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Abstract Face tracking often encounters drifting problems, especially when a significant face
appearance variation occurs. Many trackers suffer from the difficulty of facial feature extraction
during a wide range of face turning, occlusion, and even invisibleness. In this paper, we propose
a novel and efficient fusion strategy for robust face tracking. A Supervised Descent Method
(SDM) and a Compressive Tracking method (CT) are employed at the same time. SDM is used
to correct drifting errors of CT continuously during frontal face tracking. However, when the
face orientation changes to the angle orthogonal to the view line, it results in tracking failure for
the SDM method. CT is then adopted to keep the face region being tracked until SDM detects
and tracks the face again. In the experiments, we test the proposedmethod for real-time tracking
using several challenging sequences from recent literatures. The fusion strategy has achieved
encouraging performance in terms of both efficiency and reliability.

Keywords Fusionalgorithm.Humanfacetracking.Compressive tracking .Superviseddescend
method

1 Introduction

Face tracking is a primary step in computer vision due to its wide applications in robotic
control, visual surveillance, video retrieval, human computer interaction and facial animation
[4, 8, 19]. Although numerous approaches have been presented over the years, it is still a
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challenging task to design an effective and efficient algorithm for robust face tracking. It
becomes more difficult in cases such as a wide range of pose variation, partial occlusion, and
complex background changing. These usually lead to tracking failure due to problems like
template drift.

According to the investigation in literatures [11, 13], template drift is ascribed to the accumulation
of small errors. It usually happens in template location when the template is updated each time. As
representation of appearance feature extraction, frequent template renewal is required to keep the
template up-to-date with the changing face appearance; at the same time, hasty update of the
template will damage the integrity of the appearance feature. In order to obtain a good trade-off for
the situation, template-updating strategies should be carefully designed.

Another problem is that many existing face detectors are often unable to cope with
significant face appearance changes. Such challenges are particularly difficult when the
algorithms heavily rely on human face feature extraction. A well-known face detector intro-
duced by Viola and Jones [14] has been widely used over the years, which uses a boosted
cascade of simple features. It is shown that the detection rate of this algorithm is quite high but
it drops noticeably for profile, rotated, or occluded faces [9]. Although modifications have
been introduced to address various face poses, e.g.,[10], these modifications increase its
processing time to a great extent in a real world application.

In this paper, we design a novel and efficient fusion algorithm combining the Supervised
DescendMethod (SDM) and Compressive Tracking (CT) for robust face tracking. SDM is used
to correct drifting error of CT continuously during the most frontal face tracking. But when the
face turns aside widely enough, a tracking failure of SDMwill be resulted in. Then a confidence
score is introduced to trigger the shifting to CT.With features extracted by gradient integral, CT
is adopted to keep the face region being tracked until SDM re-detects and tracks the face again.

The major contribution of this paper is a novel on-line fusion method which remarkably
alleviates the drifting problem in robust face tracking. In order to improve efficiency and
robustness, several difficulties have been overcome. First, the benefits of SDM in frontal face
tracking is utilized adequately to correct the tracking error of CT in real-time. Second, by
replacing Haar-like features [1] with gradient features, we are able to use CT to keep tracking
robustly when the appearance changes completely different from face-like features. Third, the
confidence score as a threshold allows us to shift the tracking strategy more flexibly for the best
performance. In contrast to individual SDM and CT method, our fusion algorithm achieves
reliable face tracking in real applications by making SDM and CT work together smoothly.

The remainder of the paper is organized as follows. Section 2 briefly reviews the related
works, especially supervised descent method and compressive tracking method. In Section 3,
our proposed method is described in details. Section 4 presents some experiments and results.
Finally, we conclude this paper in Section 5.

