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Interface Engineering of Organic 
Schottky Barrier Solar Cells and 
Its Application in Enhancing 
Performances of Planar 
Heterojunction Solar Cells
Fangming Jin1, Zisheng Su1, Bei Chu1, Pengfei Cheng2, Junbo Wang1, Haifeng Zhao1, 
Yuan Gao1,3, Xingwu Yan1,3 & Wenlian Li1

In this work, we describe the performance of organic Schottky barrier solar cells with the structure 
of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline 
(BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 
2.59 mA/cm2, an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% 
under simulated AM1.5 G solar illumination at 100 mW/cm2. Device performance was substantially 
enhanced by simply inserting thin organic hole transport material into the interface of MoOx and 
SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V 
was observed. We found that the improvement is due to the exciton and electron blocking effect of the 
interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching 
effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction 
cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also 
investigated the requirements of the interface material for Schottky barrier modification.

Organic solar cells (OSCs) are a potential inexpensive alternative to conventional inorganic solar cells due to 
their ease of processing and compatibility with flexible substrates, and have received significant industrial and 
academic interest as a promising source of inexpensive renewable energy1,2. Although power conversion effi-
ciency (PCE) of the OSCs is improved continually by designing novel materials and device architectures, is still 
inadequate in meeting commercial requirements. One of the major challenges preventing OSCs from achieving 
high efficiency is the low open-circuit voltage (VOC) which is restricted by the energy offset between the highest 
occupied molecular orbital (HOMO) of the electron donor and the lowest unoccupied molecular orbital (LUMO) 
of the electron acceptor3. In 2010, Tang and co-workers reported a kind of organic Schottky barrier photovoltaic 
cells based on MoOx/C60 and they achieved a high Voc of 1.23 V with a simple structure of ITO/MoOx/C60/
bathophenanthroline (BPhen)/LiF/Al4. The PCE of the device is low, only about 0.5% since the weak absorption 
of the C60 and the low FF of the Schottky solar cells. They improved their devices in 2011 by introducing very 
little donor material (5%, for example) in C60 acceptor matrix5. This architecture integrated the advantages of 
both Schottky barrier and donor-acceptor heterojunction photovoltaic cells: Schottky barrier can offer high Voc 
and donor-acceptor heterojunction can provide more dissociation sites to obtain more photocurrent respectively. 
Devices based on such architecture achieve PCE beyond 8% were recently reported, showing huge potential of the 
architecture in achieving high PCEs of the OSCs6. With few exceptions, a fullerene-based material such as C60 or 
C70 was selected as the acceptor matrix with MoOx to form the Schottky barrier due to their high electron mobil-
ity and large exciton diffusion length. Metallophthalocyanines (MPcs) with lower band gap which have been 
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widely used as electron donor material show reasonable ambipolar carrier transporting properties for efficient 
charge transfer and MPcs have been reported for promise electron acceptor material in OSCs7,8. It is expectable 
that Schottky junction solar cells can be designed using MPcs to instead of C60, however, to date few devices in 
such architecture are observed.

In the present study, we examine the performance of Schottky barrier cell by replacing C60 with SubPc as 
the active layer. We obtained a short-circuit current density (Jsc) of 2.59 mA/cm2, a Voc of 1.06 V, and a PCE of 
0.82%. Device performance was further increased by inserting a thin hole transport layer (HTL) of rubrene into 
the interface of MoOx/SubPc, and optimized OSCs realize a PCE of 2.30%. The explanation for performance 
enhancement by including rubrene was demonstrated to be the suppressing of exciton and charge recombination 
at anode side. When such interface engineering was applied in MoOx/SubPc/C60 planar heterojunction OSCs, 
substantial improvement in the PCE from 3.48% to 5.03% was obtained. The requirements of the interface mate-
rial as the Schottky barrier modification layer was also invested.

