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Abstract: Underwater spectral imaging is a promising method for
mapping, classification and health monitoring of coral reefs and seafloor in-
habitants. However, the spectrum of light is distorted during the underwater
imaging process due to wavelength-dependent attenuation by the water. This
paper presents a model-based method that accurately restores brightness of
underwater spectral images captured with narrowband filters. A model is
built for narrowband underwater spectral imaging. The model structure is
derived from physical principles, representing the absorption, scattering and
refraction by water and the optical properties of narrowband filters, lenses
and image sensors. The model coefficients are calibrated based on spectral
images captured underwater and in air. With the imaging model available,
energy loss due to water attenuation is restored for images captured at dif-
ferent underwater distances. An experimental setup is built and experiments
are carried out to verify the proposed method. Underwater images captured
within an underwater distance of 260 cm are restored and compared with
those in air. Results show that the relative restoration error is 3.58% on av-
erage for the test images, thus proving the accuracy of the proposed method.

© 2016 Optical Society of America

OCIS codes: (010.4450) Oceanic optics; (010.7295) Visibility and imaging; (110.4234) Mul-
tispectral and hyperspectral imaging; (300.1030) Absorption; (100.2980) Image enhancement.
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1. Introduction

Spectral imaging is an important method for high-fidelity color reproduction [1], object recog-
nition and identification [2], health monitoring of plants or organism [3], etc. Although the
applications of spectral imaging are mostly found in land, this technique has also proven to be
valuable in subaqueous surroundings, e.g, in the detection of red tide [4], classification of algae
and corals [5–7], health condition of corals [8, 9], identification of underwater minerals [10].
However, it is challenging to obtain spectral images of underwater objects of high fidelity,
mainly due to the wavelength-dependent absorption and scattering by water on the permeating
light, which distorts the spectral energy distribution in underwater images as well as causes the
images to be dark and hazy [11–13].

Intensive research has been done to remove the effects of water column on images, by short-
ening the underwater imaging distance [6–8], comparing the measurement with references
[10, 14–16] or correcting the spectral distortion based on attenuation models [17–22].

For instance, in [6, 8], the light path in water is set to be so short that the influence of water
can be neglected. In some studies, standard Spectralon panel with known reflectance is placed
beside the underwater object of interest to estimate the attenuation of water, thus the reflectance
of the object can be determined [5, 10, 14, 15]. In the work by Mobley [16], a library is built
beforehand, containing the spectral radiance reflected by various objects under different water
depth in different water environment. Spectral measurement in the field is then compared with
the spectrums in the library such that the one with highest similarity is selected; hence the depth
and optical properties of the water are determined.

Others are devoted to modeling of the underwater imaging process, calibration of the optical
properties of water (e.g., attenuation and scattering coefficients) and correction of the underwa-
ter images. The water attenuation is modeled by the Beer-Lambert law in most works [17–24],
but various affecting factors are considered in different models, e.g., the scattering of water
[18, 23], vignetting in the image [20, 21, 23], response of the camera [19, 23]. During the cali-
bration of the water attenuation coefficient, spectrometers are commonly used to measure the
downwelling radiance from the sunlight or atmosphere or reflected spectrum of gray reference
in different underwater depths [17–19, 24]. To simplify the calibration process, underwater im-
ages taken in different distances or water depth are also used [20, 21]. With knowledge of the
attenuation coefficient, the brightness (or intensity) of underwater images are then corrected
according to the Beer-Lambert law or model of the imaging system [17–22].

It’s worth noting that the work in [17–22] mainly focuses on color correction of underwater
images captured with 3-channel color cameras, where broadband color filters (e.g., red, green
and blue filters) with bandwidth more than 100 nm are commonly used. But to highlight spectral
features of the object from background, narrowband filters (typically with a full-width-half-
maximum (FWHM) of no more than 10 nm) are desired so that images can be acquired at
characteristic wavelengths or specific wavelengths of interest [25, 26, 28].

Therefore in this paper, the feasibility of using narrowband filters for underwater spectral
imaging is preliminarily studied and calibration and restoration methods for narrowband imag-
ing are investigated. Modeling of underwater spectral imaging with narrowband filters is dis-
cussed by referring to the optical properties of water, narrowband filter, lens and image sensor.
Model coefficients (e.g., attenuation coefficient of the water, transmittance of the optical win-
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dow) are calibrated from narrowband spectral images captured both in air and underwater for
the same object. Energy loss in underwater images is then restored based on the imaging model
and underwater distance.

The main contribution of this paper lies in the exploration of using narrowband filters for un-
derwater spectral imaging and subsequent calibration and restoration methods. Benefitted from
decrement in bandwidth of the filter and parameterization in the model, the relative restoration
error less than 5% is achieved .

The paper is structured as follows. Modeling of underwater spectral imaging process is in-
vestigated in Section 2. In Section 3, the method for model coefficients calibration and image
restoration are presented with detailed algorithms. The experimental setup is described in Sec-
tion 4, followed by experiments and results in Section 5. Discussion is in Section 6 and the
paper is concluded in Section 7.

