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In active optics systems, one concern is how to quantitatively separate the effects of astigmatic and trefoil figure
errors and misalignments that couple together in determining the total aberration fields when wavefront measure-
ments are available at only a few field points. In this paper, we first quantitatively describe the impact of mount-
induced trefoil deformation on the net aberration fields by proposing a modified theoretical formulation for the
field-dependent aberration behavior of freeform surfaces based on the framework of nodal aberration theory. This
formulation explicitly expresses the quantitative relationships between the magnitude of freeform surfaces and the
induced aberration components where the freeform surfaces can be located away from the aperture stop and de-
centered from the optical axis. On this basis, and in combination with the mathematical presentation of nodal
aberration theory for the effects of misalignments, we present the analytic expressions for the aberration fields
of two-mirror telescopes in the presence of astigmatic primary mirror figure errors, mount-induced trefoil defor-
mations on both mirrors, and misalignments. We quantitatively separate these effects using the analytical expres-
sions with wavefront measurements at a few field points and pointing errors. Valuable insights are provided on how
to separate these coupled effects in the computation process. Monte Carlo simulations are conducted to demonstrate
the correctness and accuracy of the analytic method presented in this paper. © 2016 Optical Society of America

OCIS codes: (110.6770) Telescopes; (080.1010) Aberrations (global); (220.1140) Alignment; (080.4228) Nonspherical mirror

surfaces; (220.1080) Active or adaptive optics.
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1. INTRODUCTION

Due to the increase in the aperture size of the emerging gen-
erations of astronomical telescopes, their fabrication has be-
come more and more difficult. Considering that they are
more susceptible to dynamic thermal and gravitational varia-
tions, the challenges in supporting and aligning them have also
increased. The effects of telescope errors resulting from incor-
rect optical manufacturing and deformations and misalign-
ments due to gravity or thermal reasons can greatly degrade
the observation performance of astronomical telescopes.
Active optics systems present an efficient solution to these
problems by sensing and correcting mirror figure errors and
misalignments during observing periods [1]. Since its first ap-
plication to the monolithic primary of the new technology tele-
scope (NTT) [2] by European Southern Observatory, active
optics systems have been widely used in astronomical telescopes
in the last two decades. Among these are the 8 m class Very
Large Telescope (the successor of NTT) [3], Gemini [4] and

Subaru [5], the 4 m class Telescopio Nazionale Galileo [6],
Southern Astrophysical Research telescope [7], the Visible
and Infrared Telescope for Astronomy [8], the Advanced
Technology Solar Telescope [9], and others [10,11].

In an active optics system the effects of different types of
figure errors and misalignments need to be quantitatively sep-
arated before they can be actively corrected. Presently, numeri-
cal methods (such as nonlinear least-square fitting algorithms)
are used in most active optics systems for the computation of
these perturbations [12,13]. Nevertheless, these methods can
hardly lead to any insight into the aberration-field dependencies
that arise in the presence of the perturbations (mirror defor-
mations and misalignments), and typically their computation
accuracy is restricted by the nonlinearity of the Zernike
coefficient sensitivity to the perturbation parameters [13].
Therefore, an analytic computation method tied closely to
aberration theory is need. In this paper we will present an
analytic computation method for some specific perturbation
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conditions for two mirror telescopes, i.e., astigmatic figure error
on the primary mirror (PM), trefoil deformations on both PM
and secondary mirror (SM), and lateral misalignments of the
SM. One of the main focuses is placed on how to separate
and quantify the effect of the trefoil deformation on the SM
in the presence of secondary-mirror misalignments. While
some other perturbations, such as longitudinal misalignment
and primary-mirror spherical figure error that can introduce
defocus and spherical aberration, are usually controlled in
any telescope based on active optics, this paper does not discuss
them. These perturbations do not break the axial symmetry of
the optical system, and their effects can be discussed separately
using the current aberration theories for rotationally symmetric
optical systems [14].

Nodal aberration theory (NAT), discovered by Shack [15]
and developed by Thompson [16–20], can analytically describe
the aberration fields of optical systems in the absence of rota-
tional symmetry. This theory had been limited to optical im-
aging systems made of rotationally symmetric components that
are tilted and/or decentered until the special case of an astig-
matic optical surface located at the aperture stop (or pupil) was
introduced into NAT by Schmid et al. [21]. Based on the char-
acteristic astigmatic nodal properties in the presence of secon-
dary-mirror misalignments and primary-mirror astigmatic
figure error, the effects of misalignments and primary-mirror
astigmatic figure error can be distinguished. Recently,
Fuerschbach et al. [22,23] presented a more generalized
theoretical formulation for the aberration behavior of non
symmetric optical surfaces that could lie anywhere in the opti-
cal system. In this case the net aberration contribution becomes
field-dependent, and many aberration components, each hav-
ing unique field dependence, may arise. Fuerschbach et al. an-
alyzed the impact of three-point mount-induced trefoil
deformation on the net aberration fields. It was recognized that
when an optical surface located away from the aperture stop is
deformed by a mounting error in addition to the field-constant
elliptical coma contribution, a field-conjugate, field-linear as-
tigmatic contribution will also be introduced to the net aber-
ration fields. This extension to NAT presents possibility for
separating the impact of astigmatic and trefoil figure errors
and misalignments while considering all the surfaces in the op-
tical system.

While the theory proposed by Fuerschbach et al. can lead to
valuable insights into the aberration behavior of freeform op-
tical surfaces, however, the quantitative relationships between
the magnitude of freeform surface and the induced aberration
components were not explicitly described. Therefore, before
this theory can be applicable to some cases involving quantita-
tive calculation, it needs some modifications. In this paper we
first propose a modified theoretical formulation for the aberra-
tion behavior of freeform surfaces with the aid of vector multi-
plication of NAT. We rediscuss the field-dependent behavior of
freeform surfaces, aiming at providing more in-depth physical
insights rather than pure mathematical manipulation. We
explicitly express the quantitative relationships between the
magnitude of freeform surfaces and the induced aberration
components by introducing the scale factor for the beam
footprint on the surface, which has its clear physical meaning.

We study the effect of the decenter of freeform surface on the
net aberration fields, and demonstrate that this effect can be
seen as a shift of the aberration field for this freeform surface,
which coincides with the conception of shifted aberration field
center for the aspheric cap of an optical surface [24]. With this
formulation we quantitatively express the effect of mount-
induced trefoil deformation on the net aberration fields and
make a comparison between the results of this work and the
work of Fuerschbach et al. It is demonstrated that the scale fac-
tor for the beam footprint on the surface is indispensible in
establishing the quantitative relationships between the magni-
tude of freeform surfaces and the induced aberration compo-
nents. Based on the quantitative relationship, importantly, the
induced field-conjugate, field-linear astigmatic component can
be directly used to determine the orientation and magnitude of
the trefoil deformation.

Since we can quantitatively express the impact of mount-
induced trefoil figure error in an optical surface located away
from the stop and decentered from the optical axis, we en-
counter another challenge: how to quantitatively separate
the effects of an astigmatic primary-mirror figure error, trefoil
deformations on both the primary and SM, and lateral mis-
alignments of the SM. This case is very complicated because
many factors couple with each other in determining the total
aberration fields. The astigmatic aberration field consists of
the contributions from the PM astigmatic figure error, SM
trefoil deformation, and SM misalignments. The SM mis-
alignments can further impact the aberration contribution
from the SM trefoil deformation. Therefore, quantitatively
separating the effects of astigmatic and trefoil figure errors
and misalignments is not only important for active optics sys-
tems but also has some theoretical values. After we propose a
modified theoretical formulation for the field-dependent aber-
ration behavior of freeform surfaces to explicitly express the
quantitative relationships between the magnitude of freeform
surfaces and the induced aberration components, the math-
ematical representations for the aberration fields of optical sys-
tems in the presence of astigmatic and trefoil figure errors and
misalignments can be obtained based on how we can compute
these perturbation parameters. Monte Carlo computation
simulations demonstrate that these mathematical representa-
tions of NAT can serve as a powerful tool in computing the
perturbation parameters. In the computation process we also
provide valuable insights into how to quantitatively separate
different effects that couple together in determining the total
aberration fields.

