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Abstract：Blind image quality assessment (BIQA) can assess the perceptual quality of a distorted image without a 
prior knowledge of its reference image or distortion type. In this paper, a novel BIQA model is developed in wave-
let domain. Considering the multi-resolution and band-passing characteristics of discrete wavelet transform 
(DWT), an improvement over the power spectrum is put forward, i.e., dubbed wavelet power spectrum (WPS) 
estimation. Then, the concept of directional WPS is applied to simplify the calculation. Moreover, a rotationally 
symmetric modulation transfer function (MTF) of human visual system (HVS) is integrated as a filter, which 
makes the metric to be consistent with the human vision perception and more discriminative. Experiments are con-
ducted on the LIVE databases and three other databases, and the results show that the proposed metric is highly 
correlated with subjective evaluations and it competes well with other state-of-the-art metrics in terms of effective-
ness and robustness. 
Keywords：blind image quality assessment; human visual system; wavelet power spectrum 

 

Image quality assessment (IQA) metrics have 
drawn extensive attention because they can automatically 
predict the perceived image without human’s interven-
tion. According to the availability of reference image, 
studies dealing with image sharpness are classified into 
three categories: full-reference IQA, reduced-reference 
IQA, and no-reference/blind IQA (BIQA).  

Under most circumstances, the pristine or undis-
torted information is unavailable for comparison. There-
fore, BIQA renders it significantly in practice and en-
hances its applicability remarkably. BIQA can also be 
classified into two categories, i.e., spatial domain and 
transform domain.  
  In the former case, spatial domain metrics often rely 
on detecting the variations of image statistical features, 
such as the spread of edges and texture, gradient, variance, 
autocorrelation and kurtosis. Overviews of state-of-the-art 
approaches were introduced in Refs. [1] and [2]. Ferzli and 
Karam[1] also presented a sharpness assessment by inte-
grating the concept of just noticeable blur(JNB) into a 
probability summation model. Bahrami and Kot[2] devel-

oped a metric called maximum local variation(MLV). 
Mittal et al[3,4] proposed a blind/referenceless image spatial 
quality evaluator (BRISQUE), which utilizes the natural 
scene statistic(NSS)of local luminance coefficients; 
moreover, they established a natural image quality evalua-
tor (NIQE) based on the construction of a “quality aware” 
collection of statistical features. 

In the latter case, transform domain methods are 
mostly based on the fact that the blur in an image leads to 
the attenuation of high spatial frequencies. Moorthy and 
Bovik[5] proposed a distortion identification-based image 
verity and integrity evaluation (DIIVINE) method, which 
deploys the NSS of image wavelet coefficients. Saad  
et al[6] developed a blind image integrity notator using 
discrete cosine transform (DCT) statistics(BLIINDS-II) 
based on the NSS of block DCT coefficients. Lu et al [7] 
established a model in contourlet domain, which quanti-
fies the variation of nonlinear dependencies between con-
tourlet coefficients to measure the image degradation. Li 
et al[8] presented a general purpose NR-IQA algorithm 
SHANIA, which develops an NSS model in shearlet do-
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main. Liu et al[9] derived dubbed CurveletQA that ex-
ploits a model of the log-pdf of curvelet coefficients 
combined with curvelet orientation information. Wavelet-
based methods[10-13] were widely used in evaluating the 
image quality owing to their multi-resolution characteris-
tic. Vu and Chandler[10] presented a fast wavelet-based 
method for estimating both the global and local fast im-
age sharpness (FISH). Zhao et al[11] employed the expec-
tation of wavelet transform coefficients (WTCs)to esti-
mate the image quality. 

Spectrum analytic methods[14-16] estimate the image 
quality through the variation of high frequency compo-
nent. However, most spectrum analytic methods are 
based on Fourier transform (FT), which presents a fixed 
frequency resolution when the type and size of the win-
dow are chosen. Conversely, dyadic digital wavelet trans-
form (WT), which is not redundant and invertible[17], pro-
vides a representation of the signal on coefficients partly 
localized in time and frequency. As a consequence, discrete 
wavelet transform(DWT) is superior to FT when capturing 
the low- and high-frequency transients of signals.  