2. Modeling of narrowband underwater spectral imaging

2.1. Spectral imaging in air

The schematics of the narrowband spectral imaging systems under investigation are depicted
in Fig. 1(a) and Fig. 1(b) for imaging in air and underwater, respectively. The imaging system
mainly consists of a lens (or lens system), a tunable narrowband filter, and an image sensor
(e.g. a CCD sensor or CMOS sensor in a camera). The light emitted or reflected by the object
is focused by the lens onto the image sensor, which is placed in the image plane of the lens.
The passband of the filter can be tuned, e.g. using a filter wheel, a liquid crystal tunable filter,
or an acoustic-optic tunable filter, so that only light within a narrow wavelength range can be
transmitted to the image sensor.

Consider a point P on an object in air that is imaged by the imaging system. Denote the
coordinates of point P as P(x,y), the object distance as z, and the focal length of the lens as
f ; then, the coordinates of the image point P′ (denoted as P′(x′,y′)) and the image distance
(denoted as z′) are given by [29]

x′ =− f
z− f

x, y′ =− f
z− f

y, z′ =
f

z− f
z. (1)

Since achromatic lenses are commonly used in spectral imaging systems to reduce the achro-
matic aberration, the focal length of the lens is considered wavelength-independent in the op-
erational wavelength range.

Let L(x,y,λ ) be the radiance emitted or reflected from point P, where λ is the wavelength of
light in air; then, the irradiance at P′ (denoted as E(x′,y′,λ ,z)) can be represented as [29]

E(x′,y′,λ ,z) =
π

4
(

D
f
)2︸ ︷︷ ︸

C

τl(λ )τ f (λ )(
z− f

z
)2︸ ︷︷ ︸

G(z)

L(x,y,λ )cos4
θ , (2)

where D is the diameter of the aperture of the imaging system (e.g., the diameter of the lens),
and τl(λ ) and τ f (λ ) are the transmissivity of the lens and filter, respectively. For simplicity of
expression, terms C and G(z) are defined as in Eq. (2), where C is related to the aperture and
focus length of the lens and G(z) shows how the irradiance changes with the object distance z
and focal length f .

The angle θ is the view angle and cos2 θ is given by

cos2
θ =

x′2 + y′2

z′2
. (3)
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Fig. 1. Illustration of narrowband spectral imaging in air and underwater. The image is
enlarged due to refraction of water at the same object distance. The brightness of the image
is reduced due to water attenuation as well as enlargement of the image.

The term cos4 θ represents the natural vignetting of the imaging system, which leads to inho-
mogeneous irradiance distribution in the image sensor. In this paper, only the paraxial case is
considered, e.g., if the size of the object is much smaller than the object distance z, then the
angle θ is close to 0, cosθ ≈ 1, and the natural vignetting is neglected. Therefore Eq. (2) is
simplified as

E(x′,y′,λ ,z) =CG(z)τl(λ )τ f (λ )L(x,y,λ ). (4)

The image sensors in digital cameras usually consists of a matrix of pixels, where the irradi-
ance in each pixel is converted into brightness of the image. Suppose light in the image point P′

falls on a pixel in the ith row and jth column of the image sensor. Denote the exposure area of
the pixel as Si, j. Hence, the brightness of this pixel (denoted as I(i, j,λc,z)) can be represented
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as

I(i, j,λc,z) = at
∫ ∫

Si, j

∫
λc+∆λ2

λc−∆λ1

q(λ )E(x,y,λ )dλdx′dy′

= at
∫ ∫

Si, j

∫
λc+∆λ2

λc−∆λ1

q(λ )CG(z)τl(λ )τ f (λ )L(x,y,λ )dλdx′dy′, (5)

where λc is the central wavelength of the filter and the passband of the filter is represented as
[λc−∆λ1,λc +∆λ2] where ∆λ1 and ∆λ2 are wavelength intervals. q(λ ) is the spectral response
of the image sensor. t is the exposure time of the image sensor. a represents the conversion
from optical power to brightness of the pixel. Because the passband of the filter is within the
response range of the image sensor, the integration is over the passband of the filter.

As a pixel is in the scale of microns, the irradiance is considered uniform within the exposure
area Si, j. Integration over space coordinates and wavelength can be separated and Eq. (5) be
written in a compact form as

I(i, j,λc,z) = at
∫ ∫

Si, j

dx′dy′

︸ ︷︷ ︸
A

CG(z)
∫

λc+∆λ2

λc−∆λ1

q(λ )τl(λ )τ f (λ )L(x,y,λ )dλ︸ ︷︷ ︸
H(x,y,λc)

,

= ACG(z)H(x,y,λc). (6)

The terms A and C depend on the configuration of the camera and the parameters of the lens,
respectively. The influence of the object distance is embraced in G(z). The new-defined term
H(x,y,λc) shows how the brightness of the image can be changed by tuning the central wave-
length of the filter.

2.2. Underwater spectral imaging

While taking spectral images underwater, the imaging system should be sealed waterproof and
the underwater object can be imaged through an optical window made of glass or sapphire (see
Fig. 1(b)). Not only is the size of the image changed due to the refraction of water, but the
spectral radiance is also attenuated by the water.