This paper is organized as follows. In Section 2 we quanti-
tatively describe the impact of mount-induced trefoil defor-
mation by explicitly expressing the quantitative relationships
between the magnitude of freeform surfaces and the in-
duced aberration components. In Section 3 we separate the
effects of astigmatic figure error on the PM, trefoil deforma-
tions on both the PM and SM, and lateral misalignments
of the SM. We quantify these perturbation parameters. In
Section 4 computation simulations are conducted to verify
the correctness and computation accuracy of the method
presented in this paper. In Section 5 we summarize and
conclude the paper.
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2. QUANTITATIVE DESCRIPTION FOR THE
IMPACT OF MOUNT-INDUCED TREFOIL
DEFORMATION

Before quantitatively separating the effects of astigmatic figure
error on the PM, trefoil deformations on both the PM and SM,
and lateral misalignments of the SM, we need to quantitatively
describe the impact of mount-induced trefoil deformation in an
optical surface located away from the stop and decentered from
the optical axis. This goal is achieved by rediscussing the field-
dependent behavior of freeform surfaces and explicitly express-
ing the quantitative relationships between the magnitude of
freeform surfaces and the induced aberration components
where the freeform surfaces can be located away from the aper-
ture stop and decentered from the optical axis.

A. Quantitative Formulation of the Field-Dependent
Aberration Contribution from Freeform Surfaces
The freeform surface can be treated as a zero-power thin optical
plate, and its contribution to the net aberration fields is not
dependent on the angle of incidence, supposing a typically
small field of view. Therefore if a freeform surface is located
at the aperture stop, the beam footprint is the same for all field
points. Therefore all field angles will receive the same aberra-
tion contribution from this surface.

It is well known that the wavefront aberration represents the
optical path difference between the actual aberrated wavefront
and a spherical reference wave. Since the freeform surface does
not contribute optical power, it does not impact the optical
path length for the spherical reference wave. Therefore, the
aberration contribution of the freeform surface is equivalent
to the optical-path difference it introduced to the actual aber-
rated wavefront.

A freeform optical surface can be defined by a conic plus a
ϕ-polynomial (Zernike polynomial) overlay. However, in this
paper, the term freeform surface particularly refers to the
Zernike polynomial overlay, not including the base conic sur-
face, in order to facilitate the discussion of the net aberration
contributions from the Zernike polynomial overlay.
Considering that the sag of freeform surfaces varies not only
with the radial component, ρ, but also with the azimuthal com-
ponent, ϕ, we suppose it is expressed as z�ρ;ϕ�. Using the vec-
tor multiplication identity of NAT [17], z�ρ;ϕ� can be
rewritten as the function of ρ⃗, F�ρ⃗ �, and ρ⃗ � ρeiϕ. Thus when
the freeform surface is located at the aperture stop, as shown in
Fig. 1, the aberration contribution can be given by

W �ρ⃗ � � �n 0 − n�F �ρ⃗ �; (1)

where W �ρ⃗� represents the aberration contribution from the
freeform surface, ρ⃗ denotes the normalized aperture vector.
n and n 0 are the indices of refraction before and after the optical
surface, respectively. It is important to realize that for optical
systems consisting of mirrors n � 1, n 0 � −1 for odd times
of reflection, and n � −1, n 0 � 1 for even times of reflection.

When the freeform optical surface is located away from the
stop, the beam footprint for a certain field point only covers
part of this surface so each field angle will receive a unique aber-
ration contribution from the surface. Before formulating this
field-dependent contribution we first consider a conceptual
case that the freeform surface is still located at the aperture stop

but the aperture is scaled down by a factor of a and decentered
by a normalized decentration vector s⃗, as illustrated in Fig. 2,
where the small circle in gray represents the scaled and decen-
tered aperture, and the large circle represents the previous on-
axis full aperture of the freeform surface. In this case, only a
portion of the freeform surface, which coincides with the scaled
and decentered aperture, will contribute to the net aberration
fields.

The relation between the coordinate of the scaled and de-
centered aperture and the previous on-axis full aperture can be
given by

ρ⃗ � aρ⃗ 0 � s⃗; (2)

where ρ⃗ denotes the on-axis aperture vector normalized by the
half-aperture size of the on-axis full aperture, ρ⃗ 0 represents the

Fig. 1. Schematic representation for the case where the freeform
surface is located at the aperture stop. In this case, the beam footprint
is the same for different field points and covers the full surface.

Fig. 2. Schematic representation for a conceptual case where the
freeform surface is still located at the aperture stop but the stop is
scaled down and decentered. In this case, the beam footprint is still
the same for different field points compared with Fig. 1, but only cov-
ers part of the surface coinciding with the aperture stop.
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scaled and decentered aperture vector normalized by the half-
aperture size of the scaled aperture, s⃗ denotes the aperture de-
centration vector normalized by the radius of the on-axis full
aperture, and a represents the scale factor of the scaled aperture
relative to the full aperture.

In this case the optical path difference (OPD) introduced by
the freeform surface can be given by

OPD�ρ⃗ � � �n 0 − n�F �ρ⃗ �; ρ⃗ ∈ D; (3)

where D represents the region of the scaled and decentered
aperture. However, this expression cannot be directly seen as
the aberration contribution induced by the freeform surface
for this case. In that wave aberration is usually measured at exit
pupil with a corresponding normalized aperture (pupil) coor-
dinate. Since the aperture has been scaled and decentered, the
OPD induced by the freeform surface should be measured in
the scaled and decentered aperture coordinate. Therefore in this
case the aberration contribution induced by the freeform
surface can be expressed as

W �ρ⃗ 0� � �n 0 − n�F �aρ⃗ 0 � s⃗ �; (4)

where the coordinate transformation from the on-axis full aper-
ture to the decentered and scaled aperture described by Eq. (2)
has been used. It can be seen that the final measurement is done
in the scaled and shifted aperture coordinate, and the aberration
contribution of the freeform surface can thus be determined in
this case.

For the case that the freeform surface is located away from
the aperture stop, the beam footprint displaces on this surface,
depending on field angle, and only covers part of the surface as
illustrated in Fig. 3. This case parallels that the aperture stop is
decentered and scaled down when the freeform surface is lo-
cated at the aperture stop as discussed above, where the beam
footprint also only covers part of the surface. While these two
cases bear some similarities to each other, it is important to rec-
ognize the difference between them. In the case discussed
above, the position for the beam footprint is field constant for
the freeform surface located at the aperture stop. However, in

this case, the position for the beam footprint is field dependent.
Therefore, the ray bundles from different field points will re-
ceive different optical-path difference from the freeform sur-
face, and the aberration contribution of the freeform surface
becomes field dependent.