Based on the fact that a human is the ultimate ob-
server of the imagery system, an incorporation of an ap-
propriate model of human visual system(HVS)would 
lead to an improvement in the image assessment process. 
Various models were empirically proposed[18-20]. Based 
on the feature that WT matches the multi-channel charac-
teristic of HVS, and combined with a band-pass charac-
teristic of contrast sensitivity function, a weighted wave-
let power spectrum measure function is derived in this 
paper. 

This paper is organized as follows. In Sections 1 and 
2, the details of the proposed algorithm are provided. 
Section 3 discusses the experimental results and the com-
parisons with other state-of-the-art BIQAs. Conclusions 
are presented in Section 4. 

1 Algorithm 

1.1 FT and DWT 
Given a grayscale image ( , )I x y  of size M N , FT 

is formulated as Eq.(1). According to Parseval’s theo-
rem, the relationship between signal power and Fourier 
coefficients is given by Eq.(2). It can be seen that the 
power spectral density of a signal can be expressed as the 
FT of its auto-correlation. 
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The power spectral density in scale ( , )u v  is: 
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The concept of WT is as below: 
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where , ( )a b t  is the shifted and dilated form of the 
mother wavelet function; a and b are the scaling factor 
and shift factor, respectively.  

DWT is represented as follows:  
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Suppose that the space sequence {Vk} is satisfied 

with multiresolution analysis(MRA)in square integrable 
function space 2 2( )L R . In order to construct a two-

dimensional(2D) MRA, the tensor product space of one-

dimensional(1D) MRA can be employed. The 2D sepa-
rable wavelet function can be derived from scaling func-
tion ( )x and mother wavelet function ( )x  as follows: 

   ( , ) ( ) ( )x y x y    

   H ( , ) ( ) ( )x y x y    

   V ( , ) ( ) ( )x y x y    

   D ( , ) ( ) ( )x y x y    (6)
 

where ( , )x y is the relevant scaling function; 
and  ( , ) H,V,Di x y i  are independent and spatially 
oriented frequency detailed features in three directions, 
i.e., horizontally, vertically and diagonally, respectively. 
The scaling function and the mother wavelet are an or-
thonormal basis set of 2 2( )L R . 

We denote ( , , , )W i m j n  and ( , , , )W i m j n as the co-
efficients of approximated and detailed sub-signals at 
different DWT levels, respectively: 
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1.2 Human visual system 

HVS is a complex information management system, 
which consists of many nerve cells. According to a well-
conceived experimental trial-and-error process [18] and 
the psychophysical spatial frequency threshold measure-
ments on human observers[19], a particular curve is a 
composite derived from both references, which is a good 
working representation of the HVS. The curve is modi- 
fied in Ref. [20]. The rotationally symmetric modulation  
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transfer function of HVS can be given by: 

      ( ) 0.31 0.69 exp 0.29A r r r    (8)
 
where the radial frequency r is in cycles per degree of 
visual angle subtended. The peak of ( )A r can be extended 
from 1 to 9 cycles per degree[20]. 

2 Proposed method  

The proposed method for image sharpness assess-
ment is derived as follows: employ WT to decompose the 
image; invert the transform, and apply Parseval’s theo-
rem to the reconstruction signal; extract the power spec-
trum of the high frequency information; integrate HVS 
model with the directional WPS.  
2.1 Directional WPS-based HVS 

