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The calibration of the tertiary mirror of the Thirty Meter Telescope, also known as the giant science steering
mirror (GSSM), is a step of great significance during its testing process. Systematic, drift, and random errors
constitute the major limitations to the accuracy of the calibration measurements. In this article, we estimated
the errors in the calibration of the GSSM with a laser tracker. For the systematic error, a measurement strategy
based on the standard bar method was successfully designed and applied. At the same time, we can distinguish
between the drift and random errors by means of a correlation analysis. The systematic error, which depends
strongly on the configuration of the system formed by the GSSM and the laser tracker, was estimated to be
20 μm for the GSSM prototype. The random error, averaging 15 min, was about 4 μm. The correlation coef-
ficients among three different noise measurements are all lower than 0.1, which indicates that the noise is domi-
nated by random errors. Finally, the error can be sufficiently suppressed by rearranging the position of the
spherically mounted retroreflectors. The result shows that the accuracy of the measurement can be improved
by 21.4% with the new arrangement method. © 2016 Optical Society of America

OCIS codes: (110.6770) Telescopes; (120.0120) Instrumentation, measurement, and metrology; (150.1488) Calibration; (220.4840)

Testing; (140.3490) Lasers, distributed-feedback.
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1. INTRODUCTION

The Thirty Meter Telescope (TMT) will be one of the largest
telescopes in the world. It will be equipped with active optics
and an extremely large segmented main mirror, which will pro-
vide the telescope with a dramatically increased light collection
capability. The tertiary mirror (M3) of the TMT, also known as
the giant steering science mirror (GSSM), will reflect light to
the Nasmyth platform. The CIOMP (Changchun Institute of
Optics, Fine Mechanics, and Physics) is in charge of construct-
ing the GSSM. In order to understand its requirements and
characteristic errors, the CIOMP decided to build a 1/4-scale
prototype, the so-called GSSMP [1–3].

The GSSM will be responsible for the pointing, slewing,
tracking, and guiding operations. Pointing is a blind operation
that aligns the telescope to targets in the sky with no optical
feedback; this alignment will be controlled by the instruments
on the Nasmyth Platform via rotation and tilting axes of the
GSSM. Slewing can be described as a fast movement of the
GSSM between two positions. Tracking involves smoothly fol-
lowing the target. Finally, guiding stands for closed-loop
tracking with optical feedback. Tracking and guiding will be
under the command of the control system. Because of the long
distance traveled by the transmitted light, the GSSM relies on

accurate calibration of the tertiary mirror to achieve the re-
quired precision in the pointing process [4–6].

The GSSM calibration aims to minimize the error between a
commanded rotated position (registered by encoders) and the
actual rotated position (measured with a laser tracker) [7–9].
Hence, it involves two different steps: the calibration of the
encoders and that of the laser tracker. The tertiary mirror is
so large that it works in very complicated load conditions
(at most 90° degrees off the zenith). Besides, the light reflection
ability of the GSSM is very sensitive to the rigid-body displace-
ment of the mirror. Although traditional calibration instru-
ments (autocollimator, for instance) can meet the accuracy
requirements for the measurement, they do not allow changing
the orientation of the measurement. A laser tracker not only
provides high measuring accuracy but also is able to realize
rotation and elevation. It can measure both the distance
between objects and the deflection angles in the horizontal
and vertical directions by using a distance-measuring interfer-
ometer and two angular encoders [10].

Nevertheless, with the increase of optical element diameter,
the measuring area of the laser tracker also becomes larger,
which as a result, leads to the loss of measuring accuracy.
Based on the double frequency laser interference technique,
the distance measuring precision of the laser tracker can still
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reach submicron level on a large scale [11]. However, affected
by type, structure, and installation of encoders, the angle meas-
uring precision is comparably lower, which makes it the main
source of error of the laser tracker. Therefore, the angle meas-
uring accuracy of the laser tracker must be further improved
before calibrating the GSSM.