We can refer to Eq. (4) to formulate the field-dependent
aberration behavior when the freeform surface is located away
from the aperture stop while taking the fact that the aperture
decentration vector s⃗ is field dependent now into consideration.
Furthermore, the aperture scale factor a and aperture decentra-
tion vector s⃗ are no longer conceptual quantities, they now have
their clear physical meaning. The scale factor represents the ra-
tio of the aperture size of the beam footprint relative to the
freeform surface; the aperture decentration vector s⃗, which is
field dependent, now locates the beam footprint on the surface.
The half-aperture size of the beam footprint can be given by the
paraxial marginal ray height on the surface, y, and the position
of the off-axis beam footprint can be given by yH⃗, the product
of the paraxial chief ray height on the surface y, and the nor-
malized field vector H⃗. Therefore, the scale factor for the beam
footprint can be given by

a � y
R
; (5)

where R represents the half-aperture size of the freeform sur-
face. The normalized decentration vector for the beam foot-
print can be given by

s⃗ � bH⃗ ; (6)

with

b � y
R
: (7)

Referring to Eq. (4), supposing the sag of the freeform sur-
face can be given by F

�
ρ⃗
�
, the field-dependent aberration con-

tribution induced by the freeform surface can be expressed as

W
�
ρ⃗ 0; H⃗

� � �n 0 − n�F �aρ⃗ 0 � bH⃗ �; (8)

where it can be seen that the final measurement is done in the
scaled and shifted aperture coordinate, and the net aberration
contribution of the freeform surface becomes field dependent.
It is important to recognize that when the freeform surface is
located at the aperture stop, a � 1, b � 0, and when it is lo-
cated away from the stop 0 < a < 1, 0 < b < 1. Therefore the
approach proposed above can apply to both of the cases
whether the freeform surface is located at the aperture stop
or not. The only difference lies in the values of a and b.

When we determine the specific form of the field-dependent
aberration components induced by the freeform surface using
Eq. (8), vector multiplication identities of NAT [17] are typ-
ically needed to convert the expression F

�
aρ⃗ 0 � bH⃗

�
into a

series of existing aberration types.

B. Impact of the Decenter of Freeform Surfaces
on the Net Aberrations Fields
Previously, Fuerschbach et al. directly applied the conception of
shifted aberration-field center for the aspheric cap of an optical
surface in nodal aberration theory to discuss the effect of the
decenter of the freeform surface on the net aberration fields
[22]. While both of the freeform surface and the aspheric

Fig. 3. Three-dimensional schematic representation for the case
where the freeform surface is located away from the stop.
Compared with Fig. 2, in this case the beam footprint for a certain
field point still covers part of the freeform surface, but its position
becomes field dependent.
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departure can be seen as a zero-power thin plate, it is of great
importance to recognize the difference that lies between them.
The aspheric departure of an optical surface is rotationally sym-
metric, and the location of the point of rotational symmetry for
its aberration field contributions is located at the intersection of
the Gaussian image plane with the line connecting the aspheric
vertex and the local entrance pupil of the surface; however, for
freeform surfaces no such rotational symmetry exists.
Therefore, directly following the method used in [24] for
the decenter of an aspheric cap of an optical surface to discuss
the effect of the decenter of freeform surfaces is not rigorous
enough, even correct results can be obtained.

If the freeform surface is decentered from the optical axis,
the position of the beam footprint for a certain field point rel-
ative to the optical axis will stay unchanged but the position
relative to the decentered surface will change, as illustrated
in Fig. 4. In this case the optical path difference introduced
by the freeform surface for a certain field point will change.
Therefore, a different aberration contribution will be induced
by the freeform surface.

To account for this effect, the normalized decentration vec-
tor s⃗, which locates the off-axis portion on the freeform surface
coinciding with the beam footprint for a certain field point,
should be modified as

s⃗ � bH⃗ − δv⃗; (9)

where bH⃗ denotes the normalized decentration vector for the
off-axis portion relative to the optical axis, δv⃗ represents the
normalized surface decentration vector that locates the position
of the surface aspheric vertex, given by

δv⃗ � δV⃗
R

; (10)

where δV⃗ gives the magnitude and orientation of the surface
displacement with reference to the reference optical axis.

The expression for the modified normalized-decentration
vector for the beam footprint can be rewritten as

s⃗ � b�H⃗ − σ⃗F �; (11)

where σ⃗F ≡ δV⃗ ∕y. It can be seen that the field dependence for s⃗
displaces from a field center by a vector σ⃗F . Since s⃗ determines
the field dependence for the aberration contribution of the free-
form surface (considering that s⃗ determines which portion of
the freeform surface will contribute to the net aberration fields
for a certain field point), the effect of the decenter of the free-
form surface on the net aberration fields can be seen as an aber-
ration field shift for this surface, and the shift of the aberration
field is determined by σ⃗F. This result coincides with the con-
ception of shifted aberration field center for the aspheric cap of
an optical surface [24], and can be seen as an extension of NAT
to include decentered freeform surfaces.

We here define vector H⃗F ≡ H⃗ − σ⃗F , which represents the
effective aberration field height. By replacing H⃗ with H⃗ F in
Eq. (8), we can quantitatively map the impact of a decentered
freeform surface on the net aberration fields.

Therefore, supposing the sag of the freeform surface can be
given by F�ρ⃗�, the field-dependent aberration contribution in-
duced by the decentered freeform surface can be expressed as

W �ρ⃗ 0; H⃗ � � �n 0 − n�F �aρ⃗ 0 � bH⃗ − δv⃗�; (12)

or using the conception of effective aberration field height,

W �ρ⃗ 0; H⃗ F � � �n 0 − n�F�aρ⃗ 0 � bH⃗F �: (13)

C. Quantitative Expression for the Impact
of Mount-Induced Trefoil Deformation
After explicitly expressing the quantitative relationships be-
tween the magnitude of freeform surfaces and the induced
aberration components we now can quantify the impact of
mount-induced trefoil deformation. Comparisons are also
made to the work of Fuerschbach et al. presented in [22].
Furthermore, it will be recognized that the field-conjugate,
field-linear astigmatic term can be used to determine the mag-
nitude and orientation of the trefoil deformation.

Current generations of telescopes often consist of large mir-
rors that are relatively thin for weight and thermal reasons.
These mirrors can easily bend in trefoil, especially if there
are three mounts supporting them. In either the measured
or simulated case, Zernike polynomials are often used to fit
deformations to optical surfaces. Therefore, surface deforma-
tion is typically quantified based on the values of its Fringe-
Zernike coefficients. Trefoil deformation corresponds to the
Fringe-Zernike polynomial terms Z 10 and Z 11 given by [25]

F 333�ρ;ϕ� � FC10ρ
3 cos�3ϕ� � FC11ρ

3 sin�3ϕ�; (14)

where F 333�ρ;ϕ� represents the trefoil deformation, FC10 and
FC11 are the corresponding Fringe-Zernike coefficient values.
ρ is the normalized radial coordinate, and ϕ represents the
azimuthal angle in the exit pupil. In optical testing, the
Fringe-Zernike set is described in a right-handed coordinate
system with ϕ measured counter-clockwise from the x̂-axis.

