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Abstract Real-time and robust tracking of 3D objects based
on a 3D model with multiple cameras is still an unsolved
problemalbeit relevant inmanypractical and industrial appli-
cations. Major problems are caused by appearance changes
of the object.We present a template-based tracking algorithm
for piecewise planar objects. It is robust against changes
in the appearance of the object (occlusion, illumination
variation, specularities). The version we propose supports
multiple cameras. The method consists in minimizing the
error between the observed images of the object and the
warped images of the planes. We use the mutual information
as registration function combined with an inverse composi-
tion approach for reducing the computational costs and get
a near-real-time algorithm. We discuss different hypotheses
that can be made for the optimization algorithm.

Keywords 3D object tracking · Model-based tracking ·
Template-based registration · Mutual information (MI) ·
Piecewise planar object

1 Introduction

Object tracking is a widely investigated area with many
applications requiring different constraints on the algorithms
that can be used. For offline methods, dedicated approaches
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can be used that are computationally expensive. For online
methods, real-time (few milliseconds) or near-real-time (up
to seconds) approaches are needed. As a consequence, a
balance needs to be found between speed and accuracy
or convergence of the algorithm. That is to say, the lat-
ter cannot be compromised too much, posing significant
constraints on the methods that can be used. The aim of
current research is therefore to design a precise and robust
method for 3D model-based markerless object localization
with multiple cameras and to discuss the validity of different
approaches.

There is a wide field of possible applications: it can be
used for visual servoing [5], in the context of augmented
reality applications [20,28], surveillance [22] or pose estima-
tion [11,12,14]. A typical industrial example (in for instance,
car production) are robotic arms manipulating objects on a
production line. They need to know the exact position and
orientation of these objects in order to calculate their own tra-
jectory in space. Multiple cameras may be used to supervise
the task with the required precision. In this case, we know by
advance themanipulated object and can therefore provide the
algorithm with a 3D model. Under such conditions, a photo-
realistic rendering of the object is not to be expected and the
conditions of illumination or other appearance factors might
change over time. Moreover, the algorithm will have to be
robust enough to deal with occlusion. In the remainder of this
paper we focus on these constraints.

The method we propose satisfies these constraints. We
propose a novel approach for markerless object localization
with multiple cameras. We made it near real time in combin-
ing the mutual information as registration function with an
inverse composition approach. This creates a fast method
that is robust against typical variations in appearance. In
the remainder the main steps and results are presented. Full
details can be found in the thesis [10].
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2 Related Work

Different approaches to visual tracking can be found in the
literature. On the one hand we can use visual features—
keypoints, lines or any other small geometrical shape—
extracted from images in real time [21]. These shapes are
local features and the algorithm relies then on their pairwise
mapping. Here again we can distinguish two subcategories
[25]: offline tracking and online tracking [29]. In the case
of offline tracking, the key points from the current image are
matched to precomputed keypoints fromdifferent views, also
called keyframes, of the object. For online tracking, instead,
the current keypoints are matched to the keypoints detected
in the previous frame. The offlinemode is robust, but does not
take the estimation in last frame into account, while online
tracking is quick and precise because it uses the last estima-
tions. The same reasons lead to offline tracking being slow
and not precise and online tracking prone to error accumula-
tion. Vacchetti et al. merge the two approaches through local
bundle adjustment to get an algorithm that is quicker and
more robust [25]. Sometimes keypoints are falsely detected
and perturb the pose estimation. One solution is to use robust
statistics methods like RANSAC [9] to minimize the effect
of these outliers. A 3D reconstruction of a piecewise planar
scene can be done by detecting and matching feature points,
so that it handles at the same time the construction and the
tracking of the model [26]. Several difficulties arise from
feature-based tracking [18]: outliers can lead to a less pre-
cise and stable pose estimation, surfaces that have an overall
distinctive texture pattern but few distinctive local keypoints
and also surfaces that show a significant curvature are harder
to deal with. The KLT approach [15] uses local features for
tracking images and also takes the spatial intensity informa-
tion into account to direct and limit the search for the best
match.