Referring to Fig. 1(b), for the point P(x,y) on the object, the coordinates of the image point
P′w are given by [29]

x′w =− f
zw− f

x, y′w =− f
zw− f

y, z′w =
f

zw− f
zw, (7)

where (x′w,y
′
w) are coordinates of point P′w in the image plane and z′w is the distance between the

lens and image. zw is the equivalent underwater distance(see Fig. 2), defined as

zw = l′+
l

nw
+

d
ng

, (8)

where l′, l and d are the distances in air, water and glass, respectively. nw and ng are the refrac-
tive indices of water and glass, respectively. In this study, as the underwater spectral imaging
system operates in a wavelength range of [400 nm,700 nm], the variation in ng and nw with
respect to the wavelength is neglected. Since the refractive indices of water and glass are more
than 1, it seems the object was brought closer to the lens. As a consequence, the image is
enlarged.
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Fig. 2. Refraction at the interfaces between water, glass and air. Due to refraction of water,
the object looks as if it were moved closer. Therefore the equivalent object distance zw is
defined.

According to the Beer-Lambert law [31], the radiance emitted or reflected by the underwa-
ter object is attenuated exponentially with respect to the underwater distance. In addition, the
scattering of light by both the water and the particles in the water should be considered in un-
derwater imaging [13, 23]. In a similar way to Eq. (4), the irradiance in the image point P′w
(denoted as Ew(x′w,y

′
w,λ ,zw)) can be represented as

Ew(x′w,y
′
w,λ ,zw) = β (λ )e−α(λ )lCG(zw)τl(λ )τ f (λ )L(x,y,λ )+Eb(λ )e−ν(λ )l +Es(λ ), (9)

where β (λ ) represents the transmissivity of the optical window and α(λ ) is the attenuation
coefficient of the water. The term Eb(λ )e−ν(λ )l represents the influence of scattered light on the
background of the image with parameters Eb(λ ) and ν(λ ). As scattering changes the direction
of light propagation, not only the optical power in the image point P′w is reduced (as embraced
in the attenuation coefficient α(λ )), but the background of the image is hazed, as in the term
Eb(λ )e−ν(λ )l . Es(λ ) represents the influence of stray light, which adds to the hazing of the
image as well.

By comparing Eq. (4) and Eq. (9), it can be seen that the irradiance in underwater image
is reduced by both attenuation and refraction of water. By attenuation of water, the total light
power arriving in the image plane is reduced, while, due to refraction of water, the underwater
image is enlarged compared with the image in air at the same object distance. Therefore, the
light power per unit area in the image plane is reduced and the underwater images appear darker
than those taken in air.

When imaging with a digital camera, suppose the image point P′w is within a pixel with
coordinates (iw, jw); then, similar to Eq. (5) and (6), the brightness of the pixel can be expressed
as

Iw(iw, jw,λc,zw) =at
∫ ∫

Si, j

∫
λc+∆λ2

λc−∆λ1

q(λ )Ew(x′w,y
′
w,λ ,zw)dλdx′dy′

=ACG(zw)
∫

λc+∆λ2

λc−∆λ1

β (λ )e−α(λ )l
τl(λ )τ f (λ )L(x,y,λ )dλ

+A
∫

λc+∆λ2

λc−∆λ1

Eb(λ )e−ν(λ )ldλ +A
∫

λc+∆λ2

λc−∆λ1

Es(λ )dλ , (10)

where Iw(iw, jw,λc,zw) is the pixel brightness.

#259456 Received 15 Feb 2016; revised 21 May 2016; accepted 22 May 2016; published 7 Jun 2016 
© 2016 OSA 13 Jun 2016 | Vol. 24, No. 12 | DOI:10.1364/OE.24.013101 | OPTICS EXPRESS 13107 



As narrowband filters are used in imaging, the coefficients α(λ ), β (λ ), Eb(λ ), ν(λ ) and
Es(λ ) are considered constant in the passband of the filter, i.e.,

α(λ )≈ α(λc), β (λ )≈ β (λc), Eb(λ )≈ Eb(λc), ν(λ )≈ ν(λc), Es(λ )≈ Es(λc),
(11)

for λ ∈ [λc−∆λ1,λc +∆λ2]. Therefore, Eq. (10) can be simplified as

Iw(iw, jw,λc,zw)≈β (λ )e−α(λ )lACG(zw)
∫

λc+∆λ2

λc−∆λ1

τl(λ )τ f (λ )L(x,y,λ )dλ

+AEb(λc)(∆λ1 +∆λ2)︸ ︷︷ ︸
κ(λc)

e−ν(λc)l

+AEs(λc)(∆λ1 +∆λ2)︸ ︷︷ ︸
γ(λc)

=β (λc)e−α(λc)lACG(zw)H(x,y,λc)+κ(λc)e−ν(λc)l + γ(λc), (12)

where coefficient κ(λc) and γ(λc) represent the influence of scattered light and stray light, re-
spectively. Since coefficients α(λ ), β (λ ), Eb(λ ), ν(λ ) and Es(λ ) vary with wavelength in fact,
Eq. (11) only holds if the bandwidth of the filter is infinitely small (i.e., ∆λ1 +∆λ2 approaches
0). The approximation error increases with the bandwidth of the filter in general, but also de-
pends on the variation in the coefficients. Therefore it’s important to keep the bandwidth of the
filter narrow enough, especially in the wavelengths where the coefficients vary rapidly.