Through the DWT decomposition, an image can be 
decomposed into the approximation signal and detailed 
signals at each level. As the scaling function and the 
mother wavelet are an orthonormal basis set, Parseval’s 
theorem is employed to build the relationship between 
the power spectrum of the discrete signal and the WTCs. 
As shown in Eq.(9), the total energy of the signal satis-
fies the energy conservation theorem and it is equal to the 
sum of the energy of scale reconstruction signals. The 
first term on the right side of Eq.(9)represents the aver-
age power of the approximated version of decomposed 
signal, whereas the second term denotes the sum of aver-
age power of the detailed version.  
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To acquire the high frequency information of an im-

age and consider its simplification, the proposed sharp-
ness metric employs the diagonal coefficients of wavelet 
decompositions, because the diagonal details represent 
more general properties. Hence, the power spectra of the 
diagonal coefficients are extracted as follows:  
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Fig. 1 is a grayscale image. Its different regions in 

blue windows are selected as subimages, i.e., A1, A2 and 
A3. Then, their wavelet power spectra are calculated us-
ing Eq.(10). For the convenience of comparison, the 2D 

power spectrum is converted to 1D type. Simultaneously, 
in order to validate the performance of the proposed 
method, the power spectra of the subimages are com-
pared with blurred ones, which are derived from the 
subimages in Fig. 1 by fuzzy processing. As shown in 
Fig. 2, the change of power spectrum curves caused by 
blur can be seen obviously. 

 

Fig. 1 Grayscale image 

As can be seen from Fig. 2, the wavelet power spec-
trum method performs well in keeping the invariance of 
independent scene. The blur of the image in spatial do-
main leads to the attenuation of high frequency in the 
frequency domain. Very low spatial frequency informa-
tion cannot always be sensitive to the image quality 
changes, as pointed out by Ref. [14]. Thus, for the FFT-

based power spectrum, we start calculating from 2％ of 
Nyquist frequency(0.5 cycles/pixel)to avoid the areas of 
very low frequency. The high spatial frequency informa-
tion of an image attenuates due to the blur, and it is also 
easily contaminated by noise. In practice, when  ＞0.5, 
the value of power spectrum is insignificant and only has 
a negligible effect on the image quality estimation. It is 
appropriate to select power spectra sum(PSS)in the 
range of 0.01—0.5 cycles/pixel as sharpness assessment 
factor. 
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where  is the mean value of image grayscale, which 
aims to decrease the influence of luminance changes. 

 

Fig. 2 1D wavelet power spectrum of focusing and defo-
cusing subimages 
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The square of HVS response function A(r)and WPS 
are combined as follows to determine a scalar sharpness 
index, which represents the image’s overall sharpness [9]: 

   
0.5

2 2
,

0.01

PSS2 ( ) /i jA P


 


   (12)
 

Fig. 3 shows the variation curves of the proposed 
method with/without weighting scheme, i.e., Eqs.(11) 
and(12), for evaluating the image quality through a set 
of images that are derived by processing an image at 
various blur levels. The X-axis presents the image se-
quence, while the Y-axis stands for the image’s normal-
ized sharpness. It can be seen that after weighting, the 
PSS2 curve exhibits as good monotonicity as PSS1 does. 
However, the slope of the PSS2 curve increases espe-
cially at the focused position, which enhances the sensi-
tivity and accuracy of the proposed sharpness assessment 
and reduces the misjudgement caused by calculation error 
effectively. This is because different frequency coeffi-
cients make different contributions to visual effect ac- 

 

Fig. 3  Variation curves of the proposed method with/
without weighting scheme  

 

cording to the HVS response function. Since we put em-
phasis on the frequency areas that have more influences 
on the sharpness assessment, different weights are as-
signed to wavelet high frequency coefficients owing to 
the characteristics of HVS.  
2.2 Wavelet basis selection 

According to the simulation results and the corre-
sponding analysis in Ref.[21], compared with BiorNr.Nd 
and Morlet which are popular in the wavelet analysis, the 
merits of Symmlet wavelets include the best orthonor-
mality and compact support, highest vanishing moments, 
shortest support 2M-1, approximate symmetry, smallest 
resulting computational quantity and being able to do 
DWT. Therefore, Sym2 is selected in our BIQA model.  