Organic cells with the architecture of ITO/MoOx (5 nm)/rubrene/SubPc (45 nm)/BPhen (6 nm)/Al (80 nm) 
were fabricated with various thicknesses of rubrene layer. Device structure and the energy level diagram are 
shown schematically in Fig. 1. Figure 2 depicts the current density versus voltage (J–V) characteristics of the 
devices with various thicknesses of rubrene of 0, 2, 5, 10 and 20 nm. Devices numerical values derived from J–V 
curves are summarized in Table 1. The organic Schottky solar cells based on SubPc output a Jsc of 2.59 mA/cm2  
which is the double magnitude of those Schottky solar cells with fullerene as the active layer and should be 
ascribed to the very strong absorption coefficient of SubPc4. The relative large Jsc also shows that the Fermi energy 

Figure 1. (a) Device architecture of the solar cells, (b) Schematic energy level diagram.

Figure 2. J–V characteristics of solar cells of ITO/MoOx (5 nm)/rubrene/SubPc (45 nm)/BPhen (6 nm)/Al 
(80 nm) with different thickness of rubrene under 1 sun, AM 1.5G illumination. 

Thickness of 
rubrene (nm) JSC (mA/cm2) Voc (V) FF PCE (%)

0 2.59 ±  0.12 1.06 ±  0.02 0.30 ±  0.02 0.82 ±  0.11

2 3.12 ±  0.14 1.17 ±  0.02 0.30 ±  0.02 1.09 ±  0.12

5 4.17 ±  0.15 1.35 ±  0.03 0.41 ±  0.02 2.30 ±  0.19

10 3.13 ±  0.17 1.43 ±  0.04 0.33 ±  0.03 1.47 ±  0.25

20 2.20 ±  0.19 1.45 ±  0.03 0.26 ±  0.03 0.83 ±  0.19 

Table 1.  Photovoltaic parameters of the OSC devices with various rubrene thicknesses.
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level difference between ITO/MoOx anode and SubPc is high enough to separate excitons generated in SubPc. 
The device behaves typical Schottky-type photovoltaic characteristics with a low FF. Although the thickness of 
SubPc is 45 nm which is threefold of that when it is employed as donor in a planar heterojunction cells, exciton 
separation only occurs near Schottky junction, which is determined by the building-in electric field and the 
exciton diffusion length of SubPc. For instance, only excitons that generated within about 10 nm apart from the 
junction can be separated for the C60-based Schottky cell9.

The photovoltaic response of SubPc based Schottky barrier cell is substantially improved by inserting rubrene 
into the cell. For the best cell with 5 nm rubrene, PCE increased by 180%, from 0.82% to 2.30% with Jsc from 
2.59 to 4.17 mA/cm2, Voc from 1.06 to 1.35 V and FF from 0.30 to 0.41. It can be seen that photocurrent strongly 
depends on the thickness of rubrene and reaches its maximum at 5 nm rubrene, then decreases with further 
increasing the thickness. All five cells display high Voc which is increased continuously with raising rubrene 
thickness. The highest Voc obtained is 1.45 V which, to the best of our knowledge, is the highest one reported of 
the OSCs without a tandem design.

Several possible reasons for the improvement of the photoelectric response by inserting thin rubrene are 
proposed to be considered.

We firstly think about the possibility of device work mechanism changes from Schottky barrier cell to donor/
acceptor planar heterojunction and inserted rubrene provides a donor/acceptor interface of rubrene/SubPc. It 
is in doubt that whether there is a fundamental correlation between the exciton binding energy and the energy 
offset needed to ensure efficient charge transfer (CT) at the donor/acceptor interface, the opinion of that to obtain 
a required photoinduced charge transfer, LUMO (or HOMO) offset between donor and acceptor must be larger 
than the exciton binding energy in the donor (or acceptor) is still commonly accepted. For the pair of rubrene/
SubPc, the HOMO offset is only about 0.2 eV and the reported exciton binding energy of SubPc is 0.4 eV10, which 
could prevent the dissociation of the exciton generated in SubPc. There have been, however, a few reports indi-
cating that SubPc can be used as acceptor composed with some donors with small energy offset. In 2012, for 
example, Nicola Beaumont etc. reported a planar heterojunction OSC with tetracene (Tc) as the donor and SubPc 
as the acceptor, obtaining a relative high FF of 0.58 and a PCE of 2.9%11. In our case here, is there a possibility that 
rubrene and SubPc constitute an effective heterojunction for exciton dissociation?

