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SPECIAL TOPIC — Physical research in liquid crystal

A high precision phase reconstruction algorithm for
multi-laser guide stars adaptive optics∗
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Adaptive optics (AO) systems are widespread and considered as an essential part of any large aperture telescope
for obtaining a high resolution imaging at present. To enlarge the imaging field of view (FOV), multi-laser guide stars
(LGSs) are currently being investigated and used for the large aperture optical telescopes. LGS measurement is necessary
and pivotal to obtain the cumulative phase distortion along a target in the multi-LGSs AO system. We propose a high
precision phase reconstruction algorithm to estimate the phase for a target with an uncertain turbulence profile based on
the interpolation. By comparing with the conventional average method, the proposed method reduces the root mean square
(RMS) error from 130 nm to 85 nm with a 30% reduction for narrow FOV. We confirm that such phase reconstruction
algorithm is validated for both narrow field AO and wide field AO.

Keywords: laser guide star, adaptive optics, phase reconstruction, liquid crystal wavefront corrector

PACS: 42.68.Wt, 42.66.Lc, 42.70.Df DOI: 10.1088/1674-1056/25/9/094214

1. Introduction

Adaptive optics (AO) technology is widely used to cor-
rect the distorted wavefront induced by atmospheric turbu-
lence in real time, and restore the imaging resolution close
to the diffraction limit of a telescope.[1] As an efficient wave-
front corrector, phase-only liquid crystal on silicon (LCOS)
possesses a prominent advantage of high pixel density, which
makes it possible to be used in the AO system for large aper-
ture telescopes.[2–7] To obtain images reaching the diffrac-
tion limit, a bright source such as a guide star must be avail-
able within the isoplanatic patch for aberration measurement.
However, the brightness requirement is quite rigorous for ar-
bitrary sky/space objects, which results in a low probability of
finding a sufficient number of bright nature guide stars (NGSs)
for AO correction. A solution to avoid the scarcity of bright
NGSs is to produce artificial laser guide stars (LGS) from the
ground by using the back-scattered (or back-radiated) light.[8]

Thus, only one NGS is required to sense overall tilt since very
faint NGS can still be used for image motion sensing. Several
LGSs are used for high order aberration sensing in LGS AO
systems.

Unfortunately, a light cone rather than a desired cylin-
der is produced from the LGS to the telescope, thereby re-
sulting in an error called “focus anisoplanatism” (FA) or the

cone effect. This is a serious impediment to the general ap-
plication of LGS in large aperture telescope AO systems. Foy
and Labeyrie in 1985 suggested to use an array of laser bea-
cons for astronomical AO to reduce the FA error.[9,10] In their
concept, the cumulative phase distortion along a target can be
obtained solely from the LGS measurements. There are some
works for this problem,[11–14] but all of these approaches have
one aspect in common in that they require a priori knowledge
of a real-time-varied profile. Hart proposed an approach for
ground layer AO (GLAO) that the signals from the all bea-
cons are sensed separately and averaged to obtain the mean
wavefront as the estimation of the aberration.[15–17] In this ap-
proach, the weight factors of all LGSs are the same. However,
as the FA error depends on the propagation path, it should be
different for every LGS so that the weight factors should also
be different. To resolve this problem and decrease the wave-
front tomographic error, we propose a novel algorithm to cal-
culate these weight coefficients based on the interpolation, and
thereby estimate the phase for target without the measurement
of the atmospheric turbulence refractive index structure con-
stant C2

n profile. This method is simpler and obvious more
accurate than the previous proposed ones. It can be predicted
to be efficient to improve the imaging resolution in large FOV
observation for GLAO with LGSs.

In this paper, the phase reconstruction algorithm is de-
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scribed in detail theoretically, and is then validated in sim-
ulation. The algorithm of phase reconstruction is presented
in Section 2. We compare the simulation results and perfor-
mances with the previous reported ones and analyze them in
Section 3. Finally, the conclusions are given in Section 4.