3 Experimental results and analysis 

In this section, experiments are conducted with the 
LIVE IQA database[22], which contains 779 distorted im-
ages derived from 29 reference images by processing them 
with five distortion types at various levels, i.e., JPEG2000 
compression (JP2K), JPEG compression(JPEG), white 
noise (WN), Gaussian blur (Gblur), and fast-fading (FF) 
Rayleigh channel distortions. For each image, a difference 
mean opinion score (DMOS)value is recorded by human 
observers to describe whether the predicted image quality 
scores computed by a BIQA model conform to human 
judgments.  

A plot of the predicted DMOS versus the subjective 
one for each of the data subset is shown in Fig. 4. It can  

 

   

(a)JP2K LIVE subset (b)JPEG LIVE subset (c)WN LIVE subset  

  

(d)Gblur LIVE subset (e)FF LIVE subset 

Fig. 4 Predicted versus subjective DMOS  



Trans. Tianjin Univ. Vol.22 No.6  2016  
 

 —600—    

be seen that these scattered plots exhibit good properties: 
a nearly linear relationship with subjective DMOS, tight 
clustering, and a roughly uniform spread along the di-
agonal line. All these properties demonstrate that the pro-
posed method is highly correlated with subjective sharp-
ness evaluations. 

To evaluate the performance of predicting subjective 
ratings of quality quantitatively, two criteria are used: 
Spearman rank-order correlation coefficient(SROCC)for 
gauging prediction monotonicity and Pearson linear cor-
relation coefficient(PLCC)for gauging prediction consis-
tency. The larger values for SROCC and PLCC(as close 
to 1 or -1 as possible)indicate good performance in terms 
of correlation with HVS. As recommended by the Video 
Quality Expert Group, when calculating SROCC and 
PLCC, a nonlinear logistic regression should be built be-
tween the predicted scores and the subjective scores due to 
the nonlinear quality rating of human observers [23]. The 
logistic regression function is defined as: 

 MOSp   

    
  1 4 5

2 3

1 1

2 1 exp
x

x
  

 
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where x and MOSp are the predicted scores before and 
after regression, respectively; 1 — 5  are the regression 
parameters. 
  We compare our method with seven BIQA methods: 
NIQE [4], DIIVINE [5], BLIINDS-II [6], BRISQUE [3], 
Contourlet [7], SHANIA [8] and CurveletQA [9]. In addi-
tion, peak signal-to-noise-ratio(PSNR), structural simi-
larity(SSIM), and visual information fidelity(VIF)[24] 
are also included as benchmarks. To visualize the statisti-
cal significance of the comparison, the SROCC and 
PLCC of the proposed method and other methods are 
listed in Tab. 1 and Tab. 2, respectively. 