IPCE characteristics of the devices are presented in Fig. 3a. The maximum photoelectric response is obtained 
at a 5 nm rubrene, with an IPCE =  45% at 590 nm corresponding to the absorption peak of SubPc. In accordance 
to the decreased Jsc, photoelectric response declines with increasing rubrene thickness, which means that thicker 
rubrene is less than effective and internal quantum efficiency (IQE) and/or optical absorption efficiency reach 
their/its maximum at a 5 nm rubrene layer. More importantly, compare the IPCE characteristics to the absorption 
spectra presented in Fig. S1, a significant fraction of the photocurrent is contributed by the SubPc layer and con-
tribution from rubrene can hardly be distinguished. This implies that rubrene/SubPc is not an effective dissocia-
tion heterojunction at least for exciton generated in rubrene in despite of that the LUMO offset between rubrene 
and SubPc is 0.4 eV which is the double of their HOMO offset.

Figure 3b shows the Jsc and FF as functions of rubrene thickness at 45 nm SubPc. Both Jsc and FF have a 
strong dependence on rubrene thickness, and the optimal thickness for rubrene is only 5 nm which is in big dif-
ference with 60 nm Tc as donor with SubPc as acceptor of the devices in the reference11. As we know, in OSCs, the 
optimal thickness of organic active layers is strongly dependent on their mobilities and exciton diffusion lengths 
(LD). The LD of rubrene and optimal thickness in planar heterojunction OSCs with C60 as acceptor were reported 
to be about 10 nm and 20 nm, respectively12,13. Interestingly, the optimized thickness of rubrene is as thin as 5 nm 
for present SubPc-based OSC devices and a thickness of 20 nm rubrene seriously damages the total performances. 
Confusion exists that why optimum thickness for rubrene is only 5 nm if rubrene and SubPc construct effective 
dissociation junction ?

We also demonstrated the devices with DBP as the interlayer to replace rubrene (Fig. S2). Selecting DBP 
comes from two considerations. One is that HOMO of DBP locates more closely with SubPc and there is a smaller 
offset (less than 0.1 eV) for excitons generated in SubPc to separate at such interface. The other reason is that 
DBP has a strong absorption beyond 600 nm where the absorbance of SubPc is rather weak and photocurrent 

Figure 3. (a) IPCE characteristics of the devices with various rubrene thickness. (b) Jsc and FF as functions of 
rubrene thickness.
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contribution from DBP can be easily recognized from the IPCE spectra. However, almost the same regularity 
was observed by replacing rubrene with DBP as the interlayer that optimum 5 nm DBP gave a great improvement 
for cell performance and photocurrent contribution from absorption of DBP is not obtained. From the above 
discussions, the mechanism of that the added donor-acceptor interface enhances device performance is likely 
inappropriate.

Secondly, we consider the possibility of that absorption of SubPc is enhanced by introducing rubrene, which 
may result from the structural template effect of rubrene on SubPc. SubPc has a non-planar molecule structure 
and can pack in different orientations by change the deposition conditions. Actually, reports of the structural 
templating effect increasing the absorption for metallophthalocyanines have been widely reported14,15. The grow-
ing of molecules changes from standing up orientation to horizontal orientation by introducing the structural 
templating interlayer such as CuI or 3,4,9,10-perylene tetracarboxylic acid (PTCDA) giving rise to an increase 
in absorption coefficient14,16. We tested the absorption spectra of the device with or without rubrene interlayer 
to verify the hypothesis. The absorption spectra are given in Fig. 4. As show in Fig. 4, the absorption spectrum 
changes little and great absorption enhancement of SubPc is not observed, which implies that the hypothesis that 
rubrene has a structural template effect on SubPc is not correct.

