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Fidelity of the diagonal ensemble signals the many-body localization transition
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In this work, we use exact matrix diagonalization to explore the many-body localization (MBL) transition
in a random-field Heisenberg chain. We demonstrate that the fidelity and fidelity susceptibility can be utilized
to characterize the interaction-driven many-body localization transition in this closed spin system which is in
agreement with previous analytical and numerical results [S. Garnerone, N. T. Jacobson, S. Haas, and P. Zanardi,
Phys. Rev. Lett. 102, 057205 (2009); P. Zanardi and N. Paunkovic, Phys. Rev. E 74, 031123 (2006)]. In particular,
instead of ground-state fidelity, we test the fidelity between two diagonal ensembles related by a small parameter
perturbation δh, it is special that here the parameter perturbation δhi for each site are random variables like hi .
It shows that fidelity of the diagonal ensemble develop a pronounced drop at the transition. We utilize fidelity
to estimate the critical disorder strength hc for different system size, we get hc ∈ [2.5,3.9] and get a power-law
decay with an exponent of roughly −1.49(2) for system size N , and can extrapolate hinf

c of the infinite system is
about 2.07 which all agree with a recent work by Huse and Pal, in which the MBL transition in the same model
was predicted to be hc [2,4]. We also estimate the scaling of maximum of averaged fidelity susceptibility as a
function of system size N , it shows a power law increase with an exponent of about 5.05(1).
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I. INTRODUCTION

The concept of Anderson localization is established and
well known since Anderson proposed it in his seminal
paper [1] more than half a century ago [2]. It shows that a
static disordered potential can lead to a complete absence of
diffusion in an closed quantum system which has received
extensive attention since then and has formed a complete
conclusions that non-interacting systems in one and two
dimensions will be localized for arbitrary disorder, even
for very small disorder [3,4]. In Ref. [1], Anderson also
conjectured that a closed interacting quantum system with
sufficiently strong disorder would fail to approach thermal
equilibrium. Until much more recently, Basko et al. [5] gave
new arguments to revive this idea of many-body localization
(MBL). Note that this is a quantum glass transition that occurs
at nonzero (even infinite) temperature, where equilibrium
quantum statistical-mechanics breaks down. In the localized
phase the system fails to thermally equilibrate. Like the
more familiar ground-state quantum-phase transitions, this
transition is a sharp change in the properties of the many-body
eigenstates of the Hamiltonian, unlike ground-state phase
transitions, the many-body localization transition at nonzero
temperature appears to be only a dynamical-phase transition
that is invisible in the equilibrium thermodynamics [6].

Many studies [6–18] have studied and confirmed the
phenomenon of MBL recently, showing that a novel dynamical
phase transition can happen in the interacting disordered
systems. Many features of the MBL phase have been explored.
It has been displayed that bipartite entanglement entropy
between two sectors of the system shows a characteristic
logarithmic growth in the many-body localized phase [19–24].
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It has also been found that the total correlations scales
extensively in the localized phase developing a pronounced
peak at the transition [17]. Even though, still many features
of MBL are unexplored and their broader connections are
unknown.

Recently, generous efforts [25–39] have been devoted to
the role of fidelity, a popular concept in quantum information
theory [40], in quantum critical phenomena [41], demonstrat-
ing that fidelity is useful in characterizing distinct phases of
quantum many-body systems [42]. In particular, the minimum
of fidelity near a critical point has been studied in several
models [27–29]. It has also been shown that fidelity plays a
crucial role in quantum phase transitions (QPTs) in quantum
fields [30]. Particularly, fidelity as well as the Berry phase have
also been recently used to analyze quantum phase transitions
from a geometrical perspective. In [35], Venuti et al. unified
these two approaches showing that the underlying mechanism
is the critical singular behavior of a complex tensor over the
Hamiltonian parameter space. The advantage of the fidelity is
that it is a space geometrical quantity, no a priori knowledge
of the order parameter and symmetry breaking is required in
studies of QPTs.

Considering the special and crucial role of fidelity in
quantum critical phenomena, in this work, we apply the
fidelity approach to MBL transitions. In Ref. [26], the authors
applied the fidelity approach to estimate random transitions
of the disordered quantum model. They showed that the
fidelity susceptibility and its scaling properties provide useful
information about the phase diagram. So the point here is
phenomenological, we think it should work based on previous
analysis [26,27], we do the numerics and we see that it indeed
works. Since MBL is concerned with all energies, and recently
it was widely studied with high excited state [6–11], the states
in the middle of the spectrum are important in MBL [6,7], and
one can see that such states and their corresponding weights
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are nicely and naturally included in the dephased state from the
definition of the dephased state in the following Eq. (1), so here
instead of the ground state which represents low temperature,
our focus is on the time-averaged, dephased state which is the
unique state that maximizes the von Neumann entropy [43] and
has also been used to study MBL recently [17]. So fingerprints
of the MBL transition are expected in the fidelity of this
dephased state. It is worth noting that to test the dephased-state
fidelity, the parameter perturbation δhi for each site used in
this paper are not determinate, but random variables like hi .