3. Spectral image restoration

By combining Eq. (6) and Eq. (12), connection can be made between the image brightness in
air and underwater as

Iw(iw, jw,λc,zw) =
G(zw)

G(z)
β (λc)e−α(λc)l︸ ︷︷ ︸

k(λc,l)

I(i, j,λc,z)+κ(λc)e−ν(λc)l + γ(λc)︸ ︷︷ ︸
b(λc,l)

. (13)

The term k(λc, l) represents the attenuation by the water and the optical window, and b(λc, l)
represents the hazing because of scattering, stray light, etc. The goal of image restoration is to
compensate for the energy loss in underwater images due to water and optical window attenu-
ation.

Define a coefficient vector φ(λ ) = [α(λ ),ν(λ ),β (λ ),κ(λ ),γ(λ )]∈R5. If all coefficients in
φ(λ ) are known, the energy loss in underwater images can be rectified based on the relationship
in Eq. (13). However, in practice, the coefficients vary in different regions of the oceans and
may also change with respect to time. Therefore, it is important to calibrate the coefficients
in-situ to restore the underwater spectral images accurately.

3.1. Calibration of coefficients

As relationship has been made in Eq. (13), coefficients in φ(λ ) can be estimated by data-fitting
for given air image and underwater images of the same object. However, it is required that the
brightness I(i, j,λc,z) and Iw(iw, jw,λc,zw) should correspond to the same point P in the object,
which is difficult to implement in practice if not impossible. For this reason, a calibration object
with easily-recognizable pattern is necessary to make correspondence for the same point or
same region among air and underwater images. For instance, a matrix of squares displayed in
a phone screen (see Fig. 3) is used as the calibration object in experiments later on. The color
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is uniform in each square for ease of making correspondence between images, but different
between squares to improve the accuracy of coefficient estimation.

Suppose we have spectral images of the calibration object in air and underwater. All images
are acquired with the central wavelength of the filter λc = λ1. The image in air is captured
at an object distance of z = z1. The images underwater are captured at a series of underwater
distances l = l1, l2, · · · , lM (M is the number of distances). The coefficients in φ(λ ) can be
calibrated based on Eq. (13) as follows.

Take brightness of N regions in the air image and the corresponding regions in underwater
images (N is the number of regions for calibration), and a set of Eqs. can be built as

Iw(iw,1, jw,1,λ1,zw,1) =
G(zw,1)

G(z1)
k(λ1, l1)I(i1, j1,λ1,z1)+b(λ1, l1),

Iw(iw,2, jw,2,λ1,zw,1) =
G(zw,1)

G(z1)
k(λ1, l1)I(i2, j2,λ1,z1)+b(λ1, l1),

...
...

...
Iw(iw,N , jw,N ,λ1,zw,1) =

G(zw,1)

G(z1)
k(λ1, l1)I(iN , jN ,λ1,z1)+b(λ1, l1).

(14)

Writing Eq. (14) in matrix form, we have a compact matrix Eq. as
Gw(zw,1)

G(z1)
I(i1, j1,λ1,z1) 1

Gw(zw,1)

G(z1)
I(i2, j2,λ1,z1) 1

...
...

Gw(zw,1)

G(z1)
I(iN , jN ,λ1,z1) 1


︸ ︷︷ ︸

D

·
[

k(λ1, l1)
b(λ1, l1)

]
︸ ︷︷ ︸

X

=


Iw(iw,1, jw,1,λ1,zw,1)
Iw(iw,2, jw,2,λ1,zw,1)

...
Iw(iw,N , jw,N ,λ1,zw,1)


︸ ︷︷ ︸

Y

, (15)

The unknown terms k(λ1, l1) and b(λ1, l1) can be estimated by solving Eq. (15) with linear
least squares (LLS) method as

X̂ = (DT D)
−1

DTY, (16)

where X̂ is the estimate of unknown X . To make sure that the matrix DT D is invertible, at least
two regions of different brightness should be selected, i.e., D has full column rank. By selecting
more regions into the Eq. set, the accuracy of estimation can be improved.