Angle measurement by laser tracker has been studied by
scholars. Lin improved the accuracy to several arcsec by moving
a laser tracker to different stations [12]. Ma used a laser tracker
to evaluate the error in small angular motion (1 deg at
maximum) [13]. The mentioned methods both used one
spherically mounted retroreflector (SMR). Wang proposed a
self-calibration method, regarded as the iterative process of
the equal division average method (EDA-method), which used
three or four SMRs for higher accuracy [14]. Due to the limited
space and the extremely large travel range of the GSSM, the
first two methods cannot meet the requirements. As for the
EDA-method, the way of multiple angle measuring compo-
nents is practical and effective. However, the arrangement of
SMRs can be further optimized to improve the accuracy of
angle measurement [15].

In this paper, first the error source of the laser tracker is
analyzed from three aspects: systematic, drift, and random
errors. Second, by rearranging the position of the SMRs, an
error suppression method is proposed to improve the accuracy
of the angle measurement. Finally, the numerical simulation
and experiment are conducted to improve the effectiveness
of the error analysis and suppression method.

2. DEFINITIONS AND ANALYSIS

A. Definition of the GSSMP Coordinate System
The first thing that needs to be defined is the coordinate system
of the tertiary mirror. All motions are about the Z-axis of the
elevation coordinate system (ECRS) and the X-axis of the M3
coordinate system (M3CRS). For the calibration, the goal is to
precisely measure the difference between commanded and
actual positions and then to fine-tune the performance by
means of control algorithms. In order to measure the actual
position and check that all the motion requirements are fulfilled
[16], a calibration lookup table that lists encoder readings
was created.

The support interface (black one under the SMR) shown in
the small interface in Fig. 1 is screwed to the GSSMP. It is
more convenient to place the SMRs in different places of
the GSSMP. The repeatability accuracy of this system is also
very good (less than 10 μm). The experiment was carried
out in the laboratory, with a room temperature of 24.3°C.
SMRs will be located on the yoke. The line between the two
targets will define the M3CRS X-axis. By rotating the posi-
tioner, the ECRS Z-axis can also be defined.

B. Error Analysis for the Laser Tracker Measurement
Before the calibration, an error analysis was performed to ana-
lyze the sources of error for the laser tracker and try to minimize
this error. A correct calibration of the laser tracker is essential
because its accuracy is the major limiting factor in the calibra-
tion of the mirror. Measurement errors can be divided in three
types: systematic, drift, and random error [17–19].

Systematic errors are characterized by low spatial and tem-
poral frequency and can be partially suppressed by using the
lookup table. On the other hand, random errors can be mini-
mized through averaging. Finally, drift errors are those whose
characteristic time is comparable to the duration of the test.
Therefore, drift errors force us to limit the measurement
duration.

In this study, the three types of error were estimated and
compared to the GSSM/GSSMP requirements, choosing the
best testing approach.

1. Systematic Error Analysis
The laser tracker can define the coordinates of the SMR.
Therefore, the angle can be obtained by using the basic sine
or cosine laws for triangles. The angular testing performed with
the laser tracker is based on the formula

θ � 2 arc sin

�
Δ
2r

�
; (1)

where θ is the angle that we want to measure, Δ is the displace-
ment realized by the laser tracker, and r is the rotational radius
of the SMR, as shown in the left panel of Fig. 2. The error in
the angle can be expressed as

Fig. 1. GSSM mirror, showing details of the assembly and the two
relevant coordinate systems for the TMT M3.

Fig. 2. Laser tracker angular error.
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δθ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δΔ
r

�
2 �

�
δrΔ
r2

�
2

r

cos
�
θ
2

� ; (2)

where δΔ is the error of the angle measurement. δΔ is in the
position measurement, and δr is the location error along
the laser beam. According to the specifications provided by
the vendor, δΔ � δr � αr(where we chose α � 8 μm∕m
provided by the vendor). δθ is shown in Fig. 2, where the
angular accuracy is limited by the value of α, a theoretical
limit for accuracy calibration. Under this limitation, enlarging
the testing radius can increase the angular precision.

While the error of the laser tracker in a certain testing
configuration can be simulated using a Monte Carlo method,
such a simulation cannot always fill the gap between the
actual system (the GSSM/GSSMP in our case) and the
theoretical model. First and foremost, the theoretical model
cannot account for the spatial limitations of the laser beam.
Unfortunately, Monte Carlo methods assume that all the data
points used in the simulation will be tested in the practical
measurement. This is the main reason to opt for practical error
testing instead. Furthermore, the conditions in the testing
facility (temperature, environmental vibrations, etc.) are com-
plicated and impossible to predict. Hence, the simulation is not
capable of taking all of these factors into consideration. Though
the laser tracker can compensate for the turbulence of the air
only partially, it is better to do the error estimation by practical
testing [20].

