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a b s t r a c t

Open-framework aluminophosphates (AlPOs) is an important family of porous crystal materials. But the
synthetic chemistry of this kind of materials is very complicated, and the synthesis mechanism has not
been clearly understood yet. In this paper, we propose a Hierarchical Feature Selection Model (HFSM)
composed of two layers to analyze the rational synthetic parameters for the subclass of microporous
aluminophosphates (AlPOs) containing (6,8)-rings. In the first layer, we select a feature subset that could
separate the (6,8)-ring-containing microporous AlPOs from other AlPOs. In the second layer, we further
analyze which of these selected features are critical for the formation of each special subclass in (6,8)-
ring-containing microporous AlPOs. With the optimal feature subset selected by the proposed model, we
can obtain the highest accuracy rates as 94.28%, 94.03%, 91.27% and 92.20% for the classification of AEN,
AWO, CHA and ERI, respectively. Extensive analysis is presented for the synthetic parameters selected by
the hierarchical model, which could provide a useful guidance to the rational synthesis of such materials.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Zeolites and related microporous materials have been widely
applied in petroleum industry for catalysis, separation and ion-
exchange [1,2]. These materials are formed by TO4 tetrahedra (T
infers to Si, P, Al, Ge, Ga, etc.) with a well defined regular pore
system. As an important member of Zeolites and related micropo-
rous materials, open-framework aluminophosphate molecular
sieve has caught much attention for the past 20 years [3e7].
However the process for synthesizing suchmaterials is complicated
and influenced by many parameters, such as gel composition, PH
value, solvent, template etc. In order to provide guidance to rational
synthesis of microporous inorganic materials, the group of State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry of
Jilin University established AlPOs synthesis database internation-
ally [8]. This database contains about 1700 synthetic records which
belong to 17 classes according to the sizes of the pore rings.
ce and Information Technol-
, China.
).
Data mining is the transformation bridge from data and infor-
mation to knowledge. With the rapid development of computer
technology and artificial intelligence, data mining plays an impor-
tant role in more and more application fields. In chemical re-
searches, data mining has been widely applied to the original data
processing and retrieval [9e11], statistical analysis [12e14] and
parameterization of the molecular descriptors [15e17]. The estab-
lishment of the AlPOs synthesis database makes it possible that we
can use data mining technology to study the synthetic parameters
for the rational synthesis of AlPOs. Recently, several researchers
have already adopted data mining techniques to analyze the impact
of the synthetic parameters on the resulting structures based on the
database established by Jilin University. In Ref. [18], Li et al. studied
the relationship between synthetic parameters and rational for-
mation of (6,12)-ring-containing AlPOs. The feature subset to be
evaluated in Ref. [18] was obtained through an exhaustive search-
ing strategy. They evaluated the classification performance of all the
combinations of synthetic parameters using Support Vector Ma-
chines. The combined parameters which influenced most for dis-
tinguishing (6,12)-ring-containing AlPOs from non-(6,12)-ring-
containing AlPOs were deemed as the optimal feature subset. In
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Ref. [19], Yao et al. analyzed the affect of different synthetic pa-
rameters on the production of (6,12)-ring-containing AlPOs. In or-
der to take the discriminant information of features into account,
they calculated the importance degree of each feature by a fusing
methodwhich fused Fisher Score [20] andMutual Information [21].
In Ref. [22], Qi et al. explored the relationship between the syn-
thetic parameters and the specific resulting structure containing
(6,12)-ring. In their method, the random subspace technique was
first employed to pre-rank the synthetic parameters. Then, the
fusion weights of synthetic parameters were obtained by Fisher
score. At last, a sequential forward searching algorithmwas utilized
to select the most significant synthetic parameters based on the
fusing results of previous two steps. In Ref. [23], Gao et al. discussed
the impact of the parameters on the formation of (6,8)-ring-con-
taining AlPOs and the subclasses of this ring-type based on their
professional knowledge, and they validated their conclusions by
Support Vector Machine (SVM).

Although the pioneering works mentioned above have made
some achievements, there are still some limitations in them. In
Refs. [18,19 and 22], the researchers only took the (6,12)-ring-con-
taining AlPOs as prediction target to analyze the synthetic param-
eters. However, the (6,12)-ring-containing AlPOs actually consist of
several subclasses. For example, both ATO and AFI are (6,12)-ring-
containing AlPOs, but they are two kinds of molecular sieves since
they are different in topological structures, and the relevant syn-
thetic parameters which are important for their formation may be
also different. Therefore, in order to analyze the synthetic param-
eters more reasonable, the diversity of the subclasses for a specific
class of AlPOs must be taken into account. In Ref. [23], although the
subclasses of (6,8)-ring-containing AlPOs have been considered, the
optimal feature subsets for them was analyzed by professional
knowledge of the domain experts rather than fully mining the data.
Furthermore, the correlation among the selected features was
neglected in all aforementioned works [18,19,22,23]. This may
cause information redundancy since a good feature subset should
be the one that contains features highly correlated with the class,
while uncorrelated with the features each other [24].