Tab. 1 SROCC of different methods on LIVE II database 
  JP2K JPEG WN Gblur FF 

PSNR 0.890 0.841 0.985 0.782 0.890

SSIM 0.932 0.903 0.963 0.894 0.941

VIF 0.953 0.913 0.986 0.973 0.965

NIQE 0.917 0.938 0.966 0.934 0.859

BRISQUE 0.918 0.966 0.979 0.948 0.885

DIIVINE 0.912 0.921 0.982 0.937 0.869

Contourlet 0.824 0.562 0.601 0.856 0.823

SHANIA 0.861 0.892 0.958 0.967 0.917

CurveletQA 0.937 0.912 0.988 0.965 0.900

BLIINDS-II 0.946 0.935 0.963 0.934 0.899

Proposed method 0.939 0.954 0.975 0.937 0.878

Tab. 2 PLCC of different methods on LIVE II database 
 JP2K JPEG WN Gblur FF 

PSNR 0.896 0.860 0.986 0.783 0.890

SSIM 0.937 0.928 0.970 0.874 0.943

VIF 0.962 0.943 0.984 0.974 0.962

NIQE 0.937 0.956 0.977 0.953 0.913

BRISQUE 0.923 0.973 0.985 0.951 0.903

DIIVINE 0.923 0.935 0.987 0.937 0.892

Contourlet 0.853 0.581 0.958 0.892 0.853

SHANIA 0.914 0.938 0.973 0.979 0.941

CurveletQA 0.946 0.928 0.985 0.969 0.919

BLIINDS-II 0.949 0.951 0.961 0.938 0.901

Proposed method 0.958 0.971 0.963 0.944 0.870

From Tab. 1 and Tab. 2, it can be seen that among 
all the methods, VIF has the best performance as an FR-

IQA method statistically, but it needs the undistorted im-
ages as a reference, and so do PSNR and SSIM. In many 
applications, the reference is not available, which limits 
the application of FR-IQA, thus BIQA metrics are highly 
desirable. For the BIQA methods, we list some metrics in 
both spatial domain and transform domain.  

BRISQUE and NIQE operate in spatial domain. Al-
though the proposed method competes well with them, 
from the perspective of computational complexity, both 
BRISQUE and NIQE are easily implemented and suit-
able for real-time applications, while most metrics in 
transform domain are not.  

The performance of the proposed method is also 
compared with some BIQA methods in transform do-
main, such as DCT, shearlet and contourlet domain. It is 
apparent that the proposed metric exhibits significantly 
superior performance in terms of prediction accuracy and 
monotonicity. In terms of PLCC, the proposed method 
achieves correlations of about 0.958 with subjective 
scores on JP2K subset, and 0.971 on JEPG subset, which 
are excellent prediction performance for BIQA metric. 
As for the other types of distortion, the SHANIA and 
CurveletQA models are better. One drawback of most of 
these BIQA methods is that a large image dataset is re-
quired to get parameters needed. Furthermore, the per-
formance of the methods will be affected more or less 
when utilizing different train-tests, while the proposed 
method is a “completely” blind IQA. As a comparison, 
for the IQA methods, although the proposed method is 
statistically inferior to the top-performing IQA ap-
proaches, it performs quite well on the JP2K and JPEG 
LIVE subsets, and it is competitive with other methods 
from the comparison with the other three subsets. 

In order to further validate the effectiveness and 
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 universality of the proposed method, experiments were 
also conducted on four different image quality data-
bases(LIVE, TID2008, CSIQ and IVC). Tab. 3 lists the 
performance evaluations of SROCC and PLCC of several 

IQA approaches on the databases. Two best performed 
metrics are bolded. It can be seen that compared with 
state-of-the-art IQA metrics, the proposed method 
achieves encouraging results.  

Tab. 3 Performance evaluations of proposed and competing IQA metrics 
 LIVE TID2008 CSIQ IVC 

 SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC 

PSNR 0.829 0.808 0.864 0.834 0.917 0.892 0.695 0.752 

NIQE 0.924 0.916 0.736 0.730 0.857 0.870 0.848 0.864 

BRISQUE 0.943 0.933 0.873 0.852 0.936 0.914 0.812 0.831 

DIIVINE 0.895 0.912 0.676 0.634 0.832 0.839 0.295 0.299 

BLIINDS-Ⅱ 0.924 0.912 0.874 0.859 0.883 0.908 0.593 0.800 

Proposed method 0.942 0.968 0.803 0.788 0.920 0.899 0.896 0.907 

 
In summary, the proposed method gives excellent 

performance with comparatively larger SROCC and 
PLCC. The coherence with subjective evaluation vali-
dates the efficiency and robustness of the method.  

4 Conclusions 

In this paper, a BIQA metric based on wavelet 
power spectrum is proposed, which also takes the re-
sponse of HVS into account. The proposed method can 
provide an accurate assessment on the perceived sharp-
ness regardless of the blur types or scene characteristics. 
The efficiency and robustness of the metric are verified 
on LIVE databases and three other databases.  
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