Practical error estimation was realized by testing the length
of a standard alloy bar. This allows measuring the accuracy of
the laser tracker at a certain position. In order to prevent the
error accumulation characteristic of laser tracker systems, it is
necessary to minimize the duration of the test and the changes
in the position of the laser tracker itself. Therefore, the standard
bar was set vertically to the line between the laser tracker and
the center of the standard bar, which is as close as possible to the
GSSM/GSSMP. The experimental setup for the calibration is
shown in Fig. 3.

The length of the standard bar (which was 1016.0151 mm)
was measured previously by the CMM with an accuracy of
3 μm. The measurement by the laser tracker was performed
as follows (see Fig. 4): we placed the bar at location #1 and
recorded the coordinates of point B2; then we measured ten
times the length B1B3 and calculated the average; finally, we
placed the bar at locations #2–#4 and repeated the previous
steps. The values of B1B3 measured at the different positions
are displayed in Fig. 4. The average location accuracy is 20 μm.

The angular accuracy for the tilt axis can be calculated using
the following formula:

Δθtilt �
Δr
r
; (3)

where Δθtilt is the angular accuracy, Δr is the location accuracy,
and r is the rotational radius of the SMR at locations #1 and #3.
Figure 5 shows the geometry and dimensions of the GSSM.
The lengths of the major and minor axes are 1797 mm and
1288 mm, respectively, whereas the corresponding values for

Fig. 3. Experimental setup for the error calibration of the laser
tracker.

Fig. 4. Measurement of the systematic error of the laser tracker.

Fig. 5. Geometry and dimensions of the GSSM.
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the prototype are 447 and 327 mm. When the GSSM rotates
around the rotation axis, r is the major axis, while if the GSSM
rotates around the tilt axis, r is the minor axis. Thus, the
systematic measurement error for the tilt axis is

Δθtilt �
20 μm
447 mm

� 9.2 0 0:

The angular accuracy for the rotation axis can be calculated
through

Δθrotate �
Δr
r
; (4)

where Δθrotate is the angular accuracy,Δr is the average location
accuracy, and r is the rotational radius of the SMR at locations
#2 and #4. The systematic measurement error for the rotation
axis is

Δθrotate �
20 μm
327 mm

� 12.6 0 0:

According to the design requirement [REQ-2-M3-0920],
the M3 system (M3S) shall be able to rotate the M3 mirror
about the ECRS Z-axis to any angle within the range with
a repeatable residual M3 rotation error (after telescope
calibration) that is less than 3.5 arcsec RMS. According to
our results,

Δθtilt �
20 μm

1797 mm
� 2.2 0 0:

According to the requirement [REQ-2-M3-0930], the M3S
should be able to tilt the M3 mirror about the M3CRS X-axis
to any angle within the range with a repeatable residual M3 tilt
error (after telescope calibration) that is less than 3.5 arcsec
RMS [21]. We find that

Δθrotate �
20 μm

1288 mm
� 3.2 0 0:

Hence, the GSSM will meet both requirements.

2. Drift Error Analysis
Drift errors are the errors between systematic errors and ran-
dom errors, which have characteristic durations shorter than
systematic errors (the latter are considered not to change during
measurement). On the other hand, the characteristic duration
is longer for drift errors than for random errors (random errors
are related to neither time nor other data).

The drift error Ed can be expanded as a MacLaurin series in
time t as

Ed �
X∞
i�0

E �n�
d

i!
ti : (5)

We assume the drift error follows a quadratic law of t, so it
can be expressed as

Ed � α� βt � γt2: (6)

The correlation coefficient of different sampling lengths has
the following form:

C�x; y� �
P�xi − Ex��yi − Ey�

DxDy
: (7)

where xi and yi are the data, Ex and Ey are the estimated values
for xi and yi, and Dx and Dy are the standard deviations
of xi and yi, respectively. If two rows of data have drift
errors Ed1 � α1 � β1t and Ed2 � α2 � β2t, the correlation
coefficient is

C�Ed1; Ed2� � 1:

The drift error is always strongly coupled with the random
error, so they will be tested together and analyzed using the
correlation coefficient in the next section.