Among various microporous aluminophosphates, AlPO molec-
ular sieve with 8-ring channel is a typical kind of small pore ma-
terials used for gas separation and catalysis. For example, SAPO-34
(CHA zeotype) is an effective catalyst for the conversion of meth-
anol to light olefins [25,26]. Thus, in this paper we focus on
analyzing the formation parameters of the four important sub-
classes (AEN, AWO, CHA and ERI) of (6,8)-ring-containing AlPOs. In
order to overcome the limitations of the previous works and better
analyze the formation parameters of subclasses, we propose a Hi-
erarchical Feature Selection Model (HFSM). Compared with the
previous works in Refs. [18,19,22 and 23], the proposed model
possesses two advantages: (1) The proposed model takes the sub-
classes of (6,8)-ring-containing AlPOs into consideration. Thus,
with the proposed HFSM, the parameters which are critical for the
formation of each specific subclass of (6,8)-ring-containing AlPOs
can be well analyzed. (2) Since the correlations among the selected
features are considered in our model, the feature subset selected by
HFSM is more optimal than the previous works.

This paper is organized as follows. The material and method are
presented in Section 2. The experimental results and analysis are
shown in Section 3 and the conclusions are given in Section 4.

2. Materials and method

2.1. Data sets

Like other works in Refs. [18,19,22 and 23], we also use the
microporous AlPOs database established by State Key Laboratory of
Inorganic Synthesis and Preparative Chemistry of Jilin University in
this study(http://zeobank.jlu.edu.cn/). By removing records which
include missing values, we use the remainder 1279 records as the
experimental samples. The experimental samples contain 332
(6,8)-ring-containing AlPOs which are composed of 18 zeotypes (or
subclass). The number of four subclasses (AEN, AWO, CHA and ERI,
as shown in Fig. 1) that possess the largest sample number of the
(6,8)-ring-containing AlPOs are 26, 77, 100 and 36 respectively. The
descriptions of the input synthetic parameters are shown in Table 1.
The gel chemistry is crucial for the formation of microporous AlPOs.
Therefore, four important features related to the molar concen-
trations of Al2O3, P2O5, solvent and the organic template in the
starting gel are used as part of the input features for training the
classifier [18]. As a result, the remaining seventeen synthetic pa-
rameters (or features) belonging to two classes (solvent and organic
template) in Table 1 are analyzed in this work. Here, it should be
pointed out that some other parameters such as synthetic tem-
perature, time and pressure which may also crucial for the syn-
thesis of zeolites are not considered in our paper and previous
works in Refs. [18,19,22,23]. This is due to that some records in the
microporous AlPOs database did not provide the values for them.
Even for the records contain these parameters, most of them are
given in a range form rather than precise value, which makes them
hardly to be exactly analyzed by the data mining techniques.

2.2. The Hierarchical Feature Selection Model

AEN, AWO, CHA and ERI are four subclasses of (6,8)-ring-con-
taining aluminophosphate molecular sieve. Although they all
contain (6,8)-rings, their topological structures are very different
from each other, as shown in Fig. 1. Thus, in order to better un-
derstand the rational synthesis of the four subclasses, it is neces-
sary to select the important synthetic parameters for each of them.

Feature selection is one of the key steps in machine learning and
pattern recognition problems. The aim of feature selection is to find
the optimal feature subset that is necessary and sufficient for a
specific task. Feature selection has several potential benefits, such
as improving the accuracy of classification, avoiding the well-
known “curse of dimensionality” problem, speeding up the
training process and reducing storage demands. Specially, it can
provide a better understanding and interpret ability for a domain
expert [27,28].

In our study, letX ¼ [x1, x2,…, xn]2<D�n be the entire AlPOs
dataset containing n samples in D dimensional space. Suppose that
these samples belong to C classes, we can denote the dataset as
{X1,…,XC}, in which Xi (i ¼ 1,…,C) is the samples in the ith class. The
original feature set is denoted by F, and each feature in the data set
is Fm (m ¼ 1, …, D). With the aim of analyzing the relationship
between the synthetic parameters and the (6,8)-ring-containing
AlPOs subclasses, we propose a Hierarchical Feature Selection
Model as shown in Fig. 2.

From the flowchart in Fig. 2, we could see that the proposed
feature selection model consists of two layers. In the first layer, we
find the optimal feature subset Q which could separate the (6,8)-
ring-containing AlPOs form non-(6,8)-ring-containing AlPOs. Then,
in the second layer of the model, we further analyze which of the
features inQ are important for the formation of AEN, AWO, CHA and
ERI respectively.

2.2.1. The first layer of the Hierarchical Feature Selection Model
As discussed in Ref. [24], the correlation among features is a

critical factor which should be taken into consideration in the
feature selection process. For the AlPOs synthesis database
analyzed in our study, there are some serious correlation re-
lationships between the synthetic parameters. Taking the synthetic

http://zeobank.jlu.edu.cn/


Table 1
Description of the input synthetic parameters (or features)a.

ID Description of parameter ID Description of parameter

F1 The molar of Al2O5 F12 The second longest distance of template
F2 The molar of P2O3 F13 The shortest distance of template
F3 The molar of solvent F14 The Van der Waals volume
F4 The molar of template F15 The dipole moment
F5 The density F16 The ratio of C/N
F6 The melting point F17 The ratio of N/(C þ N)
F7 The boiling point F18 The ratio of N/Van der Waals volume
F8 The dielectric constant F19 The Sanderson electronegativity
F9 The dipole moment F20 The number of free rotated single bond
F10 The polarity F21 The maximal number of protonated H atoms
F11 The longest distance of template

a F1eF4:Gel composition parameters; F5eF10: solvent parameters; F11eF21: organic template parameters.

Fig. 2. Flowchart of the proposed model.