2 Related work

To deal with these mentioned-above difficulties, many tracking algorithms [1, 6, 15, 17, 18,
21] have been proposed in recent years. Babenko et al. [1] introduce multiple instance learning
into online tracking where samples are considered within positive and negative bags or sets.
Wright et al. [15] propose a general classification algorithm for face recognition via sparse
representation. In such approaches, two crucial aspects on face tracking, feature extraction and
dimensionality reduction, has become more active [6, 12, 17, 20].
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Both feature extraction and dimensionality reduction can be posed as solving a nonlinear
optimization problem in computer vision. Although Newton’s method is generally regarded as
the most robust, fast and reliable optimization tool, two main drawbacks remain to be
considered in the context of visual tracking: differentiability and computational cost. To address
these issues, Li et al. [12] extend the ℓ1-tracker by using the orthogonal matching pursuit
algorithm for solving the optimization problems efficiently. They make use of the sparse signal
recovery power of compressive sensing to significantly reduce the computational complexity.
This algorithm shows that it is possible to accelerate the CS signal recovery procedure for
tracking by randomly projecting the original features to a much lower dimensional space. Xiong
et al. [17] further develop a Supervised Descent Method (SDM) for minimizing a Non-linear
Least Squares (NLS) function, which shows perfect performance in accuracy and efficiency.
During training, SDM learns a sequence of descent directions that minimizes the mean of NLS
functions sampled at different points. In tracking, SDMminimizes the NLS objective using the
learned descent directions without computing the Jacobian nor the Hessian.

Recently, several approaches have successfully applied on sparse representation of features
for robust visual tracking [6, 18, 21, 22]. An important benefit of using sparse representation is
its robustness to a wide range of feature appearance variations. T. Zhang et al. [22] propose a
computationally efficient sparse and low-rank representation tracking method. They adopt a
linear combination of object and background to represent samples features. This combination
could be efficiently computed by solving a low-rank, sparse representation problem. Grabner
et al. [6] introduce an online boosting algorithm to alleviate the drift problem in which only the
samples in the first frame are labeled and all the other samples are unlabeled. This method is
particularly well suited for scenarios where the object leaves the field of view completely, but it
throws away a lot of useful information by not taking advantage of the problem domain (e.g., it
is safe to assume small inter-frame motion). K. Zhang et al. [21] demonstrate that with an
appearance model based on features extracted in the compressed domain, Compressive
Tracking (CT) algorithm can be more efficient and effective than many existing trackers. CT
accomplishes an efficient dimension compression via a sparse measurement matrix, which is
also used for projection of both positive and negative samples. The best candidate is discrim-
inated by a simple naive Bayes classifier learned online. R. Xu et al. [18] further improve CT
method by replacing the rectangle filters with single pixels. They demonstrate that it is
relatively redundant to convolving the intensity with multi-scale rectangle filters. The calcu-
lation of features is gained by directly projecting on the original image pixels with the sparse
measurement matrix, which is not only simple but efficient in computation.

3 Problem formulation and fusion framework

3.1 Supervised descent method

Despite performing efficiently within most ranges of face pose during tracking, SDM suffers
from tracking failure while the face turns near the angle of orthogonal to the view line (shown
by Fig. 1). It needs to re-catch the face via other detectors, e.g., OpenCV (Viola-Jones face
detector, which is much suitable for frontal face detection). Thus it becomes difficult to apply
this tracker in robust tracking scenarios.

SDM can be divided into two stages: training and tracking. Given an image d ∈ℜm×1 of m
pixels, d (x) ∈ℜp×1 indexes p landmarks in the image. h is a non-linear feature extraction
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function (e.g., SIFT) and h(d(x)) ∈ℜ128p ×1 in the case of extracting SIFT features. During
training, an initial configuration of the landmarks (x0) is provided, f(x0) could be defined as
SIFT features function at x0. Also, the correct landmarks are known, and referred as x*, which
corresponds to the optimization results of x0. In this setting, face alignment can be framed as
minimizing the following function over Δx

f x0 þΔxð Þ ¼ h d x0 þΔxð Þð Þ−ϕ*k k22 ð1Þ
Where ϕ*=h(d(x*)) represents the SIFT values in the manually labeled landmarks. In the
training images, ϕ* and Δx are known.

