doi:10.11918/j.issn.0367-6234.2016.05.017

改进的大气激光通信 PPM 调制解调系统设计

爽^{1,2},吴志勇,高世杰¹,耿天文¹,吴佳彬^{1,2} 马

(1.中国科学院长春光学精密机械与物理研究所,130033长春;2.中国科学院大学,100039北京)

摘 要:为进一步提高 PPM 解调的性能,系统以 FPCA 为主控单元,提出了一种改进的数字锁相环提取时隙同步时钟和快速 帧同步提取方案,在传统的数字锁相环中添加了数字滤波器和 FIFO 缓存单元.结果表明:系统能够精确地调整时隙时钟,调 整精度达到 0.25π,10 Mbps 信号的时隙时钟的抖动量仅为 1.5 ns,最终系统实现了 10 Mbps 的大气激光通信. 关键词: 激光通信; 脉冲位置调制; 时钟同步; 数据与时钟恢复

中图分类号: TN929.12 文献标志码·A 文章编号: 0367-6234(2016)05-0105-05

Design of modified atmospheric laser communication PPM modulation-demodulation system

MA Shuang^{1,2}, WU Zhiyong¹, GAO Shijie¹, GENG Tianwen¹, WU Jiabin^{1,2}

(1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033 Changchun, China; 2. University of Chinese Academy of Sciences, 100049 Beijing, China)

Abstract: In order to improve the performance of PPM demodulation system, we proposed an improved digital phaselocked loop to extract slot synchronization clock and a fast frame synchronization extraction scheme. On the basis of traditional digital phase-locked loop, the digital filter and FIFO buffer unit are added. The results show that the slot synchronization clock can be precisely adjusted. The adjustment accuracy is 0.25π . The jitter of slot synchronization clock is only 1.5 ns in 10 Mbps. Finally the system achieves atmospheric laser communication in 10 Mbps. Keywords: laser communication; pulse position modulation; clock synchronization; CDR

近地大气激光通信系统中,大气湍流效应严重 影响了通信误码率.脉冲位置调制(PPM)技术具有 较高的峰值光功率,可以以最小的光平均功率达到 最高的数据传输速率,相比于传统的 OOK 调制方式 具有更好的差错性能和出色的抗干扰能力等优点. 因此,PPM 调制解调技术非常适合自由空间光通 信,有助于提高空间光通信的可靠性,并已得到广泛 研究[1-4].

PPM 调制解调系统的关键技术在于接收端的 时隙同步时钟和帧同步时钟的恢复,时隙时钟又是 解调系统的关键.实际大气光通信系统存在时钟抖 动现象,会引起时隙同步时钟的偏移. 文献[5]提出 使用锁相环(PLL)技术来提取 PPM 光通信系统中 时隙时钟信号. 文献[6-10]实现了传输 PRBS 码的 PPM 调制数字光纤通信系统,详细分析了 PPM 调 制系统中的同步问题,帧同步采用基于锁相环的方

作者简介:马 爽(1987—),男,博士;

法,即锁住"肩并肩"的两个光脉冲.

本文设计了一种改进的近地大气激光通信 PPM 调制解调系统. 在传统的数字锁相环中增加了 一种数字滤波器和 FIFO 缓存单元,降低了系统随 机噪声的干扰,并减少了时隙时钟的抖动.另外,本 文采用的帧同步方法与传统的"肩并肩"的帧同步 方式相比,缩短了同步建立时间,不需要等待"肩并 肩"的信号形式出现就可以建立同步.

PPM 调制系统 1

PPM 调制系统如图 1 所示.由于受到激光器调 制速率的限制,一般在几 Mbps 量级,而商用的强度 调制器的调制速率已经可以达到40 Gbps以上,所以 系统采用外调制方式. 原始信号进入 PPM 调制单 元,通过 FPGA 内部逻辑将信号变换成 PPM 信号序 列;然后经过电压驱动放大器,将 PPM 信号放大,使 其驱动强度调制器:强度调制器将 PPM 信号调制到 1550 nm的激光上,而强度调制器需要预先根据 PPM 信号的电压与激光器输出的光功率,设定最佳 的偏置电压;最后经过掺铒光纤放大器(EDFA)放

收稿日期: 2015-2-10.