In a typical structure of the OSCs, exciton blocking layers (EBL) can play a vital role for achieving efficient 
OSCs as its important function in protecting excitons and charges from reaching to electrode surface, thus avoid-
ing quenching of the excitons and charges by the electrode surface states. Cathode EBLs have been widely studied 
and different EBLs are successfully applied in OSCs17–21. Researchers also found that the anode or the anode 
buffer layer such as Poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) quenches exci-
tons22. However, compared to the widely study of the cathode EBLs, there are only few reports about anode 
EBLs23,24. In the case here, we doubt that if the ITO/MoOx anode has a quench effect on the exciton generated 
in SubPc in spite of that they offer the driving force for exciton dissociation. In order to evaluate quench effect 
of ITO/MoOx, photoluminescence measurement was applied and the photoluminescence results are provided 
in Fig. 5. As shown in Fig. 5, SubPc displays a PL emission peak at about 625 nm, which is in accordance with 

Figure 4. Comparison of absorption spectra of the devices ITO/MoOx (5 nm)/rubrene/SubPc (45 m)/
BPhen (6 nm) with or without 5 nm rubrene interlayer. 

Figure 5. (a) Steady-state photoluminescent (PL) spectra of SubPc with different thickness of rubrene on 
ITO/MoOx substrates for a pump wavelength of 550 nm at room temperature. (b) Current density vs voltage 
characteristics in dark of an ITO/MoOx (5 nm)/rubrene (0 or 5 nm)/SubPc (45 nm)/BPhen (6 nm)/Al (80 nm) 
cell with or without rubrene blocking layer.
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result reported in reference25. With inserting 2 nm rubrene between MoOx and SubPc, the PL emission of SubPc 
shows an obvious increase compared with the single SubPc layer without rubrene, which demonstrates that the 
inclusion of rubrene does nothing for improving exciton separation and on the contrary, it works as an exciton 
blocking layer by suppressing the quenching (or dissociation) of excitons at ITO/MoOx. It is no surprise that 
widely employed ITO anode or anode buffer of MoOx is an effective exciton quencher. In the reference23, authors 
found that even the quartz substrate acts as an exciton quencher. With further increasing the thickness of rubrene, 
PL emission increases gradually indicating that rubrene does suppress the quenching (or dissociation) of excitons 
at ITO/MoOx and the suppressing effect is strengthened with increasing the thickness of rubrene. Such blocking 
effect is double-edged sword: for the one hand it reduces exciton loss and on the other hand it blocks exciton to 
diffuse to the Schottky junction and decreases the separation efficiency. The blocking effect of rubrene can per-
fect explain device performance transformation by introducing rubrene. Suppressing recombination results in a 
lower Js, and hence a high Voc, as Voc of OSCs is approximated determined by Voc =  nkBT/q ln (Jsc/Js), where n 
is diode ideality factor, kB is Boltzmann’s constant, T is temperature, q is the fundamental charge, Jsc is the short 
circuit current density, and Js is the saturation dark current density. On the other hand the less exciton quenching, 
the more photocurrent collected and an increased Jsc and FF. For a thicker rubrene, it decreases the building-in 
electric field in SubPc and declines the separation efficiency of exciton, resulting in a decreased Jsc and FF. As a 
result, there exists a tradeoff between suppressing exciton quenching and promoting exciton separating, and they 
give a good balance at the best rubrene thickness of 5 nm.

It is necessary to point out that device performance improvement also benefit from the electron blocking effect 
of the interlayer by decreasing the possibility of the recombination for the electron and hole at the anode side. 
Since the impressive electron transport characteristic of SubPc, electron-hole recombines severely at anode side 
and inserting rubrene can block the diffusion of electron to anode side due to its relative shallower LUMO energy 
and lower electron mobility compared with those of SubPc. As show in the device dark current of Fig. 5b, the 
dark current of device is significantly suppressed and the rectification ration increase from the order of 10–103 at  
± 1.5 V by inserting the blocking layer of 5 nm rubrene. The vibration of device dark current is consistent with the 
change of Voc which is increased with the thickness of rubrene. The inclusion of rubrene suppresses the recom-
bination and leads to a lower Js, and hence a high Voc. Such suppresses effect is increased with the thickness of 
rubrene and results in the large variation of Voc.