Fig. 1. Subclasses of the (6,8)-ring-containing AlPOs. (a) AEN-zeotype AlPOs, (b) AWO-zeotype AlPOs, (c) CHA-zeotype AlPOs and (d) ERI-zeotype AlPOs.
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parameters in Table 1 as examples, the Pearson Correlation Coef-
ficient between F17 and F18 is 0.95, and the Pearson Correlation
Coefficient between F8 and F10 is 0.99. However, since the feature
selection techniques employed in previous works (such as Fisher
Score and Mutual Information in Refs. [19] and [22]) neglect the
correlation among features, the features selected by them may
contain some redundant information, which makes the selected
feature subset far from optimal [40].

In order to overcome this limitation, the Maximum Weight and
Minimum Redundancy (MWMR) [29] is utilized in the first layer of
our model to find the optimal feature subset Q for distinguishing
(6,8)-ring-containing AlPOs from other AlPOs in the AlPOs syn-
thesis database. MWMR is a newly proposed feature selection
framework which considers the weights and the correlations of the
features simultaneously during the feature selection process. The
objective function of MWMR can be defined as:

max
y

�
yTW
d

� yTRy
dðd� 1Þ

�

s:t:
P
i
yi ¼ d; yi2f0;1g

(1)
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where d is the number of the selected features, y is the indicator
vector indicating which features are selected into the subset Q. W
and R denote the weights (or importance) and correlations of the
features respectively. In Eq. (1), yTW/d and yTRy/d(d� 1) denote the
mean of the weights and the mean of the correlation for the
selected features. The constraints are used for restricting the
number of selected features in the Q to be d. Thus, MWMR could
select d features from the original feature set F to form the optimal
feature subset Q in which the weights (or importance) of features
are maximum while the correlations among the features are
minimum.

Besides considering the correlation among features, another
advantages of MWMR is that the importance and correlation of
features are not restricted to a specific measurement. Therefore, we
can choose any suitable method to estimate them for particular
task. However, most existing methods for feature importance
measurement cannot deal with the subclass of the data. For
example, a fundamental assumption of well known Fisher Score is
that class distributions are homoscedastic, which is rarely true in
practice [30]. Thus, although the Fisher Score has beenwidely used
in synthetic parameter analysis, it is not reasonable to employ it in
our studywhich takes the subclasses of (6,8)-ring-containing AlPOs
into account.

For the sake of estimating the importance of each feature in our
problem more accurately, a new algorithm termed Subclass
Discriminant Analysis Score (SDAS) is proposed in this paper. SDAS
considers the subclass by measuring not only the intra-class
dispersion of each subclass but also the inter-class dispersion be-
tween the subclass which belong to different classes. For n labeled
samples belonging to C classes{X1,...,XC}, suppose that there exist
several subclasses within each class,{X11,...,Xij,...,XCHc},where Xij de-
notes the j-th subclass of the i-th class, Hi (i ¼ 1, …,C) denotes the
number of subclasses in the i-th class. Upon this assumption,
Subclass Discriminant Analysis Score(SDAS) is proposed as:wher-
SDASðFmÞ ¼
PC�1

i¼1
PHi

j¼1
PC

k¼iþ1
PHk

l¼1 pijpkl
�
mijðFmÞ � mklðFmÞ

��
mijðFmÞ � mklðFmÞ

�
PC

i¼1
PHi

j¼1 pijsijðFmÞ
(2)

Algorithm 1. The hierarchical model for subclass synthesis parameter analysis
Input: Original feature set F.
Output: The optimal feature subset QAEN, QAWO, QCHA and QERI.

1. Compute the weight W of the original feature set F by SDAS;
2. Compute the correlation matrix R of the original feature set F by PCC;
3. Select the optimal feature subset Q from the original feature set F using
MWMR(SDAS þ PCC);
4. Select Qsubclass in Q using Gini Score.
epij are the prior of the j-th subclass of the i-th class, mij(Fm) and
sij(Fm) are the mean and the variance of the j-th subclass of the i-th
class for the m-th feature Fm. The numerator of the Eq. (2) em-
phasizes the scatter between subclasses of different classes, and the
denominator of the Eq. (2) emphasizes the scatter within the
subclasses. Thus, the more discriminative this feature is, the larger
SDAS of this feature.

For MWMR, we utilize SDAS and Pearson Correlation Coefficient
(PCC) [31] to estimate the weights and correlations of features,
which we call MWMR(SDAS þ PCC). Thus, according to the analysis
about the MWMR and SDAS, the optimal feature subset Q selected
by the first layer of our hierarchical model has two advantages.
Firstly, through taking advantage of MWMR, the redundancy of
features in Q can be effectively removed. Secondly, owing to the
employment of SDAS for feature importance estimation, the fea-
tures in Q could well preserve the separability of the subclasses in
different classes and make the samples within the same subclass
more compact.
2.2.2. The second layer of the Hierarchical Feature Selection Model
In the first layer of the proposed feature selection model, we

have obtained the optimal feature subset Qwhich could distinguish
(6,8)-ring-containing AlPOs from non-(6,8)-ring-containing AlPOs.
Nevertheless, though the feature subset Q are the most important
for the formation of (6,8)-ring-containing AlPOs, we cannot figure
out which features in it are crucial for the subclass AEN, AWO, CHA
and ERI. Therefore, in the second layer of HFSM, we will further
analyze which features in Q are the most important for the syn-
thesis of these four subclasses. The feature selection process in the
first layer has fully considered the correlation among the selected
features, so the correlations in Q are relatively small. Thus, in the
second layer, we just use Gini Score [32], a simple and efficient
feature selection method, to mining which features in Q affect most
for the synthesis of AEN, AWO, CHA and ERI respectively.