Equation (14) can be rewritten in vector form using the vec-
tor multiplication identity of NAT [17] given by

Fig. 4. Schematic representation for the case where the freeform
surface is located away from the stop and decentered from the optical
axis. The large circles in the dot line and solid line represent the free-
form surface before and after it is decentered, respectively. In this case,
the position of beam footprint is still field dependent compared with
Fig. 3; however, due to the surface decentration a different portion of
the surface will be illuminated by a certain field point, thus a different
aberration contribution will be introduced by the surface.
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F 333�ρ⃗� �
�
FC10

FC11

�
· �ρ⃗�3: (15)

In case a trefoil deformation exists on the surface located at
the aperture stop, the aberration contribution is field constant.
Referring to Eq. (1) it can be added to the total aberration as

W 333�ρ⃗� �
1

4 F C⃗
3
333 · ρ⃗3; (16)

where F C⃗
3
333 is a two-dimensional vector introduced by

Fuerschbach et al. [22] that describes the magnitude and ori-
entation of field-constant elliptical coma, which can be given by

F C⃗
3
333 � 4�n 0 − n�

�
FC10

FC11

�
: (17)

The introduction of F C⃗
3
333 in this paper aims at facilitating

the comparison between the results of this work and the work
presented by Fuerschbach et al. and following the tradition of
nodal aberration theory.

If the surface with trefoil deformation is now placed away
from the aperture stop, only a portion of the surface, the posi-
tion of which is field dependent, will contribute to the net aber-
ration fields for a certain field point. Referring to Eq. (8) this
field-dependent contribution can be given by

W 333�ρ⃗ 0; H⃗ � � 1

4 F C⃗
3
333 · �aρ⃗ 0 � bH⃗ �3

� 1

4

�
a3F C⃗

3
333 · �ρ⃗ 0�3� 3a2bF C⃗

3
333H⃗

� · �ρ⃗ 0�2
�3ab2F C⃗

3
333�H⃗��2 · ρ⃗ 0 � b3F C⃗

3
333 · �H⃗ �3

�
;

(18)

where the vector identity introduced in [17]

A⃗ · B⃗C⃗ � A⃗B⃗� · C⃗ ; (19)

has been used to convert the pupil dependence into existing
aberration types, and B⃗� represents the conjugate vector of B⃗.

As can be seen from Eq. (18) three additional field-dependent
aberration terms are generated in addition to the field-constant
elliptical coma (trefoil) term, which parallels the result expressed
by Eq. (14) in [22]. However, it is important to note that the
magnitude of this field-constant elliptical coma is not equal to
the magnitude of the surface trefoil deformation, a factor of a3

must be accounted for. The second term is seen to be an astig-
matic term based on the ρ⃗2 aperture dependence whose magni-
tude has also been precisely described. The third and fourth
terms are distortion and piston that do not affect the image qual-
ity but affect the mapping and phase.

If the surface with trefoil deformation, which is located away
from the stop, is decentered from the optical axis, by replacing
H⃗ with effective aberration field height H⃗F , its aberration con-
tribution can be given by

W �decentered�
333 �ρ⃗ 0; H⃗ F �

� 1

4 F C⃗
3
333 · �aρ⃗ 0 � bH⃗F �3

� 1

4

�
a3F C⃗

3
333 · �ρ⃗ 0�3 � 3a2bF C⃗

3
333H⃗

�
F · �ρ⃗ 0�2

�3ab2F C⃗
3
333�H⃗�

F �2 · ρ⃗ 0 � b3F C⃗
3
333 · �H⃗F �3

�
: (20)

Comparing Eqs. (18) or (20) with Eq. (14) in [22] presented
by Fuerschbach et al., we can see that they have similar form

presenting the same field dependence for the induced aberration
components.However, the quantitative relationships between the
magnitudeof trefoil deformation and the induced aberration com-
ponents have not been explicitly described in Eq. (14) of [22].

It may seem that the only difference between the two results
is the scale factor, and it is well known that the Zernike con-
tribution of a sub-pupil is scaled relative to the Zernike con-
tribution of a full pupil [26]. However, the scale factor in this
paper is not just a meaningless quantity only used to perform
mathematical manipulation; it has its definite and clear physical
meaning. For a freeform surface located away from the aperture
stop, the beam footprint for a certain field point covers part of
the surface, so only the portion of the surface that coincides
with the beam footprint will contribute to the net aberration
fields for a certain field point. The scale factor represents the
ratio of the aperture size of the beam footprint relative to the
aperture size of the freeform surface. This parameter, combined
with the field-dependent beam footprint decentration vector s⃗,
also expressed as bH⃗F , determines which portion of the free-
form surface will contribute to the net aberration fields for a
certain field point. For a matching freeform surface, a different
scale factor will result in different aberration contribution from
this surface. Therefore, to quantitatively map the impact of a
freeform surface located away from the aperture stop, the scale
factor must be considered and precisely determined.

It is also important to recognize that Eqs. (18) or (20)
directly link themagnitude and orientation of the field-conjugate,
field-linear astigmatic termto the trefoil deformation.Therefore, if
we candetermine themagnitude andorientation of this astigmatic
term, the trefoil deformation can thus be characterized using the
quantitative relationships presented in Eq. (20).

3. COMPUTATION OF ASTIGMATIC AND
TREFOIL FIGURE ERRORS AND
MISALIGNMENTS FOR TWO-MIRROR
TELESCOPES

Since we can quantitatively describe the impact of mount-in-
duced trefoil deformation in an optical surface located away
from the stop and decentered from the optical axis, we can
now begin to separate the effects of astigmatic and trefoil figure
errors and misalignments when they couple together and com-
pute these perturbation parameters. We will describe the aber-
ration fields in terms of these perturbations using nodal
aberration theory and demonstrate how to conduct the com-
putation. Both the individual and coupled components will
be discussed to facilitate an in-depth understanding of the com-
putation process.

A. Case 1: Mount-Induced Trefoil Deformations
on PM and SM
The first case discussed here is that trefoil deformations exist on
the PM and SM of an aligned two-mirror telescope, assuming
no other figure errors exist. The primary mirror serves as the
aperture stop. In this case, the astigmatic aberration field of the
system can be given by

W AST3 �
�
1

2
W 222H⃗

2 � t · F C⃗
3�SM�
333 H⃗�

�
· ρ⃗2; (21)
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where t ≡ 3a2SMbSM∕4, aSM and bSM represent the aperture
scale factor and aperture decentration factor for the beam foot-
print on the SM, respectively. F C⃗

3�SM�
333 describes the magnitude

and orientation of the field-constant elliptical coma introduced
by the SM trefoil deformation when it is located at the stop.
W 222 represents the total astigmatic-wave aberration contri-
bution.

According to vector multiplication [17] of NAT, Eq. (21)
can be rewritten as

W AST3�
"
W 222

2 �H 2
x−H 2

y ��t ·F C⃗
3�SM�
333;x Hx

�t ·F C⃗
3�SM�
333;y H y

#
ρ2cos�2ϕ�

�
"
W 222HxHy−t ·F C⃗

3�SM�
333;x H y

�t ·F C⃗
3�SM�
333;y Hx

#
ρ2sin�2ϕ�; (22)

where the subscripts x, y represent the two components of a
vector. Here x̂-axis is used as the reference axis [27] and ϕ
is measured counter clockwise from it, in accordance with
the tradition of optical testing.