To have an estimate of the water attenuation coefficient α(λ ), underwater images captured at
different distances can be used. According to the definition of k(λ , l) in Eq. (13), a set of Eqs.
can be developed for a series of underwater distances as

β (λ1)


e−α(λ1)l1

e−α(λ1)l2

...
e−α(λ1)lM


︸ ︷︷ ︸

P(α)

=


k(λ1, l1)
k(λ1, l2)

...
k(λ1, lM)


︸ ︷︷ ︸

K

. (17)

Unknowns α(λ1) and β (λ1) can be estimated by solving an optimization problem as

α̂(λ1), β̂ (λ1) = arg min
α∗,β ∗

‖K−β
∗P(α∗)‖2

2︸ ︷︷ ︸
J

, (18)

where J is the cost function to be minimized by the optimization algorithm. α̂(λ1) and β̂ (λ1)
are the estimates of α(λ1) and β (λ1), respectively.
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Similarly, another set of Eqs. to estimate the hazing coefficients is formed as

κ(λ1)


e−ν(λ1)l1

e−ν(λ1)l2

...
e−ν(λ1)lM


︸ ︷︷ ︸

Q(ν)

+γ(λ1) =


b(λ1, l1)
b(λ1, l2)

...
b(λ1, lM)


︸ ︷︷ ︸

B

. (19)

Coefficients ν(λ1), κ(λ1) and γ(λ1) are estimated by solving an optimization problem as

ν̂(λ1), κ̂(λ1), γ̂(λ1) = arg min
ν∗,κ∗,γ∗

‖B− γ
∗−κ

∗Q(ν∗)‖2
2︸ ︷︷ ︸

J′

, (20)

where J
′

is the cost function to be minimized by the optimization algorithm. ν̂(λ1), κ̂(λ1) and
γ̂(λ1) are the estimates of ν(λ1), κ(λ1) and γ(λ1), respectively.

By repeating the procedures above for different wavelengths λc = λ1,λ2, · · · ,λp (where p is
the number of wavelengths to be tuned in the imaging system), the coefficients in φ(λ ) can be
estimated.

3.2. Image restoration

With coefficients estimated, following Eq. (13), the underwater images can be restored as

Ĩw(iw, jw,λc,zw) = β̂
−1(λc)eα̂(λc)l

(
Iw(iw, jw,λc,zw)− κ̂(λc)eν̂(λc)l− γ̂(λc)

)
, (21)

where Ĩw(iw, jw,λc,zw) is the image brightness after restoration. By restoration, the energy loss
due to water attenuation is compensated, but the size of the image is unchanged.

To evaluate the accuracy of the restoration method, comparison is made between the restored
underwater images and images captured in air. The restoration error is defined as

Ie(i, j,λc,z) = |I(i, j,λc,z)−
G(z)

G(zw)
Ĩw(iw, jw,λc,zw)︸ ︷︷ ︸

Î(i, j,λc,z)

|, (22)

where Ie(i, j,λc,z) is the restoration error. The term G(z)
G(zw)

accounts for the change in bright-

ness of underwater images due to change in image size and Î(i, j,λc,z) is the estimated image
brightness in air. The relative restoration error is defined as

ε(i, j,λc,z) =
Ie(i, j,λc,z)
I(i, j,λc,z)

×100%. (23)

Therefore the restoration method can be summarized as follows.

Model-based narrowband underwater spectral image restoration method (general descrip-
tion and pseudo code implementation)

1. Spectral image acquisition
Capture a spectral image cube for a calibration object in air at a distance of z, with
wavelength λ = λ1,λ2, · · · ,λp (where p is the number of filters).
Capture M underwater spectral image cubes for the calibration object at underwater
distances l = l1, l2, · · · , lM (M is the number of underwater distances), respectively. Each
cube is captured at wavelength λ = λ1,λ2, · · · ,λp.
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2. Coefficient calibration
for λc = λ1,λ2, · · · ,λp

for l = l1, l2, · · · , lM
Estimate k(λ , l) and b(λ , l) using Eqs. (15)-(16).

end
Estimate coefficients α(λ ), β (λ ), ν(λ ), κ(λ ) and γ(λ ) using Eqs. (17)-(20).

end

3. Image restoration
Image brightness restoration using Eq. (21).
Error evaluation using Eq. (22) and Eq. (23).

4. Experimental setup

To verify the restoration method, an experimental setup is implemented as shown in Fig. 3,
which mainly consists of a mobile phone, a water tank and a spectral imaging system.

The mobile phone (Xiaomi 3, Xiaomi, China) is placed in a waterproof glass box, with
60 color pieces displayed on its LCD screen, to act as the underwater object to be imaged.
The color pieces are squares in 6 rows and 10 columns. Each column presents a hue of the
Munsell color system [32], and each row presents different combinations of value and chroma.
As discussed in Section 3.1, the screen pattern is designed for calibration of model coefficients,
such that the same color piece can be easily recognized among images captured in air and
underwater.

The waterproof box (L35×W25×H50 cm) is made of 6 mm-thick quartz glass, placed in a
water tank (L300×W30×H30 cm) made of 10 mm-thick quartz glass. The water tank is filled
with clean tap water.

The spectral imaging system is placed out of the water tank. It mainly consists of an imaging
lens, a mirror, a rotation filter wheel with a set of filters and a monochrome CCD camera. The
lens is a cemented doublet (GCL-010607, Daheng, China), with a focal length of 150 mm and a
diameter of 38.1 mm. The computer-controlled rotation filter wheel is installed with 15 filters,
each having a tiny magnet beside. The wheel is driven by a stepper motor with the rotation
angle monitored by a Hall sensor. The filters (FB serious, Thorlabs, USA) on the wheel have a
FWHM of 10 nm (see Fig. 3(c)), with the central wavelength ranging from 420 nm to 700 nm at
an interval of 20 nm. The camera (Lm-165M, Lumenera, USA) has a resolution of 1392×1040
pixels and a dynamic range of 66 dB. During image acquisition, the filters are spun onto the
light axis of the camera successively, and stay on the axis until the camera is fully exposed.