Gini Score is a feature selection method based on Gini Index,
which could measure the impurity level of the classes in the data
set. The Gini index of the original data set is defined as:

GiniIndexðXÞ ¼ 1�
XC
i¼1

p2i (3)

where pi is the probability of the sample belonging to the i-th class.
Suppose ni is the number of the sample belonging to the i-th class,
thenpi ¼ ni/n. When all samples in the data set belong to the same
class, the impurity level of this data set is taken the minimumvalue
0. If the data set is divided into C subsets X0

i(i ¼ 1, … C) by different
values of the m-th feature Fm, then total impurity level of the
subsets is:

XC
i¼1

n0i
n
GiniIndex

�
X0
i

�
(4)
where n0i is the sample number of X0
i . The Gini score of Fm is the

minimum total impurity level of the subsets when dividing the data
set into C subsets by all the values of the m-th feature. The smaller
the Gini score, the better the feature.

Finally, the complete-process of the proposed hierarchical
model is summarized in Algorithm 1.



Table 2
Confusion matrix.

Hypothesis Actual positive Actual negative

Hypothesis positive True positive (TP) False positive (FP)
Hypothesis negative False negative (FN) True negative (TN)
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3. Experiments and discussions

3.1. Performance measures

In order to evaluate the performance of the proposed HFSM, we
adopt two measures to compare the classification result of the
features selected by our model and other methods in this paper.

The AlPOs which contain (6,8)-ring are deemed as positive
samples, and the AlPOs which do not contain (6,8)-ring are deemed
as negative samples. Suppose nþ and n- are the numbers of positive
samples and negative samples. With reference to the confusion
matrix [33] in Table 2, the classification accuracy rate can be
denoted as:

Acc� Rate ¼ TP þ TN
nþ þ n�

(5)

During the feature selection in the two hierarchies, the numbers
of positive and negative samples are imbalanced. So we also utilize
the F-measure to evaluate the performances of our algorithm,
which is denoted as:

F �measure ¼
�
1þ b2

�
recall� precision

b� recallþ precision
(6)

where recall¼TP/TP þ FN, precision¼TP/TP þ FP andb is a parameter
to adjust the relative importance degree between recall and pre-
cision. In this study we set b as 1. The value of F-measure lies be-
tween 0 and 1, with value closer to 1 indicating better performance
for imbalanced problem.
3.2. Synthetic parameter analysis of the (6,8)-ring-containing
AlPOs subclass

In this section, we will validate the performance of the feature
selection model by comparing the feature selection result in first
layer and the second layer respectively. In the experiments, Nearest
Neighbor (NN) classifier [34] and Naive Bayes (NB) classifier [35]
are employed as prediction models for their advantage of
simplicity.
3.2.1. The first layer of the model
We will apply MWMR(SDAS þ PCC) to find the most distin-

guishable feature subset which could separate (6,8)-ring-contain-
ing AlPOs from non-(6,8)-ring-containing AlPOs. For comparison,
we use MWMR(InforGain þ PCC) and MWMR(Fisher þ PCC) which
represent the MWMR applying InforGain [36] and Fisher score to
measure the importance of feature. In order to validate the effec-
tiveness of the algorithm, we use 10-fold cross validation in the
experiments. The Acc-Rate of the algorithms under various feature
dimensions can be seen in Fig. 3, and feature selection results are
given in Tables 3 and Table 4.

From Fig. 3, Tables 3 and 4, we can find through taking the
subclass into consideration by utilizing SDAS to measure the
importance of feature, MWMR (SDAS þ PCC) is superior to MWMR
(InforGain þ PCC) and MWMR(Fisher þ PCC) in most cases.
Moreover, the feature subset with 9 features selected by
MWMR(SDAS þ PCC) obtains the highest Acc-Rate and F-measure
with NN. It suggests that the features selected in the previous 9
dimensions by MWMR(SDAS þ PCC) may take significant infor-
mation for the formation of (6,8)-ring-containing AlPOs. In accor-
dance with the result, the optimal feature subset Q is {F5, F9, F11,
F12, F13, F14, F15, F17, F20}.

3.2.2. The second layer of the model
Next, we will apply Gini Score to find which features are more

important to a special type of subclass (AEN, AWO, CHA and ERI)
from the selected feature subset Q obtained in the first layer. We
also apply T-test [37], Constraint Score [38] and Laplacian Score [39]
in the experiments as comparison.We use 5-fold cross validation in
the experiments to validate the effectiveness of the algorithm.

The synthetic parameter analysis of AEN
The Acc-Rate of different methods under various feature di-

mensions for the subclass AEN can be seen in Fig. 4, and the highest
Acc-Rate and F-measure obtained by different feature selection
methods are given in Table 5 and Table 6.

From the result, we could find that for the feature selection of
subclass AEN, Gini Score obtains the highest Acc-Rate as 94.28% and
F-measure as 0.7079 with Naïve Bayes when 3 features are selected.
According to the result, the optimal feature subset for the formation
of AEN is {F11, F14, F20}. For AEN with two 8-rings windows, the
organic templates are usually located in the two-dimensional
channels. The optimal feature subset for AEN includes 2 geomet-
rical properties which represents that the size of template directly
impact on the size of the framework. The feature selection result
also includes F20 which implies that template features impact on
the charge of framework to some extent.