Since wavefront measurements typically provide the Zernike
polynomial coefficients to the wavefront, the correspondence
between the Seidel and Zernike coefficients can be utilized
in computation of the unknowns. Though the exact correspon-
dence between the Seidel coefficients and Zernike polynomials
is generally an infinite sum, as discussed in detail by Tyson in
[28], for two-mirror telescopes the high-order Zernike coeffi-
cients that are fitted against the wavefront are reasonably small
so they can be ignored. In our paper the first 16 items of Fringe-
Zernike coefficients are considered. According to this corre-
spondence, referring to Eq. (22), we obtain�

tHx tHy

−tHy tHx

�"
F C⃗

3�SM�
333;x

F C⃗
3�SM�
333;y

#
�

�
ZAST;x

ZAST;y

�
; (23)

where �
ZAST;x

ZAST;y

�
�

"
C5 − 3C12 −

W 222

2 �H 2
x −H 2

y �
C6 − 3C13 −W 222HxHy

#
;

and Ci is the i-th Fringe-Zernike coefficient for the wave aber-
ration at field �Hx;Hy�. As can be seen from Eq. (23), there are

two unknowns: F C⃗
3�SM�
333;x and F C⃗

3�SM�
333;y . In order to solve them,

wavefront measurement at a minimum of one off-axis field
point is sufficient. If wavefront measurements at more than
one field point are available, the two unknowns can be obtained
by solving the least square solutions of the overdetermined
equations. After F C⃗

3�SM�
333 is solved, referring to Eq. (17) we

can determine the Zernike coefficient values for the trefoil de-
formation on the SM, FC

�SM�
10 and FC

�SM�
11 .

To determine the trefoil deformation on the PM, the total
elliptical coma aberration field is needed, which can be ex-
pressed as

W Trefoil �
1

4

�
W 333H⃗

3 � TF C⃗
3
333

	
· ρ⃗3; (24)

where TFC⃗
3
333 ≡ F C⃗

3�PM�
333 � a3SMF C⃗

3�SM�
333 , representing the to-

tal elliptical coma aberration contribution from the trefoil de-
formations on the two mirrors. W 333 represents the total

elliptical coma wave aberration contribution. For two-mirror
telescopes with few freedoms the aberrations higher than third
order are quite small, indicating that W 333 ≈ 0. Therefore,
Eq. (24) can be rewritten as

W Trefoil �
1

4 TF C⃗
3
333 · ρ⃗3: (25)

Using vector multiplication of NAT, Eq. (25) can be rewrit-
ten as

W Trefoil �
1

4

�
TFC⃗

3
333;x

TFC⃗
3
333;y

�
·
�
ρ3 cos�3ϕ�
ρ3 sin�3ϕ�

�
: (26)

According to the relationship between Seidel coefficients
and Zernike coefficients, we can obtain�

TFC⃗
3
333;x

TFC⃗
3
333;y

�
�

�
4C10

4C11

�
; (27)

It can be seen that with wavefront measurement at only one
field point, the total elliptical coma aberration contribution of
the PM and SM can be determined. Since F C⃗

3�SM�
333 can be

solved using Eq. (23), consequently, F C⃗
3�PM�
333 can be deter-

mined. Then by referring to Eq. (17) we can also obtain
the Zernike coefficient values for the trefoil deformation on
the PM, FC

�PM�
10 and FC

�PM�
11 .

It is important to recognize that in this case the field-linear,
field-conjugate astigmatic aberration field introduced by the
mount-induced trefoil deformation on the SM can be directly
used to determine the magnitude and orientation of the trefoil
deformation on the SM, after the quantitative relationships be-
tween the magnitude of trefoil deformation and the induced
aberration components are explicitly described. Then the mag-
nitude and orientation of the trefoil deformation on the PM
can be determined using the total elliptical coma aberration
field. In this process, wavefront measurement at only one
off-axis field point is enough.

B. Case 2: Mount-Induced Trefoil Deformations
on PM and SM, Astigmatic Figure Error on the PM
The second case discussed here is that besides mount-induced
trefoil deformations on the PM and SM, there exists astigmatic
figure error on the PM due to manufacturing error and gravity
or thermal reasons. In this case, the astigmatic aberration field
of the system can be given by

W AST3 �
�
1

2
W 222H⃗

2� t · F C⃗
3�SM�
333 H⃗��1

2F B⃗
2�PM�
222

�
· ρ⃗2;

(28)

where F B⃗
2�PM�
222 is a two-dimensional vector introduced by [21]

that describes the magnitude and orientation of the astigmatic
aberration contribution of the PM astigmatic figure error when
the PM serves as the aperture stop, which is related to the as-
tigmatic figure error of the PM by

F B⃗
2�PM�
222 � 2�n 0 − n�

�
FC5

FC6

�
; (29)

where FC
�PM�
5 and FC

�PM�
6 are the Fringe-Zernike coefficient

values for the astigmatic figure error of the PM.
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According to vector multiplication of NAT, Eq. (28) can be
rewritten as

W AST3 �
"W 222

2
�H 2

x −H 2
y �� t · F C⃗

3�SM�
333;x Hx

�t · F C⃗
3�SM�
333;y H y � 1

2 F B⃗
2�PM�
222;x

#
ρ2 cos�2ϕ�

�
"
W 222HxHy − t · F C⃗

3�SM�
333;x H y

�t · F C⃗
3�SM�
333;y H x � 1

2 F B⃗
2�PM�
222;y

#
ρ2 sin�2ϕ�: (30)

Using the relationship between Seidel coefficients and
Zernike coefficients we get

�
tHx tHy

1
2 0

−tH y tHx 0 1
2

�
2
6666664

F C⃗
3�SM�
333;x

F C⃗
3�SM�
333;y

F B⃗
2�PM�
222;x

F B⃗
2�PM�
222;y

3
7777775
�

�ZAST;x

ZAST;y

�
: (31)

where �
ZAST;x
ZAST;y

�
�

�
C5 − 3C12 −

W 222

2 �H 2
x −H 2

y �
C6 − 3C13 −W 222HxHy

�
:

As can be seen from Eq. (31), there are four unknowns:

F C⃗
3�SM�
333;x , F C⃗

3�SM�
333;y , F B⃗

2�PM�
222;x , F B⃗

2�PM�
222;y . In order to solve them,

wavefront measurements at a minimum of two field points
are sufficient. If wavefront measurements at more than two
field points are available, the four unknowns can be obtained
by solving the least square solutions of the overdetermined
equations. After these four unknowns are solved, the
Zernike coefficient values for the trefoil deformation on the
SM and the astigmatic figure error on the PM can easily be
determined.

Since F C⃗
3�SM�
333;x , F C⃗

3�SM�
333;y can be solved using Eq. (31), the

trefoil deformation on the PM can be determined with the total
elliptical coma aberration field as discussed in Case 1.

The key observation obtained in this case is that while both
the astigmatic figure error of PM and trefoil deformation of SM
can contribute to the total astigmatic aberration field, their ef-
fects can directly be separated using wavefront measurements at
a minimum of two field points. The main reason that underlies
this observation is that the two astigmatic contributions have
different field dependence.

C. Case 3: Mount-Induced Trefoil Deformations
on PM and SM, Astigmatic Figure Error on the PM
Lateral Misalignments of SM
For two mirror telescopes, PM, which typically serves as the
aperture stop, is often chosen as the reference coordinate system
leading to

σ⃗�sph�PM � σ⃗�asph�PM � 0
→
; (32)

where σ⃗�sph�PM and σ⃗�asph�PM are the field-center displacement vectors
associated with the spherical base curve and the aspheric depar-
ture from the spherical base curve of the PM, respectively.

In the presence of SM misalignments, the corresponding
SM aberration field-center displacement vectors σ⃗�sph�SM and
σ⃗�asph�SM associated with the spherical base curve and the aspheric

departure are generally non-zero. The relations between them
and the misalignment parameters of the SM can be given
by [24]

σ⃗�sph�SM � 1

uPM�1� cSMd 1�

�
BDESM − cSMXDESM

−ADESM − cSMYDESM

�
; (33)

σ⃗�asph�SM � −
1

d 1uPM

�
XDESM

YDESM

�
; (34)

where XDESM and YDESM are the SM vertex decenters in the
x–z and y–z plane, respectively, and BDESM and ADESM are
the SM tip-tilts in the x–z and y–z plane, respectively. uPM
corresponds to the paraxial chief ray angle at the PM, d 1 is
the distance from the PM to SM, cSM corresponds to the cur-
vature of the SM.