2. Theory
2.1. Phase reconstruction

Assume that there are n different LGSs located at height
H. 𝑟i is the projected vector of the i-th LGS on the telescope
aperture as shown in Fig. 1. An arbitrary point on the trace
of a light (dashed line) emitted from the i-th LGS to point 𝑟
has a position (𝑟− z𝑟/H + z𝑟i/H, z). According to the near-
field approximation, the aberrated wavefront measured for this
LGS is calculated as

φi(𝑟) =
2π

λ

∫
n
(

H− z
H

𝑟+
z
H
𝑟i,z
)

dz, (1)

where n(𝑟,z) is the refractive index fluctuation along the beam
at altitude z, and λ is the wavelength as convention.

z

y

LGS i LGS j

H

x

object

r

(θ, ψ)

rjri

Fig. 1. (color online) Schematic diagram of LGSs’ distribution and ob-
jective star with elevation angle θ and azimuth angle ψ . Light from
LGS: dashed line; light from objective star: dot-dashed line.

The direction vector of a light from an objective star can
be described as (cosθ cosψ, cosθ sinψ, sinθ ). Define a vec-
tor in the xy plane as 𝑟o = H cosθ cosψ𝑒x +H cosθ sinψ𝑒y,
where 𝑒x and 𝑒y are the unit vectors along the x and y axes,
respectively. The position of an arbitrary point on the trace of
the light (dot-dashed line) emitted from the object to point 𝑟
is (𝑟+ z𝑟o/H,z). An aberrated wavefront is produced when
a light emitted from the beacon (with a quasi-infinite distance
from the project plane) passes through different atmospheric
turbulence layers as shown in Fig. 1. Therefore, the optical
path fluctuation is expressed as

φo(r) =
2π

λ

∫
n
[
𝑟+

z
H
𝑟o,z

]
dz. (2)

According to the Kolmogorov theory, the turbulence field
is a locally uniform and isotropic field. Its statistical properties
are independent of the space position within the limited space.
Therefore, the statistical aberration moments c and their cor-
responding square values σ2

φ
at any point are the same

〈φo〉= 〈φi〉= c, (3)〈
φ

2
o
〉
=
〈
φ

2
i
〉
= σ

2
φ . (4)

We estimate the unknown aberration from the target star
along the direction (θ ,ψ) by the weighted summation of the
detected data. The phase delay at any point on the telescope
pupil can be estimated by the interpolation of n phase values
measured from LGSs at the same point

φ̃o(𝑟) =
n

∑
i=1

kiφi(𝑟), (5)

where ki is the weight coefficient. This constitutes an array of
optimal coefficients that minimizes the difference between the
real value and the estimated value. It should meet the unbiased
estimation constraint〈

n

∑
i=1

kiφi−φo

〉
= 0. (6)

According to Eq. (3) we have
n

∑
i=1

ki = 1. (7)

2.2. Determination of weight coefficients

To find an array of optimized weight coefficients, we have
to analyze the estimation error J, expanded as the following
polynomial, at first:

J =

〈(
n

∑
i=1

kiφi−φo

)2〉

=

〈(
n

∑
i=1

kiφi

)2〉
−2

〈
φo

n

∑
i=1

kiφi

〉
+
〈
φ

2
o
〉

=
n

∑
i=1

n

∑
j=1

kik j
〈
φiφ j

〉
−2

n

∑
i=1

ki 〈φoφi〉+
〈
φ

2
o
〉

=
n

∑
i=1

n

∑
j=1

kik j

(
σ

2
φ −

1
2

Di j

)
−2

n

∑
i=1

ki

(
σ

2
φ −

1
2

Doi

)
+σ

2
φ , (8)

where Doi is the variance of the difference between φo and φi,
and Di j is the variance of the difference between φ i and φ j.
They can be calculated directly from the Kolmogorov struc-
ture function as follows:

Doi(𝑟) =
〈
[φi(𝑟)−φo(𝑟)]

2
〉

= 2.91
(

2π

λ

)2 ∫ ∣∣∣− z
H
𝑟+

z
H
𝑟i−

z
H
𝑟o

∣∣∣5/3
C2

n(z)dz
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= |𝑟o +𝑟−𝑟i|5/3/(θ0H)5/3, (9)

Di j(𝑟) =
〈
[φ j(𝑟)−φi(𝑟)]

2
〉

= 2.91
(

2π

λ

)2 ∫ ∣∣∣(𝑟 j−𝑟i)
z
H

∣∣∣5/3
C2

n(z)dz

=
∣∣𝑟 j−𝑟i

∣∣5/3
/(θ0H)5/3, (10)

where C2
n(z) is the structure constant of refractive index at al-

titude z, while θ0 is the isoplanatic angle of the atmosphere.
Substituting Eq. (7) into Eq. (8), we arrive at

J =
n

∑
i=1

kiDoi−
1
2

n

∑
i=1

n

∑
j=1

kik jDi j. (11)

The optimization of J under the constraint of Eq. (6) can be
solved with the Lagrange multiplier method. We construct a
new objective function for the optimization

J′ = J+ γ

( n

∑
i=1

ki−1
)
, (12)

where γ is a Lagrange multiplier. Find a series of parameters
{γ, k1, k2, . . . ,kn} to minimize the function J on the condition
of Eq. (6), which can be determined by solving the following
partial differential equations:

∂J′

∂ki
= 0, (i = 1,2, . . . ,n),

∂J′

∂γ
= 0.