吴志勇(1965-),男,研究员,博士生导师.

通信作者:马 爽,jy01892231@126.com.

大后送给光学发射天线.

光学发射系统为 2 个 10 mm 口径镜头组成, EDFA 放大后的光信号经过输出光功率为 1:1 的分 束器,将 2 束带有同样信息的光信号准直进入发射 镜头,采用多口径发射是为了克服大气湍流的影响.

图 1 PPM 调制发射端设计

PPM 调制过程是将原始信号信息映射为窄脉 冲序列,窄脉冲所在的不同位置代表不同的原始信 号信息.本文所采用的 PPM 调制阶数为4,调制信 号与原始信号的映射表如表1所示,信号的符号分 为4种,每种符号的概率为1/4,分别对应不同的 PPM 调制信号.

由于 4-PPM 调制的调制信号 4 bit 代表原始信号 2 bit 的信息,为了实现一对一的映射,PPM 信号 要采用原始信号 2 倍的时钟频率.

表 1 4-PPM 时,调制信号与原始信号对应关系

原始信号	概率	PPM 调制信号
00	1/4	0001
01	1/4	0010
10	1/4	0100
11	1/4	1000

PPM 信号调制过程如图 2 所示.先将原始的串 行数据按照 2 倍的时钟频率将其转换为 4 位并行数 据,将其依次存入锁存器中,当每存完 4 位数据后, 对锁存器中的值进行判断,按照表 1 中的对应关系, 输出对应的 PPM 信号序列.

图 2 PPM 调制过程框图

图 3 为 PPM 仿真分析的结果,虚线表示原始信号,实线表示 PPM 调制信号,PPM 调制信号延迟 5 个半时钟周期后,生成与原始信号一一对应的 PPM 信号序列.

图 3 PPM 调制仿真分析

2 PPM 接收系统

PPM 信号经过大气传输后,2 束光斑在接收端 光强叠加,通过一个 80mm 口径的光学接收镜头将 空间光耦合至 APD 探测器的靶面上,之后的信号处 理应包括前置互阻放大器、限幅放大电路、时钟与数 据恢复电路和 PPM 解调电路.

接收系统框图如图 4 所示. APD 探测器使用 Voxtel 公司的 200 Mbps 速率 APD,该 APD 内部集 成 TIA 前置放大器, APD 的偏置电压控制和自动温 度控制等功能通过 APD 的控制单元完成. 限幅放大 电路使用 MAX3747 芯片. 时钟与数据恢复和 PPM 解调在调制解调板中实现. 调制解调板由 ALTERA 公司的 Cyclone 系列 EP1C12Q240C8 芯片、电源部 分和接口电平转换电路等部分组成,其中接口电平 转换电路可将限幅放大器输出的 CML 电平转化为 FPGA 可用的 LVDS 高速差分电平.

2.1 PPM 解调单元

2.1.1 时隙时钟同步

时隙时钟同步(位同步)是指在接收端的基带 信号中提取码元定时的过程,所提取的时隙同步时 钟是频率等于码速率的定时脉冲.

本文采用的是基于数字锁相环的方式,同步提 取电路由过零提取、压控振荡器(晶振)、分频器、相 位比较器和脉冲加减控制组成,具体流程图如图 5 所示.

图 5 数字锁相环电路

过零信号的提取即为信号跳边沿的检测,检测 时钟频率为码元速率的 32 倍,每检测到一个跳变 沿,产生一个时钟周期的高电平,提取出时隙时钟信 息.相位比较器则输出本地时钟与时隙时钟信息的 相位差,产生超前或滞后脉冲.通过控制本地晶体 振荡器输出的脉冲个数,添加或扣除脉冲就能使分 频器输出的脉冲提前或推迟出现,从而形成时隙同 步时钟.