5. Experiments and results

5.1. Preliminary tests

Preliminary tests are carried out before spectral image acquisition, to evaluate the stability of
the phone screen and the linearity of the camera. The mobile phone is switched on for more
than 10 minutes before the test. The output light intensity of certain color piece is measured
by a fiber spectrometer (FLA5000, Jingfei, China) for 3500 scans at an integral time of 50 ms.
During the test, the phone is kept charged with a voltage-stabilized source.

The response of the spectrometer on the color piece (3,7) (i.e., the piece in the 3rd row and
7th column of the pattern) is shown in Fig. 4, where the response at wavelengths of 447 nm,
540 nm, and 660 nm are evaluated. The intensity variation for certain wavelength λ is defined
as

Intensity variation =
Imax(λ )− Imin(λ )

Imean(λ )
, (24)
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Fig. 3. The experimental setup consists of a mobile phone, a water tank and a narrowband
spectral imaging system as shown in (a) and (b). The mobile phone is placed in a waterproof
box, acting as a luminous underwater object. The pattern displayed in the screen of the
phone consists of 60 color pieces in 6 rows and 10 columns. The filters in the spectral
imaging system are tuned by the rotation filter wheel with the wavelength scanning from
420 nm to 700 nm at an interval of 20 nm. The typical transmission of a filter with a central
wavelength of around 460 nm [33] is shown in (c).

where Imax(λ ), Imin(λ ) and Imean(λ ) are the maximal, minimal, and average intensity of certain
wavelength during the observation, respectively. The intensity variation is 1%, 1.7% and 8.9%
for wavelengths of 447 nm, 540 nm, and 660 nm, respectively, indicating a stable light output
by the phone screen.

In the test of the camera linearity, an integrating sphere with a standard light source inside is
used as the imaging object. The camera takes images of the exit port of the integrating sphere,
with the exposure time ranging from 5 ms to 500 ms at an interval of 5 ms. From these images,
the dependence of image brightness on exposure time is analyzed. A linear dependent coeffi-
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Fig. 4. Response of the spectrometer on the color piece (3,7) on the phone screen. The
intensity at wavelengths of 447 nm, 540 nm, and 660 nm is recorded for 3500 scans (i.e.,
175 s), showing a stable light output by the phone screen.

cient of 0.99996 indicates good linearity between image brightness and exposure time of the
camera.

5.2. Spectral image acquisition

To avoid overexposed or dark images, a scan of the spectral images of the phone screen is
conducted before image acquisition, during which the exposure time ranges from 50 ms to
500 ms, and the appropriate exposure time of each wavelength is selected. Then one spectral
image cube is acquired in air at a fixed distance of 340 cm and 26 spectral image cubes are
acquired for underwater distances of 10 cm, 20 cm, · · · , 260 cm, respectively. Each image cube
(both in air and underwater) consists of 15 images captured at wavelengths of 420 nm, 440 nm,
· · · , 700 nm, respectively. The image cubes captured at underwater distances of 10 cm, 20 cm,
40 cm, 50 cm, 70 cm, · · · , 250 cm, 260 cm (i.e., every two of three distances) are used for
coefficient calibration and the rest for test.

After image collection, the image brightness is normalized to an exposure time of 50 ms. The
time-normalized image brightness In is calculated as

In =
50
t

I0

255
, (25)

where I0 is the brightness of the raw image before normalization and t is the exposure time in
ms. The raw brightness I0 is a unitless integer in the range of [0, 255]. The exposure time t is
always more than 50 ms during image acquisition, hence the normalized brightness In is in the
range of [0, 1].

The irradiance (in W ·m−2 ·nm−1) at the image sensor can be determined if the imaging
system is calibrated by standard calibration facility and method, e.g., as described in [27].
However, since the focus of this paper is on the restoration method (i.e., to restore the under-
water image such that its brightness is close to that in air), normalized brightness In is used
throughout image processing and analysis in the following steps.
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5.3. Coefficients calibration

As described in Section 3.1, brightness in air image and underwater images corresponding to
the same point or region in the calibration object are required for coefficients calibration. For
this purpose, the central 5×5 pixels in each color piece image are selected and the brightness
in this region is averaged to represent the brightness of each color piece in each image. That is,
we have 60 brightness values for each image, each value presenting the brightness of individual
color piece in the image.