Next we first review the definition of the dephased state.
For a fixed initial state ρ and non-degenerate Hamiltonian H,
the dephased state or time-averaged state ω has the following
form [17]:

ω :=
∑

n

|En〉〈En|ρ|En〉〈En| = lim
τ→∞

1

τ

∫ τ

0
dte−itH ρeitH ,

(1)

where |En〉 are the eigenvectors of H . This is long-time
equilibrium state, and is often referred to as the diagonal
ensemble, since for the non-degenerate Hamiltonian H , the
off-diagonal elements each time average to zero. It is known
that the dephased or time-averaged state is the unique state that
maximizes the von Neumann entropy, holding all constants of
motion fixed [43]. If the expectation value of an observable
equilibrates on average during the time evolution of a system,
then the equilibrium expectation value can be computed from
it [44,45].

To test the fidelity of the dephased state ω, we use the
mixed-state fidelity, which is given by [46]

F (ρ0,ρ1) := tr

√
ρ

1
2

1 ρ0ρ
1
2

1 . (2)

This quantity measures the degree of distinguishability be-
tween the two quantum states ρ0 and ρ1. The fidelity is related
to the statistical Bures distance: D(ρ0,ρ1) = √

2(1 − F ) [32].
We will use Eq. (2) to compare two diagonal ensembles ω0

and ω1 related by a small parameter perturbation δh, then we
get F (ω0,ω1) corresponding to F (h,h + δh). In the limit, the
fidelity is close to unity and it can be approximated by the
lowest-order nontrivial Taylor expansion

F (h,h + δh) � 1 − χ (h)
δh2

2
. (3)

The prefactor in the quadratic term, χ (h), is called the fidelity
susceptibility [37]. It has been recently intensively studied as
a probe of quantum criticality [27,29,42].

II. MODEL USED FOR NUMERICS

It has been shown that many-body localization appears to
occur for a wide variety of particle, spin, or qubit models. Here
we study a spin model, the Heisenberg spin chain with random
fields in the z direction [7]. The Hamiltonian of this model is
given by

H =
N∑

i=1

[
J
(
sx
i sx

i+1 + s
y

i s
y

i+1 + sz
i s

z
i+1

) + his
z
i

]
, (4)

where the hi represent identically distributed static fields
on each site i, each with a probability distribution that is
uniform in [−h,h]. We consider the chains are of size N

with periodic boundary conditions. The system is completely
characterized by the disorder strength h and the coupling
constant J . This is one of the simpler models that shows
a many-body localization transition. Through dephased-state
fidelity and fidelity susceptibility we will present evidence
that the MBL transition at h = hc

∼= 3.5 ± 1.0 also dose occur
in this model, in correspondence with the prediction in [7].
For all values of the parameters, this model has two global
conservation laws: total energy and total magnetization Sz

along the z direction, so in the numerics we only pay attention
to states with zero total Sz. Here the initial states we take are
all eigenstates of the Hamiltonian

∑N
i=1 sz

i from the subspace
with total Sz = 0. These initial states are product states, for
each initial state, according to Eq. (1), we can compute the
corresponding diagonal ensemble ω0. To test the fidelity of
the diagonal ensemble, for the small parameter perturbation
δhi for each site, we have three options: (a) δhi = ε, (b)
δhi = εh, (c) δhi = εhi (ε is a small constant). The parameter
perturbation δhi for each site is the same constant as in cases
(a) and (b), but different random variables in case (c). We
have tried these three cases, only in the case (c) δhi = εhi , we
can see the phenomenon of MBL transition through fidelity
to denote. So in this paper we do all computation in the
case (c) δhi = εhi , and let ε = 10−3, we then compute for
each initial state the diagonal ensemble ω1, fidelity F (ω0,ω1)
and fidelity susceptibility χ . Averaging over all selected
initial states and disorder realizations yields the mean values
E[F ] and E[χ ]. The numerics were performed using standard
libraries for matrix exact diagonalization. Total Sz symmetry
and parallel programming techniques were employed to make

FIG. 1. Averaged fidelity of the depased state as a function of h for
system size from 6 to 16. The system size N is indicated in the legend.
Statistical error bars for every data points are given. In the ergodic
phase [7] (small h) E[F ] decays substantially under the dynamics
until h approaches to the critical point hc, then in the localized phase
(large h) E[F ] turns to increase approximately approaching to 1. The
drop gets sharper as system size N increases. The inset corresponds
to enlarged pictures for system size N = 6 and 8 with the same data.
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FIG. 2. Averaged fidelity susceptibility of the depased state as
a function of h for system sizes from 6 to 16. The system size N

is indicated in the legend. For every system size, the critical line is
plotted. In the inset, subtracting the values of hinf

c (the critical disorder
strength in the infinite system) from hc one can see that the decrease
versus system size N (the asterisks) is well captured by a power-law
with exponent of approximately −1.49(2) (dashed line guide to the
eye ∝ N−1.49(2)).

computations feasible. The number of disorder realization for
each disorder amplitude |h| and system size N we used in the
data shown in this paper is 104 for N = 6 and N = 8, 2000
for N = 10 and N = 12, 200 for N = 14, and 50 for N = 16.