The above results simulate us to reconsider the role of MoOx/SubPc Schottky barrier which is universally used 
in OSCs. We deduce that exciton quench and charge recombination also exist in planar OSCs and device perfor-
mance can be improved by interface engineering in Schottky barrier cell. Experimental results demonstrate our 
speculation. We fabricated the organic planar heterojuction cell with the structure of ITO/MoOx (5 nm)/rubrene/
SubPc (15 nm)/C60 (40 nm)/ BPhen (6 nm)/Al (100 nm). As show in Fig. 6 and the photovoltaic parameters sum-
marized in Table 2, the reference device without rubrene anode buffer layer of the planar heterojunction OSC 
offers a Jsc =  5.32 mA/cm2, Voc =  1.05 V, FF =  0.62, and PCE =  3.48%, which is comparable with other reports25,26. 
Inserting rubrene can significantly improve Jsc, compared with the reference device without rubrene anode EBL, 

Figure 6. J–V curves of the OSCs of ITO/MoOx (5 nm)/rubrene/SubPc (15 nm)/C60 (40 nm)/BPhen (6 nm)/Al  
(100 nm) with various rubrene thickness under AM 1.5 G solar illumination at 100 mW/cm2. 

Thickness of 
rubrene(nm) Jsc (mA/cm2) Voc (V) FF PCE (%)

0 5.32 ±  0.12 1.05 ±  0.02 0.62 ±  0.01 3.48 ±  0.18

2 7.33 ±  0.14 1.09 ±  0.02 0.54 ±  0.01 4.37 ±  0.22

5 7.18 ±  0.15 1.07 ±  0.03 0.50 ±  0.01 3.81 ±  0.27

10 7.01 ±  0.20 1.11 ±  0.04 0.45 ±  0.02 3.54 ±  0.31

Table 2.  Summary of the planar heterojunction cell performances with different thickness of rubrene 
layer.
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reaching to > 7 mA/cm2. The best performance is achieved at an optimum rubrene thickness of 2 nm with the per-
formance of JSC =  7.33 mA/cm2, VOC =  1.09 V, FF =  0.54 and PCE =  4.37% which offers a 25% increase than that of 
the reference cell. Unlike Schottky barrier cell, a thicker rubrene can also deliver a high photocurrent while for the 
Schottky barrier cell thick rubrene is detrimental to the photocurrent. This change lies in the fact that in Schottky 
barrier cells, thick rubrene decreases the build-in electric field between MoOx and SubPc which decreases exciton 
dissociation efficiency, while for planar heterojunction cells there have an added SubPc/C60 interface and excitons 
within the diffusion length in SubPc can diffuse to such interface to form photocurrent.