The synthetic parameter analysis of AWO
For the subclass AWO, The Acc-Rate of different methods under

various feature dimensions can be seen in Fig. 5, and the highest
Acc-Rate and F-measure are given in Table 7 and Table 8.

From the result above, we can find that Gini Score obtains the
highest Acc-Rate as 94.03% and F-measure as 0.8690 with Nearest
Neighbor Classifier when 2 features are selected for the feature
selection of subclass AWO. According to the result, the optimal
feature subset for the formation of AWO is {F12, F17}. For AWO, the
organic templates are usually located in the one-dimensional
channel. Therefore one-dimensional channel may be more sensi-
tive to the second longest distance of organic template. As the
feature selection result shows the protonation ability of N of the
template is also important for the formation of AWO.

The synthetic parameter analysis of CHA
For the subclass CHA, the Acc-Rate of different feature selection

methods under every dimension can be seen in Fig. 6, and the
highest Acc-Rate and F-measure are given in Table 9 and Table 10.

For the feature selection of subclass CHA, Gini Score obtains the
highest Acc-Rate as 91.27% and F-measure as 0.8280 with Nearest
Neighbor Classifier when 5 features are selected. According to the
result, the optimal feature subset for the formation of CHA is {F20,
F14, F12, F13, F11}. For CHA with a cha cage structure, the organic
templates are usually located in the three-dimensional channels or
cha cage. Since CHA contains a cha cage structure, all the geometry
properties are included in this optimal feature subset. Cage struc-
ture plays a role in accommodating the organic template, therefore
the number of free rotated sing bond is selected.

The synthetic parameter analysis of ERI
The feature selection result for the subclass ERI can be seen in

Fig. 7, Table 11 and Table 12. For the subclass ERI, Constraint Score,



Table 3
The highest Acc-Rate (%) and the corresponding dimension obtained by the methods.

NN NB

Acc-Rate Dimension Acc-Rate Dimension

MWMR (InfoGain þ PCC) 93.85 (±0.023) 15 88.71 (±0.034) 6
MWMR (Fisher þ PCC) 93.75 (±0.071) 4 88.99 (±0.047) 9
MWMR (SDAS þ PCC) 94.03 (±0.033) 9 88.99 (±0.049) 6

The highest Acc-Rate and highest F-measure are highlighted in bold.

Table 4
The highest F-measure obtained by optimal feature subset.

NN NB

F-measure Dimension F-measure Dimension

MWMR (InfoGain þ PCC) 0.8535 (±0.0011) 15 0.7108 (±0.0025) 6
MWMR (Fisher þ PCC) 0.8516 (±0.0011) 4 0.7155 (±0.0060) 9
MWMR (SDAS þ PCC) 0.8550 (±0.0017) 9 0.7075 (±0.0058) 6

The highest Acc-Rate and highest F-measure are highlighted in bold.

Fig. 3. The Acc-Rate obtained by MWMR with different weight measurements by (a) using NN as classifier and (b) using Naïve Bayes as classifier.
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Laplacian Score and Gini Score obtain the highest Acc-Rate as
92.20% and F-measure as 0.6358 with Nearest Neighbor Classifier.
However from the performance of these four methods of all above
experiments and the experiments in this section, Gini Score is
relatively more outstanding and stable. Therefore, we still use the
result of Gini Score as the final result here. Based on the result of
Gini Score, the optimal feature subset for the formation of ERI is
{F11, F14, F20, F15, F17}. For this subclass, the organic templates are
usually located in the three-dimensional channels. According to the
outcome, the longest distance, the Van der Waals volume, the
flexibility, the dipole moment, and the charge density parameters
of template are important for its formation.

3.3. Compare with the previous work

In Ref. [23], some molecular engineering researchers have dis-
cussed the synthetic parameters of subclasses in the (6,8)-ring-
containing AlPOs from the perspective of empirical knowledge.



Fig. 4. The Acc-Rate obtained by different methods for the subclass AEN (a) using NN
as classifier, (b) using Naïve Bayes as classifier.

Table 5
The highest Acc-Rate (%) obtained by different methods for subclass AEN.

NN NB

Acc-Rate Dimension Acc-Rate Dimension

T-test 93.40 (±0.069) 4 94.28 (±0.073) 4
Constraint Score 93.40 (±0.069) 4 94.28 (±0.073) 5
Laplacian Score 9340 (±0.069) 7 94.28 (±0.073) 5
Gini Score 93.69 (±0.059) 6 94.28 (±0.073) 3

The highest Acc-Rate and highest F-measure are highlighted in bold.

Table 6
The highest F-measure obtained by different methods for subclass AEN.

NN NB

F-measure Dimension F-measure Dimension

T-test 0.6248 (±0.0319) 4 0.7079 (±0.0123) 4
Constraint Score 0.6181 (±0.0308) 4 0.7079 (±0.0123) 5
Laplacian Score 0.6244 (±0.0308) 7 0.7079 (±0.0123) 5
Gini Score 0.6321 (±0.0335) 6 0.7079 (±0.0123) 3

The highest Acc-Rate and highest F-measure are highlighted in bold.

Fig. 5. The Acc-Rate obtained by different methods for the subclass AWO (a) using NN
as classifier, (b) using Naïve Bayes as classifier.