The training stage can be summarized as follows: SDM will learn a series of descent
directions and re-scaling factors in a supervised manner. So that it produces a sequence of
updates xk+1=xk+Δxk starting from x0 that converges to x* in the training data. The first
updates of x would be given as a linear combination of feature vector ϕ0 and a bias term b0. R0
is a projecting matrix referred as a descent direction.

Δx1 ¼ R0ϕ0 þ b0 ð2Þ
xk ¼ xk−1 þ Rk−1ϕk−1 þ bk−1 ð3Þ

As illustrated in Fig. 2, at each step during training, a new dataset {Δxk, ϕk} can be created
by recursively applying the update rule in Eq. 3 with previously learned Rk−1; bk−1. A new set
of training data is generated by computing the new optimal parameter update Δxk

i =x*
i −xki and

the new feature vector. ϕk−h(di(xki )). Rk and bk can be learned from a new linear regressor in
the new training set by minimizing

argminRk;bk

X
di

X
x*ki

Δx*
ki−Rkϕ

i
k−bk

�� ��2 ð4Þ

To use this training data in tracking, SDM detects face in each frame with the learned
generic directions and the initial configuration landmarks estimated from the previous frame.
A confidence score is obtained to evaluate the performance.

Fig. 1 The yellow bounding box denotes the ground truth, the green one denotes SDM tracking region. As the
face turns aside, SDM could not detect any SIFT features of a face gradually, which results in tracking failure.
Then SDM will search the whole image with OpenCV face detector until a frontal face is detected. Note that the
face in frame 82, 86, 88, 99 could not be detected by the OpenCV face detector

Fig. 2 Training loop of SDM
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For tracking within most range of face pose, SDM shows excellent performance. However,
while the face yaws to the orthogonal angle of the view line, there is only a profile face visible
to the view. Or for the same pitch angle variation, the face is totally invisible. In such situation,
it is impossible that SDM accomplish the detection of predicted landmarks with optimal
displacement. There will be many errors caused by SIFT feature’s incapability to distinguish
between similar facial parts and other objects. A poor confidence score is generated to indicate
the detecting result. While a tracking failure occurs inevitably, the method will re-detect face in
full frame via the well-known OpenCV face detector [14], which is unreliable for profile
detection and time consuming. But in the next several frames, the face appearance will not
vary a lot due to a real-time frame rate. Hence, SDM will not re-track the face again until a
similar frontal face appears.

3.2 Compressive tracking

Although the CT method has performed well in terms of efficiency, it still faces drifting
problems, especially whilst a significant face appearance variation occurs (shown by Fig. 3).
As a typical tracker based on appearance models, an error might be introduced with each
update. These errors may accumulate and finally result in tracking failures in some situations.
Looking at this problem from a classification point of view, we need to introduce a
Bsupervisor^ to calibrate the classifier.

Based on compressive sensing theories [3, 5], a compressible signal such as natural images
could be reconstructed almost perfectly if it is compressed by a sparse random measurement
matrix which satisfies the restricted isometric property (RIP) [2]. Therefore, CT uses this very
sparse measurement matrix R to project the original image from a high dimensional feature
space x to a low-dimensional compressed subspace v, as shown in Eq. 5. Generally R with
entries is defined as shown in Eq. 6.

v ¼ Rx ð5Þ

ri j ¼
ffiffi
s

p �
1 with probability

1

2s

2 withprobability1−
1

s

−1 with probability
1

2s

8>>>>><
>>>>>:

ð6Þ

For tracking, CTassumes that tracking window in the first frame has been determined. With
the same sparse measurement matrix, CT projects some positive samples near the current
target location and negative samples far away from it to update the classifier at each frame. To
predict face location in the next frame, CT draws some samples around the current target
location, and picks up the features of these samples under multi-scale filter around the face.