The alternative to using local features consists in making
a template-based registration, in which the model is consid-
ered as a whole without paying attention to local features. It
consists inwarping the current image to a template image and
maximizing the similarity between the two images based on
the registration parameters. For 3D objects, Delabarre and
Marchand [7] compare the current image with the model
rendered at the estimated pose and then compute an update
with a differential optimization algorithm. In the 2D case the
object is a plane and the properties of homographies can be
used to compute the warped imagewithout the need to render
the model anew [3,6]. It is even possible to use the inverse
composition [1] implementation [6] so that some derivatives
can be precomputed, making the process quicker. The planar
2D case can be generalized to 3D objects that can be rep-
resented as set of planes [2,7]. Indeed, for such an object,
we can define the warping through a set of homographies
depending on the pose of the object. As a matter of fact, a

homography is defined by an underlying 3D transformation
[16]. Delabarre and Marchand claim to use the inverse com-
positional approach applied to the 3D case without giving the
details of the calculation [7]. We will focus on the use of the
inverse compositional approach for piecewise planar objects.
The problem being highly non-linear, we will consider the
Levenberg–MarquardtAlgorithm for themaximizationof the
similarity function, which is also used for similar problems
[6,24]. Previous papers use one camera, we will explain how
it is possible to integrate several cameras while keeping the
low computational costs. This is, for instance, a good feature
for a tracking system that is to be used for the supervision of
a production line.

A similarity function is used to compare the set of intensity
values of mapped points between the template image and the
warped image. Themost intuitive technique consists in using
the sum of squared differences (SSD) to evaluate the pixel
similarity but it behaves poorly when faced with illumination
variation and occlusion [7]. The sum of conditional variance
behaves better than SSD for global change of illumination but
is not robust towards occlusion. Mutual Information (MI) [4]
is a very robust similarity measure, much better than the two
others, as it is robust against illumination variation, specu-
larities and occlusions albeit at a high computational cost
[6]. It is, e.g. widely used for medical image registration
[13,19,27].

As Delabarre and Marchand [7] deal with the simultane-
ous tracking of planes to determine the position of the camera
with a template-based registration method, we focus on the
tracking of object that can be converted into a set of planes.
The method for converting an object into a set of planes is
beyond the scope of this paper, and therefore, we assume that
we have an object made of planes. Tracking a piecewise pla-
nar object is easier because it is not necessary to render the
object for each new position, so we can precompute a good
part of the derivatives.

Our contribution is the integration of a multi-camera
approach and the theoretical analysis of precisely one warp
update in order to obtain a near-real-timemulti-camera track-
ing approach.

3 Template-Based Registration

Our tracking algorithm is fully based on differential
Template-Based Image registration, consisting of the opti-
mization of an image registration function [7]. The goal is to
find the position of an image template I ∗ on an image I . We
note this position ̂Z. The problem with a similarity function
f becomes

̂Z = argmax
Z

f
(

I ∗ (x) , I (ωZ(x))
)

, (1)
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where ωZ is the warp that associates a set of points x from
the template I ∗ to the corresponding set of pointsωZ(x) in I .
The warp ωZ depends on Z, which is the estimated relative
position of I ∗ and I .

In our case, the position parameter Z will correspond to
the pose of the 3D object and will be of dimension 6, as it is
determined by its three rotation parameters and three transla-
tion parameters. Therefore, it is not reasonable to think about
an exhaustive search of the state space for the estimation of
the optimal pose. Insteadwe assume that we know an approx-
imation Zk of the current position and we look for a small
displacement �Zk that leads to an improved similarity, i.e.
a higher value of the similarity function.

There are two ways to formulate the update [1,7]: the
direct compositional formulation and the inverse compo-
sitional formulation. In the latter case, the derivatives are
computed on the reference image (the template) I ∗, which is
always the same.We can therefore precompute a good part of
the derivatives and increase the performances. For this rea-
son, we will focus our approach on the inverse compositional
update. Thus, the warp update ω�Z is computed as

�Zk = argmax
�Z

f
(

I ∗ (ω�Z(x)) , I
(

ωZk (x)
))

. (2)

Thewarp update isωZk+1 = ωZk◦ω−1
�Zk

. The similarity func-
tion f evaluates the similarity between the intensities of the
set of pixels x from one image and the corresponding set of
pixels ω(x) from the other image.