3. Random Error Analysis
The random error can be partially suppressed by averaging over
multiple measurements. However, unless the number of mea-
surements is sufficiently large, the random error will still play a
role in the testing results.

The correlation coefficient can direct the judgment of ran-
dom error. If the random noise is truly “random,” the correla-
tion coefficient will be very small. At the same time, using the
correlation analysis, the drift error and the random error can be
told. Compared to the drift error, the correlation coefficient of
random error will be significantly larger, whence the correlation
coefficient can serve to recognize the random error. Here, we
recorded the error of the laser tracker at different times, places,
and temperatures.

As the drift error depends strongly on the duration of the
measurement, we completed all the tests at each position in
15 min position. We followed these steps:

1. Set the laser tracker pointing to a certain position and
record its reading for 15 min.

2. Then direct the laser tracker to another position and do
the same.

3. If the two datasets present a large correlation, it means
the data are affected by drift errors. Otherwise, if there is no
relationship between the two datasets that means the error is
just random.

4. For the drift error, we should perform a quadratic fit to
extract the drifting term, whereas the random error can be sup-
pressed by averaging multiple measurements.

The measured signals are shown in Fig. 6. As previously
commented, the three series of data correspond to different
locations and conditions, such as temperature and air turbu-
lence. The correlation coefficient matrix is represented graphi-
cally Fig. 7. The self-correlation coefficients are obviously
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Fig. 6. Measurement of the random error of the laser tracker.
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one, while the cross-correlation coefficients are 0.14, 0.06,
and 0.001. This means that the noise is more likely due to
the random error rather than the drift error during the
15 min measurements.

The magnitude of the random error is about 0.003 mm.
Due to the averaging effect, the random error is much smaller
than the systematic error.

We were careful to perform the measurements in a moment
of small temperature variation since such a change would affect
the results. For the GSSMP testing, the calibration will be proc-
essed after the temperature is tested in previous days.

3. ERROR SUPPRESSION

In the previous section, we analyzed the error through one-
point measurements. However, calibration is essentially an
angle-testing procedure, whose accuracy will be strongly influ-
enced by the location of sensors and the algorithm used to
process the raw data.

Angle has a peculiarity that it is a 360° closed system
[22–24]. The equal-weights error Δθ can be expressed as a
Fourier series with components of different orders. The
following expression includes most of the systematic and
random errors:

Δθ �
Xm
k�1

ek
R

sin�kθ�; (8)

where k � 1 � � �m is the order of the Fourier harmonic repre-
senting the amplitude of the spatial frequency error, θ is the
angle covered by the system, ek is the magnitude of the k order
error, and R is the radius of gyration. If the angle measurement
error is achieved by performingN readings with equal intervals,
the readout ΔθΣ can be expressed as

ΔθΣ � 1

N

Xm
k�1

ek
R

(
sin�kθ� � sin

�
kθ� k 2π

N

�
� � � �

� sin �kθ� k�N − 1� 2πN �

)
: (9)

We can reformulate this equation using a basic trigonomet-
ric relationship:

ΔθΣ �
1

N

Xm
k�1

ek
R

�
sin�kθ�� sin�kθ�cos

�
k
2π

N

�

� cos�kθ� sin
�
k
2π

N

�
�� � �� sin�kθ�cos

�
k�N − 1�2π

N

	

� cos�kθ� sin
�
k�N − 1�2π

N

	


� 1

N

Xm
k�1

ek
R

�
sin�kθ�� sin�kθ�cos

�
k
2π

N

�

� cos�kθ� sin
�
k
2π

N

�
�� � �� sin�kθ�cos

�
k�N − 1�2π

N

	

� cos�kθ� sin
�
k�N − 1�2π

N

	


� 1

N

Xm
k�1

ek
R

�
sin�kθ�� sin�kθ�cos

�
k
2π

N

�
��� �

� sin�kθ�cos
�
k�N − 1�2π

N

	


� 1

N

Xm
k�1

ek
R

�
cos�kθ� sin

�
k
2π

N

�
�� � �

� cos�kθ� sin
�
k�N − 1�2π

N

	

: (10)