III. RESULTS AND DISCUSSION

Here we take J = 1, for this case the MBL transition in the
model (4) was predicted to be hc ∈ [2, 4] in [7]. According

FIG. 3. Averaged fidelity E[F ] as a function of system size N

for different values of disorder strength h from small to large. The
value of h is indicated in the legend. E[F ] decays as the system size
increases, it decays the fastest when h = 2.5.

FIG. 4. Maximum of averaged fidelity susceptibility as a function
of system size N and the fitting curve to the data points, one can see
that the increase of E[χm] for system size N (the circles) is well
captured by a power-law exponent of approximately 5.05(1) (dashed
line guide to the eye ∝ N5.05(1)).

to the pronounced data change shown in Figs. 1 and 2, one
can obtain the approximate critical disorder strength hc for
different system size N . For N = 6, hc → 3.9, N = 8, hc →
3.3, N = 10, hc → 2.9, N = 12, hc → 2.7, N = 14, hc →
2.6, N = 16, hc → 2.5. So we obtain hc ∈ [2.5, 3.9] for the
breakdown of ergodic phase, which agrees with the prediction
in [7,13]. In Fig. 1, we show one standard-deviation error bars,
and from this figure, one can see the E[F ] versus h show an
initial decrease at low h towards a minimum and then increase
at higher disorder approximately approaching to 1. The critical
disorder strength hc is size dependent, we do the fitting hc with
expression as hc ∼ A + B/NC , where A, B, C are the fitting
parameters, and get A = 2.07, B = 26.7, C = 1.49(2). So one
can extrapolate the critical disorder strength hinf

c of the infinite
system is about 2.07 which also agrees with the prediction
in [7]. In the inset of Fig. 2, subtracting the values of hinf

c

from hc one can see that the decrease of (hc − hinf
c ) for system

size N is well captured by a power-law with exponent of
approximately −1.49(2). As the data change of Figs. 1 and 2,
it shows that here MBL transition is not a sharp transition
which can also be seen in recent studies [7,14]. In Fig. 3,
E[F ] decays as the system size increases, it decays the fastest
when h = 2.5, and one can see that when the value of h is
small, h = 0.1, and when it is large, h = 8, E[F ] decays very
little with system size N . It can be predicted that the fidelity
E[F ] will be independent of system size N at very large h,
namely fidelity E[F ] approximately is not to be changed in
the localized phase. In Fig. 4, scaling of maximum of averaged
fidelity susceptibility E[χm] is estimated. It shows a power-law
increase of E[χm] for system size with an exponent of roughly
5.05(1), i.e., E[χm] ∝ N5.05(1).

IV. SUMMARY

In this paper, the numerical simulations performed show
that the fidelity and fidelity susceptibility of the diagonal
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ensemble denote the MBL transition in a special way which
is in agreement with previous analytical and numerical
results [26,27]. We test the fidelity between two diagonal
ensembles related by a small parameter perturbation δh, it is
special that here the parameter perturbations δhi for different
site are random variables like hi . Undoubtedly the transition
from an ergodic to a MBL phase is a highly non-equilibrium
phenomenon which is poorly understood at present. Our
study of the exact matrix diagonalization of the model in
Eq. (4) can demonstrate some of the properties of the ergodic
and localized phases. It shows that in the ergodic phase
(small h) E[F ] decays substantially under the dynamics until
h approaches the critical disorder strength hc, then in the
localized phase (large h) E[F ] turns to increase approximately
approaching 1. If the disorder strength is large enough, the
fidelity E[F ] will not be changed in the localized phase
for arbitrary system size. We also get the critical disorder
strength hc ∈ [2.5,3.9] for the breakdown of the ergodic phase,
the fitting hc with expression as hc ∼ A + B/NC , A = 2.07,
B = 26.7, C = 1.49(2). Then one can extrapolate the critical

strength of the disorder in the infinite system hinf
c to be about

2.07. The decrease of (hc-hinf
c ) for system size N is well

captured by a power-law with exponent of approximately
−1.49(2), i.e., (hc − hinf

c ) ∝ N−1.49(2). We also estimate the
scaling of maximum of fidelity susceptibility as a function
of system size N , it shows a power-law increase of E[χm]
for system size N with an exponent of roughly 5.05(1), i.e.,
E[χm] ∝ N5.05(1). We hope that the present work provides a
novel window into the remarkable phenomenon of many-body
localization.
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