Mutual Information (MI) evaluates the quantity of infor-
mation shared between two random variables, i.e. the distri-
butions of the grey level intensities of two images. It is based
on the histograms pI , pI ∗ and on the joint histogram pI ∗ I of
the two images:

MI
(

I ∗, I
) =

∑

r,s

pI ∗ I log
pI ∗ I
pI ∗ pI

, (3)

where r and s are histogram coordinates (bin indices). His-
tograms are computed using fuzzy binning with B-Splines of
3rd order [24,27] so that we can later compute the derivatives
of the MI. What motivated our choice is that B-Splines are a
good approximation of the Gaussians while the computation
of their values and derivatives is cheaper.

In practice, we will try to use as few bins (intensity sam-
pling) and as fewpoints (image sampling) as possible in order
to reduce the computational costs of the mutual information.
This introduces a bias and a standard error that have been
evaluated in [23]. The points are chosen randomly among a
subset of pixels, for which the magnitude of the gradient is
high enough. Indeed, the pose update will be noticeable as a
variation of the MI value only if there is a significant inten-
sity change for the pixels associated to the projected points
(as the pose update changes the projection). As we want to

Fig. 1 Geometrical description of the model

get a better mapping, we look for a mapping that leads to a
higher MI which is to say we have to optimize the MI with
respect to the warping.

In the next section, we explain how to construct the warp-
ing and its update based on the relative pose between the
object and the cameras.

4 Description of the Geometric Model

In our system, represented by Fig. 1, we consider one object
at the poseTRobj and a set of N real cameras Cn with
n ∈ {1, . . . , N }. A camera Cn is defined by its extrinsic and
intrinsic parameters. The extrinsic parameter, written TCn ,
transforms the world coordinates of a point into its coordi-
nates in the local coordinate system of the camera Cn . The
intrinsic parameter, that we note KCn , describes how a point
in the camera coordinate system is projected on the camera
image plane. The cameras are fixed and calibrated (extrinsic
and intrinsic parameters are known).

The surface of the object is modelled by a set of M planes
Pm withm ∈ {1, . . . , M}.AplanePm is definedby its normal−→nm and by a point on that plane. As a plane corresponds to
a local approximation of the surface of the object, we can
decide that −→nm is oriented in the direction of the inside of the
object. Eachplanehas a texturewhich is rendered froma local
virtual camera ˜Cm , so that the plane coincides with the image
plane of the virtual camera and the camera centre is in the
negative space defined by the plane. The local camera is also
defined by its intrinsic and extrinsic parameters, respectively,
T

˜Cm and K
˜Cm .

We need to define these local cameras because we will
use homographies for warping a point from a plane Pm to its
projection on the image plane of the camera Cn . A homog-
raphy predicts the warp between the images of two cameras
looking at the same plane or, more generally, is a transfor-
mation from one projective plane to another. In our case, it
is the homography between ˜Cm and Cn relative to the plane
Pm . Technically, the image plane of the camera ˜Cm does not
need to coincide with the planePm (because of the properties
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of homographies), but this is easier to understand it this way
and there is no reason not to do so. Another specificity of
these cameras is that they are fixed in the reference frame of
the object, in other terms it does not move relatively to the
object. This means that the camera ˜Cm always capture the
same image of the plane Pm it is looking at, independently
of the object displacement. T

˜Cm is defined in the object coor-
dinate systemRobj. Local cameras are not physically present
in the system, but they are required in our model because of
the homographies.

4.1 Warping Update

Through the optimization process, we are looking for a small
transformation update to apply to the pose of the object. We
are looking for an update T (k)

� such that

T (k+1)
Robj

=
(

T (k)
�

)−1
T (k)
Robj

. (4)

We use here the exponential map (see [2]) to parameter-
ize T (k)

� with θk ∈ se(3), so that T (k)
� = T(θk ) = exp(θk).

We rewrite Eq. (4) in terms of TRobj→Cn , the relative trans-
formation between the object Robj and the real camera Cn :

T (k+1)
Robj→Cn = T (k)

Robj→Cn T(θk ). (5)

So we can think of T(θk ) as an update of the relative trans-
formation between Robj and Cn . Because of its definition in
Eq. (4), the update is independent of the camera that is being
considered.