In the presence of misalignments, not only will the field
dependence of particular aberration types be modified but also
the image-plane displacement (boresight error or pointing er-
ror) will appear. Therefore, there exist certain relationships be-
tween pointing error and misalignment parameters. Pointing
error can be quantified with the displacement of the field center
from the reference axis, and the field center is located at the
intersection of optical axis ray (OAR) with the image plane.
Considering that the conic departure and freeform overlay
can be seen as zero-power plates, they only impact aberration
property and have no influence on the paraxial ray tracing. We
can express the normalized pointing-error dependent on the
aberration field-center σ⃗�sph�SM associated with the spherical base
curve of the SM. Using the paraxial ray tracing of OAR [24],
the normalized pointing-error can be given by

H⃗PE � −2d 2uPM�1� d 1cSM�σ⃗�sph�SM ∕hIMG; (35)

where H⃗PE represents the pointing-error vector normalized by
the paraxial image height hIMG. d 2 denotes the distance from
the SM to the paraxial image plane. Since the pointing error is
typically available, this expression can be utilized to solve the
misalignment parameters of the SM.

Now we begin to compute the astigmatic figure error on the
PM, trefoil deformations on both PM and SM, and the lateral
misalignments of the SM. In the presence of these perturba-
tions, the astigmatic aberration field of the system can be given
by

W AST3�
�
1

2
W 222H⃗

2−A⃗222H⃗�t ·F C⃗
3�SM�
333 H⃗��1

2
B⃗ 2
222

�
·ρ⃗2;

(36)

where

A⃗222 � W �sph�
222;SMσ⃗

�sph�
SM �W �asph�

222;SMσ⃗
�asph�
SM ; (37)

B⃗2
222 � W �sph�

222;SM

�
σ⃗�sph�SM

	
2 �W �asph�

222;SM

�
σ⃗�asph�SM

	
2

� F B⃗
2�PM�
222 − 2t · F C⃗

3�SM�
333 σ⃗�F;SM; (38)

where W �sph�
222;SM and W �asph�

222;SM denote the astigmatic aberration
contribution from the base spherical curve and the aspheric de-
parture of the SM, respectively. σ⃗F;SM represents the shifted aber-
ration field center for the freeform surface on the SM given by

3380 Vol. 55, No. 13 / May 1 2016 / Applied Optics Research Article



σ⃗F;SM � 1

ySM
δV⃗ SM ≡

1

ySM

�
XDESM

YDESM

�
; (39)

where ySM is the chief ray height on the SM. δV⃗ SM gives the
magnitude and orientation of the decenter of SM with reference
to the optical axis.

According to vector multiplication of NAT, Eq. (36) can be
rewritten as

W AST3

�
"W 222

2
�H 2

x −H 2
y �− A⃗222;xHx� A⃗222;yH y

�t ·F C⃗
3�SM�
333;x Hx� t ·F C⃗

3�SM�
333;y H y� 1

2
B⃗2
222;x

#
ρ2 cos�2ϕ�

�
"
W 222HxHy − A⃗222;yHx − A⃗222;xH y

−t ·F C⃗
3�SM�
333;x H y� t ·F C⃗

3�SM�
333;y Hx� 1

2 B⃗
2
222;y

#
ρ2 sin�2ϕ�:

(40)

According to the relationship between Seidel coefficients
and Zernike coefficients, we can obtain

HASTMAST � ZAST; (41)

where

HAST �

2
666666664

−Hx −Hy

Hy −Hx

tHx −tHy

tHy tHx

1∕2 0

0 1∕2

3
777777775

T

; MAST �

2
66666666664

A⃗222;x

A⃗222;y

F333;xC
3�SM�

F333;yC
3�SM�

B⃗2
222;x

B⃗2
222;y

3
77777777775
;

ZAST �
"
ZAST;x

ZAST;y

#
;

and "
ZAST;x

ZAST;y

#
�

"
C5 − 3C12 −

W 222

2
�H 2

x −H 2
y �

C6 − 3C13 −W 222HxHy

#
:

As one can see,MAST is a matrix with six rows and one col-
umn. In order to solve these six unknowns, wavefront
measurements at a minimum of three field points are suffi-
cient. If wavefront measurements at more than three field
points are available, the six unknowns can be obtained by
solving the least-square solutions of the overdetermined equa-
tions. It also can be seen that the mount-induced trefoil defor-
mation on the SM can directly be determined even if SM is
misaligned.

Since A⃗222;x , A⃗222;y can be solved using Eq. (41) with wave-
front measurements at a minimum of three field points,
Eqs. (35) and (37) can be utilized to solve the SM aberration
field-center displacement vectors σ⃗�sph�SM and σ⃗�asph�SM . On this ba-
sis, referring to the relations between these aberration field-
center displacement vectors and the misalignment parameters
of the SM given by Eqs. (33) and (34), misalignment param-
eters of the SM can be determined.

We can then compute the astigmatic figure error on the PM.
Equation (38) can be rewritten as

F B⃗
2�PM�
222 � B⃗2

222 � 2t · F C⃗
3�SM�
333 σ⃗�F;SM

− �W �sph�
222;SM�σ⃗�sph�SM �2 �W �asph�

222;SM�σ⃗�asph�SM �2�; (42)

since all the variables on the right side of the equation have been
solved, F B⃗

2�PM�
222 can be determined. Referring to Eq. (29) we

can determine the astigmatic figure error on the PM.
To determine the trefoil deformation on the PM, the total

elliptical coma aberration field is needed, which can be given
by [20]

W Trefoil �
1

4
�W 333H⃗

3 −3�H⃗ 2A⃗333��3�H⃗ B⃗2
333�− C⃗3

333� · ρ⃗3;
(43)

where

A⃗333 �W �sph�
333;SMσ⃗

�sph�
SM �W �asph�

333;SMσ⃗
�asph�
SM

B⃗2
333 �W �sph�

333;SM�σ⃗�sph�SM �2�W �asph�
333;SM�σ⃗�asph�SM �2

C⃗3
333 �W �sph�

333;SM�σ⃗�sph�SM �3�W �asph�
333;SM�σ⃗�asph�SM �3 −TFC⃗

3
333; (44)

with TFC⃗
3
333 ≡ F C⃗

3�PM�
333 � a3SMF C⃗

3�SM�
333 , W �sph�

333;SM and W �asph�
333;SM

denote the elliptical coma aberration contribution for the base
spherical curve and the aspheric departure of the SM, respec-
tively. For two-mirror telescopes with few freedoms, the aber-
rations higher than third order are quite small, indicating that
W 333 ≈ 0, W �sph�

333;SM ≈ 0 and W �asph�
333;SM ≈ 0. Equation (43) can

be rewritten as

W Trefoil �
1

4 TFC⃗
3
333 · ρ⃗3: (45)

Referring to the relationship between Seidel coefficients and
Zernike coefficients, we obtain�

TFC⃗
3
333;x

TFC⃗
3
333;y

�
�

�
4C10

4C11

�
: (46)

Wavefront measurements at one field point is enough to
solve TFC⃗

3
333;x and TFC⃗

3
333;y. Considering that FC

3�SM�
333;x and

FC
3�SM�
333;y can be solved using Eq. (41), trefoil deformation

on the PM can now be determined.
It can be concluded that with wavefront measurements at a

minimum of three field points and pointing error data, the as-
tigmatic figure error on the PM, the mount-induced trefoil de-
formations on the PM and SM, and the misalignment
parameters of the SM can be directly computed utilizing NAT.