Table 7
The highest Acc-Rate (%) obtained by different methods for subclass AWO.

NN NB

Acc-Rate Dimension Acc-Rate Dimension

T-test 92.82 (±0.051) 1 92.16 (±0.081) 8
Constraint Score 92.79 (±0.100) 8 93.06 (±0.061) 5
Laplacian Score 92.79 (±0.100) 7 93.07 (±0.061) 6
Gini Score 94.03 (±0.067) 2 92.16 (±0.081) 6

The highest Acc-Rate and highest F-measure are highlighted in bold.
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Thus, we will compare our work based on Hierarchical Feature
Selection Model (HFSM) with [23] in this section. The optimal
feature subsets for the four subclasses obtained by Ref. [23] and our
model are listed in Table 13. The Acc-Rate and F-measure obtained
by the optimal feature subsets of the four subclasses selected by the
two works are given in Table 14 and Table 15.

The optimal features for the formation of the subclasses of (6,8)-
ring-containing AlPOs in Ref. [23] are deduced by molecular
engineering researchers’ professional knowledge and experience.
So as we can see from Table 13, the number of features in their
optimal feature subset is smaller than the number of features in
optimal feature subset in this paper. However, the feature subsets
obtained in this paper almost cover the optimal feature subsets
deduced Ref. [23]. On the other hand [23], has not fully mined the
data and the analyzing methods, thus their conclusions are not
comprehensive. We can see from Tables 14 and 15 that the optimal



Table 8
The highest F-measure obtained by different methods for subclass AWO.

NN NB

F-measure Dimension F-measure Dimension

T-test 0.8414 (±0.0019) 1 0.8268 (±0.0047) 8
Constraint Score 0.8414 (±0.0034) 8 0.8460 (±0.0031) 5
Laplacian Score 0.8414 (±0.0034) 7 0.8460 (±0.0031) 6
Gini Score 0.8690 (±0.0028) 2 0.8264 (±0.0047) 6

The highest Acc-Rate and highest F-measure are highlighted in bold.

Fig. 6. The Acc-Rate obtained by different methods for the subclass CHA (a) using NN
as classifier, (b) using Naïve Bayes as classifier.

Table 9
The highest Acc-Rate (%) obtained by different methods for subclass CHA.

NN NB

Acc-Rate Dimension Acc-Rate Dimension

T-test 89.76 (±0.11) 9 83.49 (±0.31) 9
Constraint Score 89.76 (±0.11) 8 83.49 (±0.31) 8
Laplacian Score 89.76 (±0.11) 8 84.06 (±0.42) 6
Gini Score 91.27 (±0.12) 5 84.70 (±0.28) 1

The highest Acc-Rate and highest F-measure are highlighted in bold.

Table 10
The highest F-measure obtained by different methods for subclass CHA.

NN NB

F-measure Dimension F-measure Dimension

T-test 0.8059 (±0.0066) 9 0.7273 (±0.0140) 9
Constraint Score 0.8080 (±0.0066) 8 0.7273 (±0.0140) 8
Laplacian Score 0.8006 (±0.0066) 8 0.7312 (±0.0154) 6
Gini Score 0.8280 (±0.0069) 5 0.7328 (±0.0131) 1

The highest Acc-Rate and highest F-measure are highlighted in bold.

Fig. 7. The Acc-Rate obtained by different methods for the subclass ERI (a) using NN as
classifier, (b) using Naïve Bayes as classifier.

Table 11
The highest Acc-Rate (%) obtained by different methods for subclass ERI.

NN NB

Acc-Rate Dimension Acc-Rate Dimension

T-test 91.90 (±0.11) 4 88.24 (±0.076) 2
Constraint Score 92.20 (±0.077) 3 88.54 (±0.091) 2
Laplacian Score 92.20 (±0.077) 3 88.86 (±0.11) 4
Gini Score 92.20 (±0.077) 5 89.13 (±0.12) 2

The highest Acc-Rate and highest F-measure are highlighted in bold.
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Table 12
The highest F-measure obtained by different methods for subclass ERI.

NN NB

F-measure Dimension F-measure Dimension

T-test 0.6307 (±0.0406) 4 0.4984 (±0.0465) 2
Constraint Score 0.6358 (±0.0366) 3 0.4984 (±0.0384) 2
Laplacian Score 0.6358 (±0.0366) 3 0.4984 (±0.0675) 4
Gini Score 0.6358 (±0.0366) 5 0.4984 (±0.0247) 2

The highest Acc-Rate and highest F-measure are highlighted in bold.

Table 13
The optimal feature subset comparisons.

HFSM Gao N. [23](2014)

The selected feature Dimension The selected features Dimension

AEN F2,F3,F4, F11,F14,F20 6 F11 1
AWO F2,F3,F4, F12,F17 5 F3, F14 2
CHA F2,F3,F4, F20,F14,F12,F13,F11 8 F3, F4, F20 3
ERI F2,F3,F4, F11,F14,F20,F15,F17 8 F2, F3, F4, F14 4

Table 14
The highest Acc-Rate (%) and variance (%) obtained by the methods.