此种超前/滞后式的同步方法,无论添脉冲还是 扣脉冲,相位校正总是阶跃式的,校正的稳态相位不 会为零,总是围绕中心点在超前与滞后之间来回摆 动,从而导致恢复的时隙时钟的抖动.

为了消除这种现象,在相位比较器后端加入一种数字式滤波器——随机徘徊滤波器.当输入超前脉冲时,计数器加1,当输入滞后脉冲时,计数器减1;只有当2N可逆计数器计满置2N或0时,才会输出一个超前或滞后脉冲,此时计数器复位置N;当输入的超前或滞后脉冲随机出现时,2N可逆计数器始终在N值左右摆动,则不输出超前或滞后脉冲.增加随机徘徊滤波器后,系统在以下两个方面得到了优化:

1)滤掉了随机噪声;

2)减低了同步时钟抖动频率.

虽然时隙同步时钟呈现阶跃式跳动,但此时同步时钟的边沿已经是数据采样的最佳时刻,用同步时钟将数据写入异步 FIFO 中,再用本地晶振产生的时钟将数据从 FIFO 中读出,利用 FIFO 对数据的 缓存,克服了时钟的抖动现象.

2.1.2 帧同步

帧同步可采用插入法和直接法. 插入法即在每帧 的帧头部插入特殊的码元,用以辨别每帧的起始位 置,比如插入巴克码,但这样会让系统复杂化,并占用 了原本传输信息的时隙,增加信息的冗余,所以本文 采用直接法提取帧同步信号. 传统上多采用基于锁相 环的方法,锁住"肩并肩"的两个光脉冲. 但随着 PPM 调制阶数的增加,"肩并肩"形式的光脉冲出现概率很 小,为了提高同步的效率,采用以下方式.

根据 PPM 信号以下的 3 个特点:

1)每个 4-PPM 帧由 4 个时隙组成,其中有且 只有 1 个时隙是高电平,其余都是低电平;

2) 若连续出现 4 个低电平, 说明这 4 个低电平 一定不处在同 1 个 PPM 帧当中, 而是相邻的 2 个 帧中;

3) 若连续出现 2 个高电平, 说明这 2 个高电平 只能在相邻的 2 个帧当中.

具体帧同步程序流程图如图 6 所示. 接收端 PPM 信号先经过串/并转换单元,在时隙同步时钟 控制下,将数据写人 4 位的移位寄存器中;再对移位 寄存器中的 4 位数据进行逻辑判断,若这 4 位数据 中有且只有 1 个高电平时,则输出高电平,其他情况 输出低电平.此时,计数器对时隙时钟进行计数,计 数器每计 4 个数产生 1 个进位高电平,其他时候输 出低电平.将计数器输出与逻辑判断结果相与,若 两者都为高电平,相与结果为 1 时,则输出一个帧同 步信号,其他时刻不输出帧同步信号. 若相与结果 为 0,将此低电平跟控制计数器的时隙时钟相与,使 计数器暂停计数一次,从而通过扣除时隙时钟的方 式逐渐达到帧同步.

图 6 PPM 帧同步信号提取流程图

3 系统性能分析

3.1 速度分析

PPM 接收系统的速度是由时钟恢复电路的最大工作速度决定的,最大工作速度取决于 FPGA 内嵌 PLL 所能提供的最大速度及分频器的分频系数.

1 Mbps 速率实验的 PPM 时隙同步时钟 1 MHz, 原始信号速率 500 KHz,分频系数 32,系统时钟 32 MHz;10 Mbps 速率实验的 PPM 时隙同步时钟 10 MHz,原始信号速率 5 MHz,分频系数 32,系统时 钟 320 MHz.

