP/PB NPs concentration of 10 and 15 lg mL�1,
the change in viability of MRSA strain decreases steadily upon
increasing the particle concentration under otherwise similar
conditions.

In addition, a major difference was observed between E. coli
UTI89 and antibiotic-resistant E. coli ESBL using PVP/PB NPs PTT
treatment. A much higher PVP/PB NPs concentration (>50 lg mL�1)
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Fig. 8. SEM image of E. coli UTI89 before (A) and (B) after irradiation in the presence
of PVP/PB NPs using a continuous wave laser at 980 nm for 10 min (laser
power = 1W cm�2).
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was needed for a total eradication of the pathogen, while the ESBL
producing E. coli strain showed similar behavior as S. aureus.

Finally, we used SEM imaging before and after irradiation at
980 nm to gain a better understanding on the mechanism of bacte-
ria eradication. Fig. 8 clearly reveals that the PVP/PB NPs aggregate
in the close vicinity of the bacteria without any evidence for
nanoparticles entry inside the bacteria. The result suggests that
bacteria eradication takes place through effective heating of the
medium, leading to destruction of the cell membrane (presence
of holes in the bacteria membrane as seen in Fig. 8.

4. Conclusion

In conclusion, we have demonstrated that PVP-coated Prussian
blue nanoparticles (PVP/PB NPs) could serve as efficient photother-
mal agents under NIR (810 or 980 nm) irradiation for efficient abla-
tion of virulent and antibiotic resistant pathogens, including
virulent strains of E. coli associated with urinary tract infection,
and methicillin-resistant S. aureus. More interestingly, PVP/PB
NPs derived PTT enabled pathogen killing in a concentration
dependent manner using 980 nm NIR laser power of 1 W cm�2.
An important finding is that by choosing an appropriate PVP/PB
NPs concentration (<50 lg mL�1) and 980 nm irradiation wave-
length selective treatment of bacteria over mammalian cells can
be achieved. Finally, by choosing appropriate ligands it will be pos-
sible to target specifically bacteria receptors in infected tissues for
efficient photothermal therapy.
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