NN NB

AEN Gao N. [23] (2014) 93.39 (±0.083) 94.28 (±0.073)
HFSM 93.69 (±0.059) 94.28 (±0.073)

AWO Gao N. [23] (2014) 93.12 (±0.12) 91.56 (±0.062)
HFSM 94.03 (±0.067) 92.16 (±0.081)

CHA Gao N. [23] (2014) 86.41 (±0.13) 83.80 (±0.77)
HFSM 91.27 (±0.12) 84.70 (±0.28)

ERI Gao N. [23] (2014) 91.61 (±0.15) 88.22 (±0.13)
HFSM 92.20 (±0.077) 89.13 (±0.12)

The highest Acc-Rate and highest F-measure are highlighted in bold.

Table 15
The highest F-measure (variance) obtained by optimal feature subset.

NN NB

AEN Gao N. [23] (2014) 0.6807 (±0.0099) 0.7079 (±0.0123)
HFSM 0.6321 (±0.0335) 0.7079 (±0.0123)

AWO Gao N. [23] (2014) 0.8565 (±0.0050) 0.8055 (±0.0039)
HFSM 0.8690 (±0.0028) 0.8264 (±0.0047)

CHA Gao N. [23] (2014) 0.7356 (±0.0039) 0.7065 (±0.0235)
HFSM 0.8280 (±0.0069) 0.7328 (±0.0131)

ERI Gao N. [23] (2014) 0.6263 (±0.0443) 0.2771 (±0.0710)
HFSM 0.6358 (±0.0366) 0.4984 (±0.0247)

The highest Acc-Rate and highest F-measure are highlighted in bold.
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feature subsets obtained by our work could reach higher Acc-Rate
and F-measure than [23] in most instances.

4. Conclusions and future works

In this study, a Hierarchical Feature Selection Model composed
of two layers is proposed. By our model, the synthetic parameters
for the rational synthesis of the subclass of (6,8)-ring-containing
AlPOs are analyzed during the feature selection process. Compre-
hensive experiments and extensive analysis are carried out to
demonstrate the effectiveness of the proposed model. Taking
advantage of this model, the optimal feature subsets for the for-
mation of AEN, AWO, ERI and CHA are given, which could provide a
useful guidance for rational synthesis for such materials.

In our future works, we would take account of more synthetic
parameters in our feature selection model when the microporous
AlPOs database is updated and refined. Furthermore, we will also
try to synthesize some AlPOmaterials having new structures by the
parameter analysis results obtained in our feature selection
method.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (No. 61403078), the Fundamental Research
Funds for the Central Universities (No. 2412016KJ035).

References

[1] H. Lee, S. Zones, M. Davis, Nature 425 (2003) 385e388.
[2] J.H. Yu, R.R. Xu, Chem. Soc. Rev. 25 (2006) 593e604.
[3] Y. Li, J.H. Yu, J.X. Jiang, Z.P. Wang, J.N. Zhang, R.R. Xu, Chem. Mater. 17 (2005)

6086e6093.

http://refhub.elsevier.com/S1387-1811(16)30172-X/sref1
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref1
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref2
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref2
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref3
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref3
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref3


Y. Guo et al. / Microporous and Mesoporous Materials 231 (2016) 82e91 91
[4] J.Y. Li, J.H. Yu, W.F. Yan, Y.H. Xu, W.G. Xu, S.L. Qiu, R.R. Xu, Chem. Mater. 11
(1999) 2600e2606.

[5] J.H. Yu, J.Y. Li, K.X. Wang, R.R. Xu, K. Sugiyama, O. Terasaki, Chem. Mater. 12
(2000) 3783e3787.

[6] D. Zhou, J. Xu, J.H. Yu, L. Chen, F. Deng, R.R. Xu, J. Phys. Phys. Chem. B 110
(2006) 2131e2137.

[7] H.Z. Xing, J.Y. Li, W.F. Yan, P. Chen, Z. Jin, J.H. Yu, S. Dai, R.R. Xu, Chem. Mater.
20 (2008) 4179e4181.

[8] J.Y. Li, J.H. Yu, R.R. Xu, http://zeobank.jlu.edu.cn.
[9] D.A. Fletcher, R.F. McMeeking, D. Parkin, J. Chem. Inf. Comput. Sci. 36 (1996)

746e749.
[10] E. Perola, K. Xu, T.M. Kollmeyer, S.H. Kaufmann, F.G. Prendergast, Y.P. Pang,

J. Med. Chem. 43 (2000) 401e408.
[11] S. Goto, T. Nishioka, M. Kanehisa, Bioinformatics 14 (1998) 591e599.
[12] C.A. Bennett, N.L. Franklin, Statistical Analysis in Chemistry and the Chemical

Industry, John Wiley & Sons, New York, 1954.
[13] F.H. Allen, Acta Crystallogr. Sect. B 58 (2002) 380e388.
[14] W.D. Kraeft, D. Kremp, W. Ebeling, G. R€opke, Quantum Statistics of Charged

Particle Systems, Akademie Verlag, Berlin, 1986.
[15] S. Maria, E. Lennart, J. J€orgen, M. Sj€ostr€om, S. Wold, J. Med. Chem. 41 (1998)

2481e2491.
[16] M. Karelson, V.S. Lobanov, A.R. Katritzky, Chem. Reviers 96 (1996) 1027e1044.
[17] Karelson Mati, Molecular Descriptors in QSAR/QSPR, John Wiley & Sons, New

York, 2000.
[18] J.Y. Li, M. Qi, J. Kong, J.Z. Wang, Y. Yan, W.F. Huo, J.H. Yu, R.R. Xu, Y. Xu,

Microporous Mesoporous Mater. 129 (2010) 251e255.
[19] M.H. Yao, M. Qi, J.S. Li, J. Kong, Microporous Mesoporous Mater. 186 (2014)

201e206.
[20] R.A. Fisher, Ann. Eugen. 7 (1936) 179e188.
[21] R. Steuer, J. Kurths, C.O. Daub, J. Weise, J. Selbig, Bioinformatics 18 (2002)

S231eS240.
[22] M. Qi, J.S. Li, J.Z. Wang, Y.H. Lu, J. Kong, Ind. Eng. Chem. Res. 51 (2012)
16734e16740.