3.2 相位误差分析

相位误差主要是由于同步脉冲的相位在跳变的 调整所引起的. 在基于添扣脉冲的位同步方法中, 分频器的系数 *n* = 32,每调整一步,相位改变 4 个系 统时钟周期,故两次实验的最大的相位误差均为

$$\theta = \frac{2\pi}{n/4} = 0.25\pi.$$
 (1)

3.3 同步建立时间分析

同步建立时间是指从未同步状态到同步状态 (如开机、中断等情况)所需的最长时间.对于基于 添扣脉冲的位同步方法,当时隙同步脉冲相位与鉴 相器输出的真实相位差 π(对应时间 T/2)时,调整 时间最长,此时所需最大调整次数为

$$N = \frac{n/4}{2} = 4$$

对于4-PPM 调制信号,每4个脉冲周期出现一 个高电平,即2个过零点基准脉冲,因此,平均每 T/2脉冲周期可能有一次调整,并且本实验在鉴相 器后端假如随机徘徊滤波,使调整周期增加一倍,故 最大的位同步建立时间为

$$t = T/2 \cdot N \cdot 2 = 4T. \tag{3}$$

而本文采用的帧同步方法在没有同步头的情况下, 当帧同步脉冲与真实数据帧的误差为 37 时,调整 时间最长,每个脉冲周期调整一次,此时的最大同步 建立时间为

$$t_{\rm max} = 4T + 3T = 7T.$$
(4)

传统的"肩并肩"形式的帧同步方法中,"肩并 肩"形式的信号出现的概率是随机的,当这种形式 信号出现的时间大于 3T 时,本文的方法将极大地缩 短同步的建立时间.这种"肩并肩"形式的信号出现 的时间小于 3T 的概率是较小的,此时两种方法的同 步建立时间相差不大.

3.4 抖动分析

抖动又称定时抖动,时钟信号的抖动可以看作 实际的时钟信号跳变沿与理想时钟跳变沿的偏移. 由 5 GHz 采样示波器测得 10 MHz 同步时钟沿的抖 动量为 1.5 ns,即 0.15% *T*.

4 实验结果

图 7 为 1 Mbps 通信数据速率下,发送数据为循环码, PPM 调制阶数为 4,发送板晶振为 40 MHz,接收板晶振为 29.491 2 MHz 时,未加 FIFO 和加入 FIFO 后恢复的时隙时钟.可以明显看出,加入 FIFO 后,时钟抖动情况明显下降,并能很好地恢复出原始 信号.

图 8 为 10 Mbps 通信数据速率下,发送数据为 循环码,PPM 调制阶数为 4,发送板晶振为 40 MHz, 接收板晶振为 50 MHz 时,原始信号与经过 PPM 调 制解调后的信号. 从图中测得,经过系统传输后,信 号延迟了 1.078 μs,满足传输要求.

图 7 1 Mbps 速率未加 FIFO 和加入 FIFO 后恢复的时隙时钟

图 8 10 Mbps 速率下原始信号与解调信号

图 9 为 10 Mbps 通信数据速率下, 通过改进的 数字锁相环提取出的时隙同步时钟, 恢复的时钟质 量较好.

5 结 论

设计的 PPM 调制解调系统完成了 1 Mbps 和 10 Mbps通信速率下的大气激光通信,同步系统的相 位误差仅为 0.25π,系统的同步建立时间仅为 7 个 时隙时钟周期,10 MHz 的同步时钟沿的抖动仅为时 隙时钟周期的 0.15%,利用数字滤波器和 FIFO 的缓 存优化了系统设计.本文的方法理论上可以达到更 高的通信速率,还需要对更高速的通信系统进行验 证,同时,为了提高大气激光通信的误码率性能,还 应研究可以与 PPM 调制解调相结合的编码形式.