Fig. 3 The yellow bounding box denotes the ground truth, the blue one denotes CT tracking region. When
Dudek moves his hand over his face, there will be a drastic changing in the tracking template appearance. Note
that a drifting error occurs
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Then a naive Bayes classifier is adopted to classify the object as shown in Eq. 7. The sample
with the maximal classification score in H vð Þ is the target of the next frame image.

H vð Þ ¼ log
∏

n

i−1p vi y ¼ 1jð Þp y ¼ 1ð Þ
∏

n

i¼1p vi y ¼ 0jð ÞP y ¼ 0ð Þ

 !
¼
X n

i¼1
log

p
�
vi y ¼ 1j

p vi y ¼ 0jð Þ

0
@

1
A ð7Þ

According to our experiments on CT, although with accuracy and efficiency demonstrated
successfully, drifting problems will emerge in the following cases. First, an inappropriate initial
template is selected at the tracking outset. Second, a round face turning occurs. Third, a
variation of template lasts for a certain period. As we know, to update the appearance model, a
large quantity of positive samples and negative samples are computed, and a large amount of
Haar-like features are employed, both of which are time consuming. To prevent the error
which has been introduced to the tracker from accumulating severely, it is necessary to short
the tracking loop and optimal the features selection. Therefore the initial tracking template and
features selection will be crucial factors for CT robust tracking.

3.3 Fusion frame work

We propose a fusion method to deal with the template drifting problem. This fusion framework
is to utilize the advantages of SDM and CT to compensate each other but avoid their
drawbacks during tracking. To deal with the drifting problems with CT tracking, a more
recent appearance model should be selected as the initial tracking template, which produces
more reliable update parameters for the next few frames. Furthermore, a gradient integral
feature has been shown to be more robust to scale and orientation change than a generalized
Haar-like feature. On the other hand, in order to address the issue of re-catching in SDM, a
local template covering the face region should be established as a re-detecting reference. This
template should be tracked robustly by continuously updating appearances. The re-detecting
reference could dramatically assist SDM to detect the face as soon as possible.

The fusion algorithm is illustrated in Algorithm 1. For each loop when SDM is tracking a face, it
initializes a tracking template for CT in both scale and location, which means that the sparse
measurement matrix and the naive Bayes classifier are updated by SDM in each loop. This ensures
that a recent template for CT is prepared freshly. Hence the drifting error accumulation could be
avoided to a large extent, and the features extracted from this instant template would represent the
appearance model accurately so that the drifting probability is minimized. At the same time, a
confidence score is given out to indicate the performance of SDM. Once the score is below a
threshold, which represents that SDM is going to lose the face, CT is triggered to work. With the
replacement of Haar-like feature by gradient integral, CT is adopted to keep the face template being
tracked and updated. An advantage of data-independent of CT is utilized to improve robustness of
tracking. For each loop, according to the tracking template provided by CT, SDMwill try to detect
and track the face. Once the confidence score is bigger than the threshold, SDM will return to
dominate the tracking again. But when the score is still small, a larger tracking boxwill be generated
for searching while CT keeps tracking and updating robustly.

Algorithm 1. Fusion tracking algorithm
Require: SDM classifier trained and CT sparse measurement matrix R

available
Input:Vt−1 is the template in previous frame.
1: while always do

Multimed Tools Appl (2016) 75:11801–1181311806



2: Load new frame Xt
3: Vt = SDM(Vt−1)
4: score = SIFT similarity(Vt, Vt−1)
5: // To shift between SDM and CT based on the value of score
6: if score < Threshold then
7: Vt = RX s.t. X∈(Xt∣Positive samples ∪Negative samples)
8: Vt = argmax(H(Vt)) via Eq. 7
9: end if
10: if score ≥ Threshold then
11: (λ,μ) = STDEV(Vt) // To initial CT by SDM tracking box for each loop
12: end if
13: end while

4 Experiments and discussion

We compare the performance of our fusion algorithm with the individual CT and SDM in terms of
accuracy and robustness. In total, seven face sequences and their ground truth are selected for the
experiments. All of these sequences are publicly available on the webpage [7]. In these sequences,
face appearances have various conditions such as translation, rotation, scaling, illumination varia-
tion, etc. The proposed fusion method was implemented using C++ and the OpenCV library.