We convert a point X
˜Cm belonging to Pm from the local

camera ˜Cm coordinate system into the same point XCn
expressed in the coordinate system of the camera Cn :

X(k+1)
Cn = ̂Tθk X˜Cm , (6)

where ̂Tθk = T (k)
Robj→Cn T(θk )T˜Cm→Robj

.

The next step is to re-formulate it with homographies. We
can do that because we are considering a map between two
images (from a local camera ˜Cm and from a real camera Cn)
for pixels corresponding to the same plane Pm . In terms of
homographies, we have, respectively, before and after the
update:

x(k)
Cn = KCn H˜Cm

{

T (k)
Robj→Cn T˜Cm→Robj

}

K−1
˜Cm x˜Cm

x(k+1)
Cn = KCn H˜Cm

{

̂Tθk

}

K−1
˜Cm x˜Cm ,

(7)

whereH
˜Cm {T } is the homography looking at the plane Pm

between the camera ˜Cm and ˜Cm when transformed by T , KCn
is the intrinsic matrix of the camera Cn , K˜Cm is the intrinsic

matrix associated to camera ˜Cm , x˜Cm is the projection of a

point X belonging to Pm on the image plane of the camera
˜Cm expressed in the 2D homogeneous coordinates, and x(k)

Cn
is the projection of the same point X on the image plane of
the camera Cn expressed in the 2D homogeneous coordinates
at the iteration k.

Homographies require the use of 2D homogeneous coor-
dinates, whereas we are interested in the pixel coordinates,
which are euclidean. For this reason we consider warps, with
the notation ω, instead of homographies.
We rewrite Eq. (7):

x(k+1)
Cn = ωθk ,m,n

(

x
˜Cm

)

, (8)

where

ωθk ,m,n = ω[

KCn H˜Cm
{

̂Tθk

}

K−1
˜Cm

] (9)

andω[H ] decries the projection (euclidean coordinates) asso-
ciated to the linear transformation H (in homogeneous
coordinates). As we want to maximize the MI w.r.t. the
exponential map parameter θ , the direct compositional for-
mulation of the problem would be, based on Eq. (1):

θopt = argmax
θ

MI ( I ∗̃
Cm

(

x
˜Cm

)

,

ICn
(

ωθ ,m,n

(

x
˜Cm

))) (10)

where θopt is the optimal parameter for defining the update.
From Eq. (10) we deduce, the inverse compositional

update,which consists in computing the update (i.e. the deriv-
atives) on the reference image I ∗̃

Cm .
We first rewrite Eq. (10) as follows:

θopt = argmax
θ

MI ( I ∗̃
Cm

(

ω−1
θ ,m,n

(

x′)),

ICn
(

x′))
(11)

so that we deduce the form that corresponds to the inverse
compositional update:

θopt = argmax
θ

MI ( I ∗̃
Cm

(

ω−1
θ ,m,n ◦ ω0,m,n

(

x
˜Cm

))

,

ICn
(

ω0,m,n

(

x
˜Cm

))) (12)

This is indeed the inverse compositional form, because for
θ = 0, we have

ω−1
θ ,m,n ◦ ω0,m,n = ω−1

0,m,n ◦ ω0,m,n = Identity.

If we use the notation δωθ ,m,n = ω−1
θ ,m,n ◦ ω0,m,n , we can

simplify the expression Eq. (12):
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θopt = argmax
θ

MI ( I ∗̃
Cm

(

δωθ ,m,n

(

x
˜Cm

))

,

ICn
(

ω0,m,n

(

x
˜Cm

))) (13)

For finding the optimal θ we will use a differential opti-
mization method and this requires the differentiation of the
MI from equation Eq. (13).