(13)

Substituting Eqs. (9)–(12) into Eq. (13), we arrive at
γ +

n
∑
j=1

∣∣𝑟 j−𝑟i
∣∣5/3 k j = |𝑟o +𝑟i−𝑟|5/3 , (i = 1,2 · · ·n),

n
∑
j=1

k j = 1.
(14)

Its matrix formation is given as
d11 d12 · · · d1n 1
d21 d22 · · · d2n 1

...
...

. . .
...

...
dn1 dn2 · · · dnn 1
1 1 · · · 1 0




k1
k2
...

kn
γ

=


do1
do2

...
don
1

 , (15)

where di j = |𝑟 j−𝑟i|5/3 and doi = |𝑟o +𝑟−𝑟i|5/3. Solve the
matrix equation (15), and the weight coefficients ki can be ob-
tained. The weight coefficients depend on the location of the
point 𝑟, the direction along the objective star and its corre-
sponding projected vectors of LGS, 𝑟i, are independent of C2

n

2.3. Optimization of LGS position

LGSs are generally arranged in regular polygon. We con-
sider 6 LGSs that are arranged at the vertices of a hexagon as
shown in Fig. 2(a). The distance ρ between each LGS and the
center is the same. θfov is the diameter of FOV. The estimation

error J(𝑟o,𝑟) is related to ρ . We choose an optimized ρ to
minimize the aperture-averaged error. The aperture-averaged
error Jm is defined as

Jm =
16

π2D2L2

∫∫
|𝑟|≤D/2

d𝑟
∫∫

|𝑟o|≤L/2

J(𝑟o,𝑟)d𝑟o

=
16

π2D2L2

(
1

θ0H

)5/3

×
∫∫

|𝑟|≤D/2

d𝑟
∫∫

|𝑟o|≤L/2

( n

∑
i=1

ki |𝑟i +𝑟o−𝑟|5/3

− 1
2

n

∑
i=1

n

∑
j=1

kik j
∣∣𝑟 j−𝑟i

∣∣5/3
)

d𝑟o. (16)

H

D

L/

LGS

ρ

ρ

θfovÂL⇁D

ÂD

(a) (b)

Fig. 2. Arrangement of six LGSs and their geometric relationship,
L = θfovH: (a) plan view, (b) side view.

The results for Jm, which is a function of ρ , when L = 0
are calculated and shown in Fig. 3. The results based on the
proposed method are much smaller than those based on the
average method whatever the ρ is. And the minimum Jm is
reached at ρ/D = 0.37 for both the proposed method and the
average method.

average method

proposed method

0 0.3

0.06

0.12

J
/
J

0

ρ/D

Fig. 3. (color online) The Jm varying with ρ . Here J0 = (D/θ0H)5/3.

For the same LGS, the weight coefficient changes with
the location of the point in the aperture. Calculate the weight
coefficient of each point over the telescope for each LGS. All
the weight coefficients when ρ/D = 0.37 are shown in Fig. 4.
The circle region is the telescope aperture and the grey value
represents the weight coefficient, which is ranged from 0 to 1.
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Figure 4 indicates that the weight coefficient is large nearby
the projection of the corresponding LGS. This is reasonable
since a closer position to the projection of LGS generally leads
to a smaller difference between the measured and the desired
results. As a contrast, the weighted coefficient of the reported
average method is 1/n at any point for any LGS.

k1 k2 k3 k4 k5 k6

Fig. 4. The weighted coefficients comparison between the proposed
method (top) and the average method (bottom) for ρ = 0.37D.

The optimal ρ for different FOVs are different. Figure 5
shows the optimal ρ normalized by the diameter D of the tele-
scope.

0 0.5 1.0 1.5 2.0

0.35

0.45

0.55

0.65

ρ
/
D

L/D

Fig. 5. Optimal ρ as a function of L.