The coefficients k(λ , l) and b(λ , l) are estimated based on Eq. (15) and Eq. (16). The fitting
results are shown in Fig. 5 for the wavelength of 460 nm and 620 nm at an underwater distance
of 10 cm, 40 cm and 240 cm. To evaluate the accuracy of estimation, the relative standard
deviation (RSD) is defined as

RSD(ŷ,y) =
std(ŷ− y)

std(y)
×100%. (26)

Here std(y) is the standard deviation of y. For the fitting of k(λ , l) and b(λ , l), RSD is 5.5%,
3.2% and 6.0% for underwater distance of 20 cm, 160 cm and 260 cm, respectively, at a wave-
length of 460 nm, showing accurate estimation of k(λ , l) and b(λ , l).

With k(λ , l) available, unknown coefficients α(λ ) and β (λ ) are estimated based on Eq. (17)
and (18). The fitting results are shown in Fig. 6 for the wavelengths of 460 nm and 620 nm.
The maximal RSD is 8.66% for the entire calibration data set and 9.56% for the test set, which
is very close to the calibration set.
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Fig. 5. Linear fitting between the brightness of underwater images and the brightness of air
images, for estimation of k(λ , l) and b(λ , l), at wavelengths of 460 nm and 620 nm and
underwater distances of 60 cm, 160 cm and 260 cm.

Likewise, the hazing coefficients ν(λ ), κ(λ ) and γ(λ ) are estimated from b(λ , l) based on
Eq. (19) and (20). The fitting results are shown in Fig. 7 for wavelengths of 460 nm and 620 nm
as well. From the plots, it can be seen that the fitting curve is very close to the data points,
indicating accurate fitting of the coefficients.

5.4. Image restoration

With all necessary coefficients (i.e., α(λ ), β (λ ), ν(λ ), κ(λ ) and γ(λ )) estimated, image
restoration is accomplished according to Eq. (21). In Fig. 8(a), the raw underwater images
and the images after restoration have been shown for comparison for wavelengths of 460 nm
and 620 nm, at underwater distances of 60 cm, 150 cm and 240 cm (i.e., all in the test image
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coefficients ν(λ ), κ(λ ) and γ(λ ). The RSD of the calibration data set is 6.3% and 2.0%
for 460 nm and 620 nm, respectively. For the test distances, RSD is 9.5% for 460 nm and
2.9% for 620 nm.

set). As the underwater distance increases, the brightness of underwater images decreases due
to water attenuation as well as the size of the image gets smaller. It is also clearly visible that
the brightness of the images has been improved significantly after restoration.

In order to quantify the accuracy of image restoration, the restoration error Ie and the relative
restoration error ε are evaluated as in Eq. (22) and Eq. (23), respectively. For the wavelength
of 460 nm, the relative restoration error is 4.90%, 5.73% and 5.66% for the distances of 60 cm,
150 cm and 240 cm, respectively. For the wavelength of 620 nm, the relative error is 4.45%
for a underwater distance of 240 nm, which indicates that the energy loss in 620 nm has been
compensated quite significantly.

Figure 9 shows the spectra of four color pieces before and after restoration. The raw spectra
are collected from underwater images with a underwater distance of 240 cm. Results are also
compared with the spectra in air. It can be seen that the spectra after restoration almost overlap
those in air. The restoration errors of four pieces are all less than 0.02. The relative restoration
error is 3.58% in average for all 60 color pieces, all distances and wavelengths, indicating
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(a) Comparison between raw and restored underwater images at wavelengths of 460 nm and 620 nm, at
different underwater distances.
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(b) Image captured in air at wavelengths of 460 nm (left) and 620 nm (right) at a distance of
340 cm.

Fig. 8. Comparison between raw underwater images, restored underwater images and im-
ages in air. Brightness and size of underwater images decrease with underwater distance.
By restoration, the brightness of underwater images is improved significantly.
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240 cm. The restored spectra almost overlap the spectra in air, indicating an accurate com-
pensation of spectral energy loss due to water.

(a)                                             (b)
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Fig. 10. Color images are constructed, based on raw underwater spectral images captured
at an underwater distance of 240 cm (a), restored underwater spectral images with image
size unchanged (b), restored underwater spectral images with image size changed to the
same as air image and image brightness scaled accordingly (c), spectral images captured in
air at an object distance of 340 cm (d). The improvement by restoration is clearly visible in
color images.

#259456 Received 15 Feb 2016; revised 21 May 2016; accepted 22 May 2016; published 7 Jun 2016 
© 2016 OSA 13 Jun 2016 | Vol. 24, No. 12 | DOI:10.1364/OE.24.013101 | OPTICS EXPRESS 13117 



accurate restoration of the spectral energy.
To show the restoration results intuitionally, color images are presented in Fig. 10, where the

color images are constructed from spectral images as

Ic(x,y) =
∑

700
λ=420

I(x,y,λ )Sc(λ )
T (λ )Sm(λ )

max{∑700
λ=420

I(x,y,λ )Sc(λ )
T (λ )Sm(λ )

}
, c ∈ (r,g,b), (27)

where Sc(λ ) is the quantum efficiency of a color camera (MER-030-120UC-L, Daheng, China),
T (λ ) is the filters’ peak transmittance, Sm(λ ) is the quantum efficiency of the monochrome
camera used for acquiring spectral images (Lm-165M, Lumenera) and Ic(x,y) represents the
brightness of each primary color. It can be seen in Fig. 10 that the restored color image is quite
close to the one in air. The effect of restoration is clearly visible.