Then, after the calculation, we get the following estimation
in short. The following Eq. (11) can indicate the relationship
between readout error and the number of the reading heads:

ΔθΣ � 1

N
ek
R

2
64cos

h
k�N − 1� π

N sin
�
Nk π

N

�i
sin �k π

N�

3
75: (11)

Assuming that k � cN (where c is an integer), we obtain the
magnitude of the read out error as

jΔθΣj �
ek
R
: (12)

On the other hand, if k ≠ cN , then jΔθΣj � 0. Therefore,
only the error components with k ≠ cN can be suppressed. It is
obvious that c ≥ 2, so the error involving the decenter of the
sensor will be suppressed. Thus, the location accuracy of the
SMR will also loose. In other words, calibration is not affected
by the mechanical error involved by the nest itself.

The original location of the SMR for the calibration is
shown in Fig. 8. Figure 8(a) presents the configuration used
for the rotation axis and Fig. 8(b) shows that employed for
the tilt axis.

For rotation, the SMR 2, 4 shall be located at the peaks of an
equilateral triangle and 1, 3 be located at the opposite peaks of
the diameter. The equal-weights error can be expressed as

θrotation �
1

4
�T 1 � T 2 � T 3 � T 4�; (13)

where θrotation is the rotation angle under testing, and T 1 − T 4

are the corresponding angular changes of the SMR 1–4.
By Eq. (9), the error of the rotation angle measurement in

which accuracy is equal to the two-reading-heads case can be

Fig. 7. Calculation of the correlation coefficient between the differ-
ent measurements of the error of the laser tracker.
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expressed as the following equation, where r1 � r3 � R1,
r2 � r4 � R2, and N � 2:

ΔθΣ�
1

2

Xm
k�1

ek
R1

�
sin�kθ�� sin

�
kθ�3k

2π

N

�


�1

2

Xm
k�1

ek
R2

�
sin

�
kθ�2k

2π

N

�
����� sin

�
kθ�4k

2π

N

�

:

(14)

To improve the measurement accuracy, we chose the
weights as here we chose the weights as R2

R1�R2
for the test points

T 1, T 3 and R1

R1�R2
for the points T 2, T 4:

θrotation �
1

2

R2

R1 � R2

�T 1 � T 3� �
1

2

R1

R1 � R2

�T 2 � T 4�:

(15)

Using those weights, the error can be expressed as the
following Eq. (16), where r1 � r3 � R1, r2 � r4 � R2, and
N � 2:

ΔθΣ�
1

2

R1

R1�R2

Xm
k�1

ek
R1

�
sin�kθ��sin

�
kθ�3k

2π

N

�


�1

2

R2

R1�R2

Xm
k�1

ek
R2

�
sin

�
kθ�2k

2π

N

�
�sin

�
kθ�4k

2π

N

�


�1

2

1

R1�R2

Xm
k�1

ek

�
sin�kθ��sin

�
kθ�2k

2π

N

�

�sin

�
kθ�3k

2π

N

�
�sin

�
kθ�4k

2π

N

�

: (16)

It is in accordance with the four SMRs case. The error com-
ponents except for the 4 × c order will be suppressed.

For the tilt, T 2, T 4 are not available for the calculation.
Hence, the accuracy is equal to the two reading head average
case. All components except those of 2 × c order can be
suppressed. By the weighted method, the accuracy of the

rotation angle can be improved. Due to the limited space, it
can be measured only by two SMRs.

We ran a simulation to verify the error suppression pro-
cedure. We provide four deviation series, which are shifted
by π

2 and added some amount of noise, as shown in Fig. 9.
The error can be minimized through averaging. The error

series before and after averaging are shown in Fig. 10. We can
see that the error has been obviously constrained.

The Fourier components of the error before and after aver-
aging are shown in Fig. 11. All components except those whose
order is a multiple of four get suppressed. While the error origi-
nally contains all the components, after averaging it contains
only those with order 4, 8, 12, 16, and 20. At the same time,

Fig. 8. Configuration of the calibration with a laser tracker for
(a) the rotation axis and (b) the tilt axis. 0 100 200 300 400
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random errors with large temporal frequency are suppressed
due to the averaging.

According to the previous analysis, the SMR should be
located with equal interval. By the utilization of 4 SMRs, all
components except those with order 4 × c will be suppressed.