Four key points should be emphasized in this computation
process. The first is that the field-linear, field-conjugate astig-
matic term induced by trefoil deformation on the SM can di-
rectly be utilized to compute the trefoil deformation on the SM
even when SM is decentered. Second, when SM is decentered,
apart from the field-conjugate, field-linear astigmatic term, an-
other field-constant astigmatic term can also be introduced into
the aberration fields, which links directly to the trefoil defor-
mation on the SM and the decenter parameters of SM. Third,
the field-linear astigmatic term and pointing error can hardly be
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impacted by figure errors. They are only dependent on mis-
alignments of SM, which serve as the basis for the computation
of misalignments of the SM. Last, misalignment-induced field-
linear astigmatic contribution and field-constant astigmatic
contribution have inherent relationships because they both
have definite dependence on the aberration field-center
displacement vectors for the SM, σ⃗�sph�SM , and σ⃗�asph�SM .
Consequently, after these vectors are solved using the field-
linear astigmatic term and pointing error, the misalignment
induced field-constant astigmatic contribution can also be de-
termined, which facilitates the computation of the astigmatic
figure error on the PM. Therefore, when quantitatively sepa-
rating different effects that couple together in determining the
aberration fields, we should determine the magnitude and field
dependence of each aberration term and reveal the inherent
relationships between the aberration terms with different field
dependence but induced by the same effect.

4. COMPUTATION SIMULATIONS

To verify the correctness and the computation accuracy of the
computation approach proposed above, the most complicated
case (case 3) presented in Section 3 will be simulated. The
F/24, 2400 mm Hubble Space Telescope (HST) with
	0.10° field of view (a little larger than the nominal prescrip-
tion) is used to conduct this simulation. The optical layout of
this telescope is presented in Fig. 5, and its optical prescription,
third-order aberration coefficients, and paraxial ray-trace data,
which are needed in the computation, are given in Appendix A.

Wavefront measurements at three field points, (0°,0°),
(0.07°,0.07°), and (0.07°,-0.07°), are used in the computation
of the astigmatic PM figure error, trefoil deformations on both
two mirrors, and SM lateral misalignments.

In the simulation process we first artificially introduce a set of
astigmatic figure errors on the PM (FC

�PM�
5 , FC

�PM�
6 ), trefoil defor-

mations on the PM (FC
�PM�
10 , FC

�PM�
11 ) and SM (FC

�SM�
10 , FC

�SM�
11 ),

and lateral misalignments of the SM (XDESM, YDESM, ADESM,
BDESM) into the HST in the simulation software Code V. The
resulting wavefronts at the three field points and pointing error
can be obtained from simulation software. Utilizing the computa-
tion approach presented in the Section 3, these figure errors and
misalignment parameters can be determined. The introduced

and computed figure error and misalignment parameters are pre-
sented in Tables 1 and 2, respectively.

It can be seen from the computation results presented in
Tables 1 and 2 that except for trefoil deformation on the
PM (FC

�PM�
10 , FC

�PM�
11 ), the perturbation parameters can be

computed with very high accuracy. The reasons why the trefoil
deformation on the PM is computed with less accuracy may be
that in the computation process we disregard the misalignment-
induced elliptical coma aberration, and only the first 16 items
of Fringe-Zernike coefficients are considered, which may be
not enough for exactly expressing the correspondence between
the Seidel coefficients and Zernike polynomials for elliptical
coma in this perturbation condition.

Then we use the computed perturbation parameters to correct
the system, i.e., adding a set ofperturbationparameters that are the
negative of the computed values into the system in the simulation
software. The full field displays (FFDs) for the Fringe-Zernike co-
efficients of astigmatism (Z 5∕Z 6), coma (Z 7∕Z 8), and elliptical
coma (Z 10∕Z 11) before and after the correction are show in Fig. 6.

To further demonstrate the computation accuracy of the ana-
lytic method presented in this paper we will perform Monte
Carlo computation simulations and make a comparison between
the analytic method base on the NAT and the current numerical
method based on nonlinear least square fitting algorithm
(NLLSFA) [12,13]. The proper sensitivity matrix needed in
NLLSFA was obtained in advance by numerically calculating
the partial derivations of the wavefront Fringe-Zernike coeffi-
cients to the individual perturbations at the baseline design
point. Four different cases will be considered in the Monte
Carlo simulations. In Case 1, Case 2, and Case 3 the perturba-
tion ranges increase progressively in turn but no measurement
errors are considered. Case 4 has the same perturbation ranges
as Case 3, however, it further includes 1%measurement errors in
wavefront and boresight, i.e., a relative 1% of the measurement
errors in plus or minus are randomly added to the wavefront
Fringe-Zernike coefficients and boresight error read from the op-
tical simulation software. The specific ranges for different pertur-
bation parameters in each case are presented in Table 3.

For each case 100 perturbation states will be randomly gen-
erated following a uniform distribution and introduced into the
optical-simulation software. For each randomly introduced per-
turbation state, the analytic method base on the NAT and theFig. 5. Optical layout of the HST.

Table 1. Introduced (Row A) and Computed (Row B)
Fringe-Zernike Coefficients for Figure Errorsa

FC
�PM�
5 FC

�PM�
6 FC

�PM�
6 FC

�PM�
11 FC

�SM�
10 FC

�SM�
11

A 0.2900 −0.2500 0.3700 −0.1900 −0.1200 −0.2800
B 0.2899 −0.2499 0.3658 −0.1897 −0.1200 −0.2801
aFringe-Zernike coefficients are in λ (λ � 500 nm).

Table 2. Introduced (Row A) and Computed (Row B)
Misalignment Parametersa

XDESM YDESM ADESM BDESM

A 0.2300 −0.1600 0.0100 0.0150
B 0.2299 −0.1599 0.0100 0.0150
aXDE and YDE are in mm while ADE and BDE are in degrees.
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Fig. 6. (a) FFD for astigmatism (Z 5∕Z 6) before correction, which includes contributions from primary mirror astigmatic figure error, SM trefoil
deformation and misalignments. (b) FFD for the field quadratic astigmatism (Z 5∕Z 6) after correction. (c) FFD for the misalignment-induced field-
constant coma (Z 7∕Z 8) before correction. (d) FFD for the field-linear coma (Z 7∕Z 8) after correction. (e) FFD for the field-constant elliptical coma
(Z 10∕Z 11) before correction, which includes contributions from the trefoil deformations on both primary and SM. (f ) FFD for elliptical coma
(Z 10∕Z 11) after correction, which is too small to be seen. After correction, the astigmatism, coma and elliptical coma aberration fields are restored
very close to their nominal states.
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numerical method based on NLLSFA are used to calculate the
perturbation parameters with boresight error and wavefront mea-
surements at the three selected field points. Consequently, for
each case we will obtain one set of randomly introduced pertur-
bation parameters and two sets of computed values. Each set of
data includes 100 perturbation states, and each perturbation
state contains 10 individual perturbation parameters. The accu-
racy of the two methods is evaluated by the root mean square
deviation (RMSD) between the introduced and computed values
for each individual perturbation parameter, which is expressed as

RMSDi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

100

X100
n�1

�xi�n� − X i�n��2
vuut ;

where X i�n� and xi�n� represent the introduced and computed
set of values for the ith perturbation parameter, respectively. The
computation results for different cases are presented in Table 4.