To study the requirements to the inserting hole transport layer (HTL), we tested six donor materials, 
including rubrene, zinc phthalocynine(ZnPc), 2-n aphthyl(phenyl)amino]tri-phenylamine (2-TNATA), 4,4′, 
4′ ′ -Tris(N-3-methylphenyl-N-phenyl-amino) triphenylamine (2-MTDATA), 1,1-Bis-4-bis4-methyl-ph
enyl-amino-phenyl-cyclohexane (TAPC) and 4,4′ -Bis(carbazol-9-yl)-biphenyl (CBP). Thin HTLs of 2 nm were 
used for all the devices for the consideration of favoring hole collecting. The J-V curves and photovoltaic param-
eters are offered in Fig. 7 and Table S2. As shown in Fig. 7, the devices can be divided to two distinct groups 
according to their photovoltaic performance. The one group is with rubrene, TAPC and CBP as the interlay 
and the other one is with ZnPc, 2-TNATA and m-MTDATA. In the former group, device Jsc and PCE increases 
to > 7 mA/cm2 and > 4.2% respectively by including the HTLs and the best one is CBP-based device with a 
PCE of 5.03%. In the latter group, device Jsc and PCE decrease to about 4 mA/cm2 and < 2% by including the 
HTLs and the worst one is ZnPc-based device with a PCE of less than 1%. It is found that device performances 
strongly depend on the HOMO value of the HTL. As shown in Fig. S5, HTLs in the former group all have a lower 
HOMO value, while HTLs in the latter group all have a higher HOMO value. The HOMO dependence can be 
easily understood by taking the energy match of the HTLs with MoOx into account. For the HTLs in the latter 
group, their HOMOs are far away from the conduction band of MoOx which precludes the hole transport via the 
deep-lying gap state that close to the conduction band of MoOx and degrades device Jsc and FF severely28,29. The 
Voc of devices with the HTLs of ZnPc, 2-TNATA and m-MTDATA is also much smaller than that of the devices 
with HTLs of rubrene, TAPC and CBP. For the devices with the interlayers of ZnPc, 2-TNATA and m-MTDATA, 
the lower HOMO induced an energy barrier for hole collection by ITO/MoOx, which results in accumulation of 
hole and an increased recombination of electron and hole at anode side. The increased recombination is in agree-
ment with the lower FF and leads to a high Js and hence a low Voc, as Voc of OSCs is approximated determined 
by Voc =  nkBT/q ln (Jsc/Js) as discussed above.

In summary, we describe the performance of organic Schottky barrier cell based on SubPc as the active layer. 
Device performances were increased 180% by introducing thin hole transport layer at the junction between 
MoOx and SubPc, which is proved to ascribed to the exciton and electron blocking effect. A maximum Voc as 
high as 1.45 V is obtained with a single-cell Schottky barrier solar cell. Applying such method into the planar het-
erojunction cell results in a PCE increase by 44% from 3.48% to 5.03% with a thin CBP as the interlayer.

Experimental Section
All organic materials were obtained from a commercial source and were used without further sublimation. 
Organic solar cells with the architecture of ITO/MoOx (5 nm)/rubrene/SubPc (45 nm)/BPhen (6 nm)/Al (80 nm) 
were fabricated with various thicknesses of rubrene layer. Device structure and the energy level diagram are 
shown schematically in Fig. 1. SubPc was used for its considerable absorption and reasonable electron carrier 
transporting property. Thermally evaporated deposition MoOx is used due to its high workfunction and BPhen 
is used as cathode buffer layer as usual. For cell fabrication, indium tin oxide (ITO)-coated glass substrates were 
used (Rs =  15 Ω /sq) after cleaning by ultra-sonication in acetone, detergent, and acetone and exposed to ultravi-
olet zone for 10 min. All the layers of the OSC devices were successively deposited on ITO glass substrate by ther-
mal evaporation under high vacuum conditions (around 10−4 Pa) without breaking the vacuum. The evaporation 
rates were kept at 1 Å/s for the MoOx and organic layers, and 5 Å/s for the Al cathode. Active areas of the cells 
were 0.1 cm2 defined by the overlapping area of the ITO and Al electrodes.

Figure 7. J–V curves of the OSCs with different inserting HTLs in a device structure of ITO/MoOx (5 nm)/
HTL (2 nm)/SubPc (15 nm)/C60 (40 nm)/ BPhen (6 nm)/Al (100 nm). 
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Current–voltage traces were obtained with a Keithley 2400 source meter in dark and illuminated with a Xe 
lamp with an AM 1.5 G filter, and the irradiation intensity was certified to be 100 mW/cm2. The incident photon 
to current conversion efficiency (IPCE) spectra were performed with a Stanford SR803 lock-in amplifier under 
monochromatic illumination at a chopping frequency of 110 Hz by a Stanford SR540 chopper. Absorption spectra 
were measured with a Shimadzu UV-3101PC spectrophotometer. Steady-state photoluminescent (PL) spectra 
were measured with a Hitachi F7000 fluorescence spectrophotometer. All measurements were performed under 
ambient conditions at room temperature with unpackaged devices.
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