[23] N. Gao, Y. Yan, J.S. Li, J.Y. Li, Microporous Mesoporous Mater. 195 (2014)
174e179.

[24] Y. Saeys, I. Inza, P. Larranaga, Bioinformatics 23 (2007) 2507e2517.
[25] D.W. Lewis, G. Sankar, J.K. Wyles, J.M. Thomas, C.R.A. Catlow, D.J. Willock,

Angewandte Chemie Int. Ed. Engl. 109 (1997) 2791e2793.
[26] J. Liang, H.Y. Li, S. Zhao, W.G. Guo, R.H. Wang, M.L. Ying, Appl. Catal. 64 (1990)

31e40.
[27] A.K. Jain, B. Chandrasekaran, Handbook of Statistices, vol. 2, 1982, pp.

835e855.
[28] P. Cunningham, Machine Learning Techniques for Multimedia, Springer,

Berlin Heidelberg, 2008, pp. 91e112.
[29] J.Z. Wang, L.S. Wu, J. Kong, Y.X. Li, B.X. Zhang, Pattern Recognit. 46 (2013)

1616e1627.
[30] M. Zhu, A.M. Martinez, IEEE Trans. Pattern Analysis Mach. Intell. 28 (2006)

1274e1286.
[31] L.J. van’t Veer, H.Y. Dai, M.J. van de Vijver, et al., Nature 415 (2002) 530e536.
[32] C. Gini, Variabilit�a e mutabilita, Bologna, 1912.
[33] P. Soda, Pattern Recognit. 44 (2011) 1801e1810.
[34] T.M. Cover, P.E. Hart, IEEE Trans. Inf. Theory 13 (1967) 21e27.
[35] I. Rish, IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence,

vol. 3, IBM, New York, 2001, pp. 41e46.
[36] H. Liu, J. Li, L. Wong, Genome Inf. Ser. 23 (2002) 51e60.
[37] W.H. Press, S.A. Teukolsky, W.T. Vetterling, et al., Numerical Recipes in C (2nd

ed.): the Art of Scientific Computing, Cambridge University Press, New York,
1992, p. 616.

[38] D.Q. Zhang, S.C. Chen, Z.H. Zhou, Pattern Recognit. 41 (2008) 1440e1451.
[39] X.F. He, C. Deng, N. Partha, Adv. Neural Inf. Process. Syst. (2005) 507e514.
[40] Y.T. Guo, J.Z. Wang, N. Gao, M. Qi, M. Zhang, J. Kong, Y.H. Lv, Int. J. Mol. Sci. 14

(2013) 22132e22148.

http://refhub.elsevier.com/S1387-1811(16)30172-X/sref4
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref4
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref4
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref5
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref5
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref5
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref6
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref6
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref6
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref7
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref7
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref7
http://zeobank.jlu.edu.cn
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref9
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref9
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref9
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref10
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref10
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref10
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref11
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref11
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref12
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref12
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref12
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref13
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref13
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref14
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref14
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref14
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref15
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref15
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref15
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref15
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref15
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref15
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref16
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref16
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref17
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref17
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref17
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref18
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref18
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref18
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref19
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref19
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref19
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref20
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref20
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref21
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref21
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref21
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref22
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref22
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref22
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref23
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref23
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref23
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref24
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref24
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref25
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref25
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref25
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref26
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref26
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref26
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref27
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref27
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref27
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref28
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref28
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref28
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref29
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref29
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref29
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref30
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref30
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref30
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref31
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref31
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref32
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref32
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref33
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref33
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref34
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref34
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref35
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref35
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref35
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref36
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref36
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref37
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref37
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref37
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref38
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref38
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref39
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref39
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref40
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref40
http://refhub.elsevier.com/S1387-1811(16)30172-X/sref40

	The rational synthetic parameter analysis for subclasses of microporous aluminophosphates based on hierarchical feature sel ...
	1. Introduction
	2. Materials and method
	2.1. Data sets
	2.2. The Hierarchical Feature Selection Model
	2.2.1. The first layer of the Hierarchical Feature Selection Model
	2.2.2. The second layer of the Hierarchical Feature Selection Model


	3. Experiments and discussions
	3.1. Performance measures
	3.2. Synthetic parameter analysis of the (6,8)-ring-containing AlPOs subclass
	3.2.1. The first layer of the model
	3.2.2. The second layer of the model
	The synthetic parameter analysis of AEN
	The synthetic parameter analysis of AWO
	The synthetic parameter analysis of CHA
	The synthetic parameter analysis of ERI

	3.3. Compare with the previous work

	4. Conclusions and future works
	Conflicts of interest
	Acknowledgments
	References