参考文献

- [1] 潘俊俊,贾振.Gamma-Gamma 湍流中副载波大气光通信
 系统的性能分析[J].光电子·激光,2007,18(8):953-955.
- [2] 王怡,郭黎利,王克家. 基于 Turbo 码的相干光通信系统 性能研究[J].哈尔滨工业大学学报,2007,39(11): 1811-1813.
- [3] 刘敏.无线激光通信系统中 LDPC 码和 PPM 的传输性能 研究[D].西安:西安电子科技大学,2013.
- [4] 王海先.大气中激光通信技术[J].红外与激光工程, 2001,30(2):123-127.
- [5] CHEN C C, GARDNER R M. Performance of PLL synchronized optical PPM communication systems [J]. IEEE Transactions on Communications, 1986,34(10)988-994.
- [6] DELGADO R, FRANCISCO A. Color shift keying communication system with a modified PPM synchronization scheme[J]. IEEE Photonics Technology Letters, 2014, 26

(18):1851-1854.

- [7] ELMIRGHANI J, CRYAN R, CLAYTON M. Spectral characterisation and frame synchronisation of optical fibre digital PPM[J]. IEEE Electronics Letters, 1992,28(16): 1482-1483.
- [8] JIANG Yijun, TAO Kunyu, SONG Yiwei. Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite laser uplink communications [J]. Applied Optics, 2014,53(7):1268-1273.
- [9] KUMAR N. 2. 5Gbit/s optical wireless communication system using PPM modulation schemes in HAP-to-satellite links[J]. Optik, 2014,125(14):3401-3404.
- [10] RAY I, SIBLEY M J N, MATHER P J. Performance analysis of offset pulse-position modulation over an optical channel [J]. Journal of Lightwave Technology, 2012, 30 (3):325-330.

(编辑 王小唯 苗秀芝)

(上接第66页)

- PILLAI S U, KWON B H. Forward/backward spatial smoothing techniques for coherent signal identification [J].
 IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(1):8-15.
- [3] CADZOW J A, KIM Y S, SHIUE D C. General direction-ofarrival estimation: a signal subspace approach [J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(1):31-47.
- [4] WAX M, SHEINVALD J. Direction finding of coherent signals via spatial smoothing for uniform circular arrays
 [J]. IEEE Transactions on Antennas and Propagation, 1994,42(5):613-620.
- [5] 高书彦,陈辉,王永良,等.基于均匀圆阵的模式空间矩 阵重构算法[J].电子与信息学报,2007,29(12):2832-2835.
- [6] 谢菊兰,李会勇,何子述. 均匀圆阵相干信源 DOA 估计 的差分算法[J].电子科技大学学报,2012,41(4):516-521.
- [7] 甄佳奇,丁群,赵冰.虚拟阵列下的相干信号测向算法 [J].系统工程与电子技术,2013,35(10):2032-2036.
- [8] YE Zhongfu, XU Xu. DOA estimation by exploiting the

symmetric configuration of uniform linear array [J].IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3716–3720.

- [9] LIU Fulai, WANG Jinkuan, SUN Changyin, et al. Spatial differencing method for DOA estimation under the coexistence of both uncorrelated and coherent signals [J]. IEEE Transactions on Antennas and Propagation, 2012, 60 (4):2052-2062.
- [10]胡晓琴,陈辉,陈建文,等.一种利用最大特征矢量的 Toeplitz 去相干方法[J].电子学报,2008,36(9):1710-1714.
- [11] CHOI Y H.ESPRIT-based coherent source localization with forward and backward vectors [J]. IEEE Transactions on Signal Processing, 2010, 58(12):6416-6420..
- [12]刁鸣,安春莲.基于矢量重构的相干信源测向[J].应用 科学学报,2011,29(3):261-266.
- [13]XU Guanghan, KAILATH T. Fast subspace decomposition
 [J]. IEEE Transactions on Signal Processing, 1994, 42
 (3): 539-551.

(编辑 王小唯 苗秀芝)