The computation results for Case 1, Case 2, and Case 3
show that the perturbation parameters can be computed with
very high accuracy using NAT, which demonstrates the correct-
ness of quantitative formulation for the impact of freeform sur-
faces located away from the stop and decentered from the
optical axis, as well as the correctness of the computation
method presented in this paper. By contrast, the computation
accuracy of NLLSFA is relatively low. It is still important to
recognize that the computation accuracy of NLLSFA declines
obviously as the perturbations increase while the computation
accuracy of NAT is almost unaffected. The main reason is that
the NLLSFA is based on linear approximation of the nonlinear
Zernike coefficient sensitivity to the perturbation parameters.
When the perturbation ranges increase, the nonlinearity of

Zernike coefficient sensitivity to perturbation parameters will
also increase, and consequently, the accuracy of this linear
approximation will decline.

However, comparing the computation results between Case
3 and Case 4, we can also find that the computation accuracy of
NAT seems to be more sensitive to wavefront measurement
errors than NLLSFA. In the presence of wavefront measure-
ment errors, the computation accuracy of XDESM, YDESM,
FC

�SM�
10 , and FC

�SM�
11 decrease rapidly. This is mainly because

the field-linear astigmatism term (induced by misalignments)
and the field-linear, field-conjugate astigmatism term (induced
by the trefoil deformation on the SM) are relatively small. It is
hard to precisely determine them in the presence of wavefront
measurement errors when wavefront measurements are avail-
able at only three field points. Even so, the computation accu-
racy of NAT is still higher than NLLSFA at the considered level
of measurement errors. We also find that if wavefront measure-
ments at more field points are available, the computation ac-
curacy of NAT will be less sensitive to the measurement errors.

A more accurate computation of the perturbation parame-
ters over larger perturbation ranges can mean a more efficient
reconstruction of the wavefront. Therefore, nodal aberration
theory presents possibility for improving the wavefront
reconstruction performance of active optics systems.

5. CONCLUSION

In this paper we present an analytic method for quantitatively
separating the effect of astigmatic and trefoil figure errors and
misalignments for two-mirror telescopes using nodal aberra-
tion theory. We first present an in-depth discussion about the
impact of the freeform surfaces on the net aberration fields. We

Table 3. Four Different Cases Considered in the Monte Carlo Simulationsa

XDESM, YDESM ADESM, BDESM FC
�PM�
5 , FC

�PM�
6 , FC

�PM�
10 , FC

�PM�
11 , FC

�SM�
10 , FC

�SM�
11 Measurement Error

Case 1 �−0.1; 0.1� �−0.01; 0.01� �−0.1; 0.1� \
Case 2 �−0.5; 0.5� �−0.03; 0.03� �−0.3; 0.3� \
Case 3 �−1.0; 1.0� �−0.05; 0.05� �−0.5; 0.5� \
Case 4 �−1.0; 1.0� �−0.05; 0.05� �−0.5; 0.5� 1%
aXDE and YDE are in mm, ADE and BDE are in degrees, and the Fringe-Zernike coefficients are in λ(λ � 500 nm).

Table 4. RMS Deviations Between the Introduced and Computed Values Using NAT and NLLSFA for Different Casesa

Case 1 Case 2 Case 3 Case 4

NAT NLLSFA NAT NLLSFA NAT NLLSFA NAT NLLSFA

XDESM 6.1 × 10−5 1.7 × 10−3 1.4 × 10−4 1.2 × 10−2 2.1 × 10−4 4.1 × 10−2 3.2 × 10−2 3.8 × 10−2
YDESM 4.2 × 10−5 2.8 × 10−5 1.3 × 10−4 7.2 × 10−4 2.1 × 10−4 2.4 × 10−3 3.1 × 10−2 6.9 × 10−3
ADESM 4.4 × 10−9 2.7 × 10−6 2.2 × 10−7 7.0 × 10−5 1.3 × 10−6 2.3 × 10−4 3.5 × 10−4 5.9 × 10−4
BDESM 5.0 × 10−9 1.6 × 10−4 2.3 × 10−7 3.1 × 10−3 1.1 × 10−6 3.9 × 10−3 3.5 × 10−4 3.5 × 10−3

FC
�PM�
5

1.4 × 10−5 2.6 × 10−4 4.3 × 10−5 3.1 × 10−3 7.1 × 10−5 9.0 × 10−3 2.8 × 10−3 8.5 × 10−3

FC
�PM�
6

1.3 × 10−5 1.8 × 10−4 4.0 × 10−5 2.1 × 10−3 7.2 × 10−5 6.7 × 10−3 3.0 × 10−3 7.2 × 10−3

FC
�PM�
10

6.0 × 10−4 8.1 × 10−4 1.9 × 10−3 8.3 × 10−3 3.3 × 10−3 2.0 × 10−2 3.5 × 10−3 2.2 × 10−2

FC
�PM�
11

6.9 × 10−4 1.4 × 10−5 1.8 × 10−3 3.6 × 10−4 2.7 × 10−3 1.2 × 10−3 3.7 × 10−3 1.4 × 10−2

FC
�SM�
10

2.3 × 10−5 9.7 × 10−4 5.1 × 10−5 1.0 × 10−2 7.2 × 10−5 2.4 × 10−2 1.8 × 10−2 2.6 × 10−2

FC
�SM�
11

1.6 × 10−5 1.6 × 10−5 4.5 × 10−5 4.2 × 10−4 7.0 × 10−5 1.4 × 10−3 1.7 × 10−2 1.7 × 10−2

aXDE and YDE are in mm, ADE and BDE are in degrees and the Fringe-Zernike coefficients are in λ (λ � 500 nm).
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also propose a modified theoretical formulation for the field-
dependent aberration behavior of freeform surfaces based on
the framework of NAT to explicitly express the quantitative
relationships between the magnitude of freeform surfaces and
the induced aberration components where the conception of
scale factor for beam footprint on the freeform surface is intro-
duced and explained. We study the effect of the decenter of a
freeform surface on the net aberration fields. It is demonstrated
that this effect coincides with the conception of shifted aberra-
tion field center for the aspheric cap of an optical surface in NAT.
With this modified formulation we can quantitatively describe
the impact of mount-induced trefoil deformation in an optical
surface located away from the stop and decentered from the op-
tical axis. On this basis the mathematical representations for the
aberration fields in the presence of PM astigmatic figure error,
PM and SM trefoil deformations, and SM lateral misalignments
are obtained, which can be directly utilized to compute these per-
turation parameters with wavefront measurements at a few field
points and pointing errors. In the computation process some
valuable insights are presented to help understand how to sep-
arate different effects that couple together in determining the
total aberration fields. Monte Carlo computation simulations are
further performed, which demonstrate the correctness and accu-
racy of the computation method presented in this paper. While
this work is particularly for two-mirror telescopes, the theory,
computation methods, and valuable insights presented in this
paper can be extended to optical systems with more freedoms.

With the increase in the aperture size of the emerging gen-
eration of astronomical telescopes, active optics systems play a
more and more important role in maintaining good observation
performance. In active optics systems, figure errors and mis-
alignment parameters need to be precisely computed before
they are actively corrected. Therefore, this work can be utilized
to help establish active compensation and alignment strategies
for active optics systems.

APPENDIX A

This Appendix provides the optical prescription, third-order
aberration coefficients and paraxial ray-trace data for the
HST used in Section 4. See Tables 5–7.
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