6. Discussion

6.1. Influence of the number of filters on restoration

As per the independence of calibration and restoration between each spectral band for the pro-
posed method, the increasing number of filters without changing the bandwidth of the nar-
rowband filter has no effect on the accuracy of image restoration for each spectral band. In
this paper, 15 narrowband filters are preliminarily selected with central wavelengths between
420 nm and 700 nm, just to test and verify the effectiveness of the proposed method in the
visible range and show the generality of the method.

But in general, if more filters are used, then spectral radiance can be measured at more wave-
lengths, which will be helpful, for instance, for high-fidelity color restoration where spectral
information is required for the whole visible range. In other cases, if only the spectral radiance
at certain wavelengths are of interest, then the central wavelength of the filters can be selected
to only cover these wavelengths, thus reducing the complexity of the imaging system.

6.2. Influence of the filter bandwidth on restoration

As in modeling of the underwater spectral imaging system, the deduction from Eq. (10) to
Eq. (12) is based on the condition that the bandwidth of filters are so narrow that the coeffi-
cients are considered constant within the passband. The modeling error will increase and the
accuracy of underwater image restoration will be degraded if broadband filters (e.g. red, green
and blue color filters in standard color cameras) are used or if the attenuation coefficient of
water varies rapidly with wavelength. On the other hand, narrower bandwidth leads to better
modeling accuracy, but meanwhile results in light intensity decrease in each band, thus reduc-
ing the signal-to-noise ratio in images. Therefore, it is important to seek balance between the
bandwidth of the filter and the light intensity in each band.

6.3. Dependence of the restoration error on the distance and wavelength

As shown in Fig. 11, the relative restoration error ε varies with the underwater distance and
wavelength. As the underwater distance increases, the energy loss due to water attenuation gets
more severe. The underwater images suffers more from stray light in the environment and noise
in the imaging system, which leads to increase in the restoration error.

The restoration error also varies with the central wavelength of the narrowband filter (see
Fig. 11(b)). The error decreases with wavelength in the range of [420 nm, 540 nm] and then
increases in the range of [540 nm, 680 nm]. This may be due to the fact that the spectral
radiance emitted from the mobile phone screen changes significantly within the wavelength
range of [420 nm, 480 nm], such that the approximation in Eq. (11) (i.e., the coefficients are
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Fig. 11. Dependence of the relative restoration error ε on the underwater distance (a) and
wavelength (b). The restoration error is averaged over wavelength for certain distance in
(a) and averaged over distance for certain wavelength in (b). The spectrum of the mobile
phone screen emitting white light is measured by the fiber spectrometer and depicted in (b),
showing abrupt change in the intensity in a wavelength range of [420 nm, 480 nm].

constant within the passband of the filter) results in larger error for this wavelength range. As
the wavelength increases from 540 nm, the attenuation coefficient of water increases as well.
Therefore the signal level in underwater images is reduced and the restoration error increases.

6.4. Sensitivity to realistic environmental conditions

Compared with lab conditions, the optical properties of the water change with time and lo-
cations in realistic environmental conditions. In order to investigate how the restoration error
changes with the error in the calibrated coefficient, a simulation is conducted with random de-
viation added on the calibrated coefficients α and ν . The maximal amplitude of the deviation
changes from 1% to 15% with an interval of 1%, with 500 run for each amplitude. The relative
restoration error of the test images are evaluated for each test, with the maximum and mean
shown in Fig. 12(a) for a central wavelength of 460 nm. The mean restoration error increases
from lower than 6% to about 8% when the deviation increases to 15%, while the maximal
restoration error reaches 14% when the deviation is 10%, much faster than the mean error.
Therefore monitoring of the optical property of the water is important and re-calibration is
necessary if there is significant change in water property.

Measurement error (or noise) in underwater distance also has influence on coefficient cali-
bration and image restoration. Simulation is conducted to investigate how the restoration error
changes with the error in the underwater distance measurement. Random noise with maximal
amplitude in the range of 1%-15% is introduced in distance measurement in case of both co-
efficient calibration and image restoration. The restoration error is evaluated, 500 run for each
amplitude. The maximal and mean relative restoration errors are shown in Fig. 12(b). It can be
seen that both the mean and maximal restoration error increases with the measurement error.
The maximal restoration error reaches 9% when the distance measurement error is about 10%.
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Fig. 12. Sensitivity of the restoration error for images at 460 nm to variation in the optical
properties of water (a) and to the error in underwater distance measurement (b).

7. Conclusion and future work

In this paper, a model is built for narrowband underwater spectral imaging, considering the op-
tical properties of water, narrowband filters, lens and the camera. Calibration and the restoration
methods are then proposed based on the model. An experimental setup is built in lab to verify
the proposed method. The restored images are compared with images captured in air and results
show that the relative restoration error is 3.58% in average for the test image group. Thus the
accuracy of the restoration method is proved.

Future work will focus on spectral reflectance restoration for underwater objects and field
test of the method.
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