The existing method of error measurement and suppression
for the laser tracker can be summarized. The early research
mainly used one reading head for measurement. In order to
improve the accuracy of the angle encoder, multireading heads
and the Fourier components distribution of the angle encoder
deviation also have been discussed by other scholars. However,
the accuracy can be further improved if we use a certain
quantity of SMRs. If that number is 4, it can be expressed
as 4 � 3� 2 − 1. Thus, we can divide the SMRs in two groups
of 3 and 2 SMRs, whence all components of the error except
those with order 3 × 2 × c will be suppressed. Thus, we can re-
arrange the SMR assignment. The quantity of the SMRs is the
same, but the four SMRs can be expressed as the combination
of a line and a triangle. This configuration is shown in Fig. 12.

We consider four deviation series, where three of which are
shifted by 2π

3 and two are shifted by π. The error series before
and after averaging are shown in Fig. 13. We can see that the
error is obviously suppressed by performing the average. All
components of the error except those whose order is a multiple
of 6 get suppressed, as shown in Fig. 14, resulting in an error
much smaller than in the case when n � 4.

Based on the previous analysis, the SMRs can be rearranged.
There are still 4 SMRs on the GSSMP dummy mirror. To
ensure the same rotational radius, the location is carefully
calculated.

It is difficult to have SMRs at T 2 or T 4 due to the limited
space left by the yoke. If the SMR T 2, T 4 could be located like

in Fig. 15, there would be more space left. Hence, such a con-
figuration would be more convenient to perform the metrology.
The configuration of the testing plan for both tilt and
rotation is shown in Fig. 15. SMR T 1 − T 4 has the same radius
for rotation and for tilt, but it has two kinds of length. All
error components will be suppressed except those with
order 3 × 2 × c.

In order to verify the correctness of this method, we com-
pared the two kinds of arrangements both with four SMRs. The
error curve of the GSSMP rotation axis accuracy is shown in
Fig. 16. The result shows that the RMS value of the uniform
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Fig. 12. Profile of the location of the SMRs.
Fig. 15. Configuration of the testing plan for both tilt and rotation.
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arrangement is 11.50 0 0 (29.21 cm), and the nonuniform
arrangement is 9.04 0 0 (22.9616 cm). Thus, the accuracy of
the measurement has been improved by 21.4%.

4. EXPERIMENT

As the GSSMP rotation axis has already been completely as-
sembled, its accuracy can be measured. The rotation assembly
has four reading heads with 32 bits each. For pointing and
tracking, the M3S rotation range about the ECRS Z-axis shall
be θ � �14° to −28° for instruments on the �X Nasmyth
Platform and θ � �166° to �208° for instruments on the
−X Nasmyth platform. Figure 17 shows a schematic diagram
of the rotation range. The calibration range would be the same
as in the actual work conditions [25].

As stated earlier, for the rotation axis, the step length is 1°. It
is a good approximation to assume that the error is evenly dis-
tributed in this range. Figure 18 show the deviation of the
encoder on the test and behavior of the ideal encoder. If the
averaged error in the whole 1° step range met the requirements,
we could ensure that arbitrary motion would also meet the
requirements after calibration.

Here the resolution that is directly related to the minimum
internal resolution of the encoder is τresolution. For both the
rotation and tilt axes, the resolution is τresolution � 360°

232
�

3 × 10−4 arc sec and δti is the error over a 1° step.
The number of electronic pulses n in the 1° step, which is

theoretically equal to the grooves, is

n � 1°
τresolution

� 3314:

The requirement is a repeatable residual M3 rotation error
(after telescope calibration) that is less than 5 arcsec RMS:

K nδti
n

≪ 5 0 0;

where K n � 3 − 5 is the safety coefficient.

5. CONCLUSIONS

An error analysis of the calibration is very necessary because
tracking is the most important function of the GSSM. The
unique motion of the GSSM has forced the positioning team
to do their best to accomplish the goal. If the error was not
sufficiently suppressed, this hard work would be wasted. In
the error analysis, systematic errors were estimated by the
standard bar method, while the drift and random errors can
be distinguished using the correlation coefficient. The tests per-
formed on the GSSMP yielded a systematic error of about
20 μm and a random error (averaging 15 min) of about 4 μm.
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