3. Result
For this work, we have chosen to use the well-known

Hufnagel–Valley 5/7 mode. Such profile Troxel determines
that four layers can be used to accurately model the
turbulence,[18] and the altitudes and strengths of the layers
are listed in Table 1. The Fried parameter r0 is 0.1 m at
λ = 500 nm, and the outer scale of the atmosphere is 30 m.

Table 1. Altitudes and relative layer strengths of four-layer turbulence
model.

Layer 1 2 3 4
Height/m 200 2000 10000 18000
Strength 0.8902 0.0443 0.0591 0.0064

In our simulation, a 6 m telescope is adopted with six
LGSs at height 20 km. The positions of the LGSs have been
shown in Fig. 2 and their zenith angles will be determined
by FOV later. We use several wavefront sensors and one

single liquid crystal wavefront corrector (LCWC)[19–23] op-
tically conjugated to the telescope pupil. For simplification,
the wavefront spatial sampling error induced by the wavefront
sensor (WFS) and LCWC is ignored, and the performance of
the AO system is limited only by the wavefront reconstruction
algorithm. The above expression for J counts errors in sam-
pling all modes of the distorted wavefront, including piston
and tip/tilt. Herein, we only consider the error without piston
and tip/tilt components by considering that the piston error is
irrelevant to the Strehl ratio (SR) for a single aperture; besides,
the global tip-tilt component is detected by NGS and compen-
sated by the tilt mirror.[24,25]

3.1. Narrow FOV

We first consider a narrow FOV with θfov = 0′ so that
the target is at an infinite distance and zenith direction. As
aforementioned optimization, L = 0, and the optimal ρ is
0.37D = 2.22 m. Therefore, the zenith angle of LGS is 18.3′′.
The RMS after compensating is shown at Fig. 6. It is notewor-
thy that the proposed method reduces the RMS from 130 nm
to 85 nm compared with the average method. The point spread
function (PSF) at 1 µm wavelength in 500 ms integral time is
shown at Fig. 7, revealing an obvious improvement of the SR
from 0.49 to 0.75, which validates this method.

0 200 400

90

120

150

 proposed method

 average methodR
M

S
/
n
m

Time/ms

Fig. 6. (color online) Comparison of the reconstruction performance.
The Greenwood frequency is 28.8 Hz.

(a) (b) (c)

Fig. 7. (color online) The long-exposure (500 ms) at 1 µm with 6 LGSs:
(a) average method (SR = 0.49), (b) the proposed method (SR = 0.75),
(c) the diffraction limit.

3.2. Large FOV

This method is also applicable in the case of large FOV.
Consider that the diameter of FOV is 1 arcmin. Thus, L =

1.2D, and the optimal ρ is 0.55D, i.e., 3.3 m, from Fig. 5.

094214-4
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Therefore, the zenith angle of LGS is 27.2′′. To improve the
imaging quality by the partial correction of the low-altitude
turbulence, an optimization in the whole FOV range is car-
ried out based on a GLAO system. The LCWC is controlled
by measuring six higher-order WFSs viewing guidestars. The
interpolation coefficient along all directions in the FOV is cal-
culated and averaged, respectively, and subsequently substi-
tuted into Eq. (5), consequently the final interpolation coeffi-
cient is obtained. Figure 8 displays SRs obtained by the aver-
age method (denoted by red hollow circle) and our proposed
method (denoted by black hollow square). Apparently, the lat-
ter is better than the former within almost the entire FOV, espe-
cially near the center area of FOV. This confirms that the phase
reconstruction method is validated for the wide field AO.

 proposed method
 average method

0 0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

S
R

Separation from center/arcmin 

Fig. 8. (color online) Comparison of the proposed algorithm with the
average method. Each point represents a view point within FOV. The
solid and dash curves are their corresponding fitted results.

4. Conclusion and perspectives
In this paper, a phase reconstruction algorithm is pro-

posed to estimate the phase for a target with an uncertain tur-
bulence profile based on the interpolation. This algorithm is
independent of the complicated measurement of turbulence C2

n

profile. Compared with the conventional average method, the
proposed method reduces the RMS from 130 nm to 85 nm
with a 30% reduction for narrow FOV. In addition, it is ap-
plicable for the case of a larger FOV. The simulation results

indicate that the phase reconstruction algorithm can obtain a
higher imaging resolution for a large FOV.
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