The computation of the derivativewill not be detailed here,
but we can note that the computation is made easier with
the fact that the function ω : H �−→ ω[H ] for H ∈ SL is
a homomorphism. It means ω[H1H2] = ω[H1] ◦ ω[H2] for all
H1, H2 ∈ SL. From this, we can simplify the expression of
the warp that is to be derived:

ω−1
θ ,m,n ◦ ω0,m,n

= ω−1
[

KCn H˜Cm {̂Tθ}K−1
˜Cm

] ◦ ω[

KCn H˜Cm {̂T0}K−1
˜Cm

]

= ω[

(

KCn H˜Cm {̂Tθ}K−1
˜Cm

)−1
] ◦ ω[

KCn H˜Cm {̂T0}K−1
˜Cm

]

= ω[

(

KCn H˜Cm {̂Tθ}K−1
˜Cm

)−1
KCn H˜Cm {̂T0}K−1

˜Cm

]

= ω[

K
˜Cm H−1

˜Cm {̂Tθ}H˜Cm {̂T0}K−1
˜Cm

].

(14)

4.2 Multiplane and Multi-camera Approach

The MI is used to evaluate the quality of the warp between
two images. In our case, we are mapping the pixels from the
image of the reference camera ˜Cm to the pixels of the camera
Cn . There are therefore as many warping as there are pairs
(

˜Cm, Cn
)

. We compute the MI of all warps simultaneously:

MI = MI

(

⋃

m,n

{(

I ∗̃
Cm , ICn

)}

)

. (15)

This is technically equivalent to compute the joint histograms
p
˜Cm ,Cn for each pair

(

˜Cm, Cn
)

and sum them all together
in a linear combination (taking into account the number of
points in each partial histograms) into p and then compute
the mutual information out of the new global joint histogram
p in the usual way.

The pose update that we defined in the previous section is
still valid for the optimization of the global mutual infor-
mation because we designed it to be independent of the
considered pair of plane and camera. We have therefore

θopt =argmax
θ

MI

(

⋃

m,n

{

(

I ∗̃
Cm

(

δωθ ,m,n
)

, ICn
(

ω0,m,n
))

})

.

(16)

4.3 Mutual Information and Joint Histogram
Derivatives

We use the Levenberg–Marquardt algorithm for finding the
maximum of the mutual information, i.e. the finding the
best pose. This algorithm requires the computation of the
gradient (first-order derivatives) of the similarity function
and also an estimation of its Hessian (second-order deriv-
atives): The first-order and second-order derivatives of the
MI are required to compute the object pose update with the
Levenberg–Marquardt algorithm.

MI Gradient:

∂MI

∂θ

∣

∣

∣

∣

θ=0
=

∑

r,s

[

∂p

∂θ
log

p

p1

] ∣

∣

∣

∣

θ=0
. (17)

MI Hessian:

∂2MI

∂θ2

∣

∣

∣

∣

θ=0
=

∑

r,s

[

1

p

∂p

∂θ

T ∂p

∂θ

]

∣

∣

∣

∣

θ=0

−
∑

r

[

1

p1

∂p1
∂θ

T ∂p1
∂θ

]

∣

∣

∣

∣

θ=0

+
∑

r,s

[

∂2 p

∂θ2
log

p

p1

] ∣

∣

∣

∣

θ=0
. (18)

The expression of the mutual information Hessian that we
get is different from the one given by the paper [7]:

∂2MI

∂θ2

∣

∣

∣

∣

θ=0
=

∑

r,s

[

∂p

∂θ

T ∂p

∂θ

(

1

p
− 1

p1

)

]

∣

∣

∣

∣

θ=0

+
∑

r,s

[

∂2 p

∂θ2
log

p

p1

] ∣

∣

∣

∣

θ=0
. (19)

The last expression relies on results from [8] which uses the
following generally wrong assumption:

∑

s

1

p1(r)

∂p(r, s)

∂θi

∂p1(r)

∂θ j
=

∑

s

1

p1(r)

∂p(r, s)

∂θi

∂p(r, s)

∂θ j

(20)

they implicitly use the rule p1(r) = ∑

s p(r, s), but when
correctly used, it leads to

∑

s

1

p1(r)

∂p(r, s)

∂θi

∂p1(r)

∂θ j

=
∑

s

1

p1(r)

∂p(r, s)

∂θi

∂

∂θ j

∑

s′
p(r, s′)

=
∑

s

∑

s′

1

p1(r)

∂p(r, s)

∂θi

∂p(r, s′)
∂θ j

.

(21)
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Fig. 2 Counter example for independency of histogram intensity bins
at the convergence

There was therefore an index confusion, we cannot set
s′ = s.