All the experiments are conducted under the setting described as below, First, the initial face
region of CT is always from the ground truth rectangleR=[l; r; w; h], which can alleviate the drifting
problem causing by inappropriate initial region selection. Second, the tracking result of SDMwill be
set to rectangle R=[0; 0; 0; 0] in case of SDM fails to track the face, which is illustrated in Fig. 5 by
an abrupt ascension of the solid green curve. Third, since the scale of trackingwindow of CT is fixed
during tracking whilst the one of SDM is adaptive, there will be some systematic errors existing.

We use the conventional metric center location error (CLE) [16] to verify the tracking accuracy.
Generally, the tracking error is the Euclidean distance between the two centroids of the ground truth
and the tracked region. These tracking boxes obtained from CT, SDM and Fusion algorithm are
comparedwith the ground truth in the same sequence, respectively. In the following, we present both
qualitative and quantitative evaluation of the proposed tracker, as well as compare it against CTand
SDM methods. The experimental results are shown by frame snapshot and tracking error chart
(Figs. 4 and 5). Different tracking methods and the Ground truth are color-coded, which the yellow
one denotes Ground truth, blue for CT, green for SDM, and red for our fusion tracker.

4.1 Qualitative analysis

The face in the David sequence undergoes some pose, scale, illumination change and slightly
occlusion. Figure 4a shows the tracking results at frame 71, 140, 302, and 415. As can be seen at
frame 140, 414, SDM is suffering from an out of plane rotation of face and an abrupt illumination
changes. At this moment, a lower confidence score is given to trigger fusion method to shift to CT
tracking. In frame 302, CT causes drift from the target when David puts off and on his glasses. The
fusion method can adopt SDM tracking result to correct the drift error and initialize the template for
CT, then track the face robustly throughout the entire sequence, even though there is a little shift
compared with ground truth in frame 414. These results show that the fusion algorithm compensates
CT and SDM effectively for robust face tracking.
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In the Dudek sequence, the tracked face is subject to changes in pose and appearance
occlusion. The tracking results in frames 129, 208, 569, 1042 are shown in Fig. 4b. Note that
in frame 208 the face is occluded by the moving hand. Our fusion algorithm keeps tracking
whilst CT suffers from drifting and SDM loses the target. This occlusion affects the appearance

(a) David (b) Dudek

(c) Fleetface

(e) Mhyang

(g) Trellis

(d) David 2

(f) Girl

Fig. 4 Tracking results (color-coded bounding boxes) of three tracking methods. Ground truth - yellow. CT
tracker - blue. SDM tracker - green. Our Fusion tracker - red
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feature extraction of the template which finally causes drifting problems to CT between frame
208 and frame 575. This makes the face fully invisible that result in SDM tracking failure
temporarily. Once again our fusion tracker outperforms the other two trackers by tracking the
moving face accurately throughout the sequence.

The Fleetface, David 2 and Mhyang sequences contain comprehensive face motion with
significant translation, rotation, scale and background changes, which cause CT to
drift and SDM to lose target respectively. Note that in Fig. 5e solid red overlaps solid
green coincidently, which denote that fusion method is dominated by SDM during the
whole tracking. The fusion algorithm works accurately and reliably as shown in
Fig. 4c–e.

(a)David (b) Dudek

(c) FleetFace                                                                  (d) David 2

(e) Mhyang    (f) Girl

(g) Trellis
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Fig. 5 Position error with respect to ground truth. Figures a–g show track-box position error w.r.t ground truth for
different video sequences by means of different colored curve. CT tracker - blue. SDM tracker - green. Our Fusion
tracker - red
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Results on the girl sequence are shown in Fig. 4f. Performance on this sequence exemplifies the
accuracy and robustness of our fusion method to full occlusion, large pose variation and severe
background clutter. Frame 100 shows complete occlusion of the girl’s face as she swivels in the chair.
A significant pose change is presented when the girl’s face undergoes extensive 3D rotation about
multiple axes. Additionally, this sequence includes multiple faces appearing around frame 495,
which is similar in appearance to the girl’s face. Nevertheless, our fusion tracker follows the girl face
accurately and robustly, while CTstarts drifting in frame 205, and SDM loses the target in frame 99.

The trellis sequence demonstrates drastic variations in illumination, pose, and background. The
video is acquired in an outdoor environment where illuminations on both face and background
change intricately. As shown in Fig. 4g, the cast shadow changes the appearance of the target face
drastically when a person walks underneath a trellis covered by vines. Furthermore, the combined
effects of pose and lighting variations along with a low frame rate make the tracking task extremely
difficult. But thanks to the combination of benefits of CT and SDM, the fusion tracker overcomes
problems and successfully tracks the face during the entire challenging sequence.

4.2 Quantitative analysis

Table 1 shows the mean and standard deviation of CLE. The Bold fonts indicate the best
performance. It is noticeable that our fusion method outperforms the other two trackers in most
of sequences in terms of mean and standard deviation.

Note that our algorithm achieves the second best result in the Mhyang sequence, with the
difference of 0.001 pixels in mean error and 0.002 pixels in standard deviation from the first one.
This slight difference is caused by the different initialization of tracking box just in the first frame.
Note that in our fusion method, the score threshold is set as 0.55 regarding as the best fusing
performance whilst 0.35 in SDM accordingly, which causes the tracking box differences between
these two trackers.

Another second best result in standard deviation is given in the Girl sequence due to an
abrupt extra face appearing in the scene at the end of the sequence, which confuses the tracker
from following the right face within the interruption.

As shown in Fig. 5 a–g, we illustrate the track box position error w.r.t ground truth for
different video sequences by means of different colored curve. It is obvious that the red curve
(our tracker) outperforms the green one (SDM) and the blue one (CT) by means of a minimum
error value. Note that the abrupt variation of the green one is caused by a temporary tracking

Table 1 Mean and Standard deviation of CLE (in pixels). The best results are shown in Bold fonts

Sequence Mean Standard deviation

CT SDM Fusion CT SDM Fusion

David 12.495 33.711 7.953 6.763 66.828 3.204

Dudek 34.199 25.021 23.599 19.355 25.211 9.549

Fleetface 63.637 72.169 36.440 90.855 89.350 20.542

David2 63.669 50.006 2.168 31.941 90.470 1.284

Girl 14.886 25.267 7.845 6.537 32.726 8.370

Mhyang 16.271 3.932 3.934 6.289 2.092 2.093

Trellis 53.678 22.205 5.740 41.575 57.864 8.511
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failure of SDM. Our tracker always achieves the best performance by keeping the lowest error
value via fusing SDM and CT in all these sequences.

5 Conclusion

In this paper, we have presented a fusion algorithm as the human face tracker which significantly
limits the drifting problem in real world applications. Using this fusion strategy, the benefits of two
the-state-or-the-art methods are employed adequately while their drawbacks are overcome efficient-
ly. We have kept the advantage of stability in frontal face tracking from the SDM method while
avoided the drifting problems of CT. At the same time, by replacing Haar-like features with gradient
features, we are able to use CT to keep robust tracking in situations where the appearance changes
completely different from face-like features. We have tested the proposed fusion method using
several real world video sequences containing various poses of facial appearance variations. The
experimental results have demonstrated the effectiveness of the proposed algorithm.
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