Other papers [18,24] propose a first-order approximation
of the Hessian, relying just on the first-order derivatives of
the joint histogram:

˜
(

∂2MI

∂θ2

)

:=
∑

r,s

[

1

p

∂p

∂θ

T ∂p

∂θ

]

∣

∣

∣

∣

θ=0

−
∑

r

[

1

p1

∂p1
∂θ

T ∂p1
∂θ

]

∣

∣

∣

∣

θ=0
(22)

[24] justifies it assuming that in an ideal case and for two
dependent images, p(r, s) = p1(r)p2(s), which is to say
that the population of the intensity ranges should be inde-
pendent in the two images as p2 does not depend on the
update parameter. So the second-order part of the Hessian
disappears:

∑

r,s

[

∂2 p

∂θ2
log

p

p1

]

=
∑

r,s

[

∂2 p

∂θ2
log p2

]

=
∑

s

[

∂2 p2
∂θ2

log p2

]

= 0.

(23)

This is true, for example, without fuzzy binning and if
the images are identical (as the 2D histogram would be a
diagonal matrix) but this is not true in general. Let us have
a look at a counter example, based on the two images from
Fig. 2. Figure 2b is the same image as Fig. 2a where the grey
pixels have been replaced by white pixel. This is the kind
of phenomenon that we have to deal with when performing
a multimodal image registration. In this case, the optimal
warping is the identity. Now if we build the joint histograms
with 3 bins, we get

p=
⎡

⎣

0.5 0 0
0 0 0.3125
0 0 0.1875

⎤

⎦ , p1=
⎡

⎣

0.5
0.3125
0.1875

⎤

⎦ , p2=[

0.5 0 0.5
] ;

(24)

we conclude p(3, 3) �= p1(3)p2(3) as p(3, 3) = 0.1875 and
p1(3)p2(3) = 0.1875 · 0.5 = 0.09375. So the reason given
by [24] is wrong.

Let us go further in the study of the first-order part of the
Hessian. This is a symmetric matrix (which is an essential
feature for a Hessian matrix) and we are going to show that
it is likely to be positive semidefinite.
For all v ∈ R

6:

vt
˜

(

∂2MI

∂θ2

)

v =
∑

r,s

vt

[

1

p

∂p

∂θ

T ∂p

∂θ

]

v

−
∑

r

vt

[

1

p1

∂p1
∂θ

T ∂p1
∂θ

]

v

=
∑

r,s

1

p

(

∂p

∂θ
· v

)2

−
∑

r

1

p1

(

∂p1
∂θ

· v

)2

.

(25)

To prove that the Hessian is positive semidefinite, it is suf-
ficient to prove that (25) is positive. We make use of Jensen’s
inequality, applied to the square function (which is convex):

(

∂p1
∂θ

· v

)2

=
(

∑

s

∂p

∂θ
· v

)2

= N 2
c

(

∑

s

1

Nc

∂p

∂θ
· v

)2

≤ N 2
c
1

Nc

∑

s

(

∂p

∂θ
· v

)2

,

(26)

where Nc is the number of bins used for the computation of
the histograms. This leads to

(

∂p1
∂θ

· v

)2

≤ Nc

∑

s

(

∂p

∂θ
· v

)2

. (27)

We can substitute the last inequality back in (25), so we
get

vt
˜

(

∂2MI

∂θ2

)

v ≥
∑

r,s

1

p

(

∂p

∂θ
· v

)2

−
∑

r,s

Nc

p1

(

∂p

∂θ
· v

)2

=
∑

r,s

(

1

p
− Nc

p1

)(

∂p

∂θ
· v

)2

. (28)
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As
(

∂p
∂θ

· v
)2

is always positive, we have to look at the sign

of 1
p − Nc

p1
. The problem is that as p1 = ∑

r p, we conclude

that 1
p − Nc

p1
can be positive and negative. However, we can

show (briefly) that it is most of the times positive. Indeed
p = p(r, s) and p1 = p1(r) can be seen as distributions for
the random variables r and s. Therefore, if we consider that r
and s are equally distributed, we can evaluate the expectation
of = 1

p − Nc
p1
:

E

[

1

p
− Nc

p1

]

=
∑

r,s

1

N 2
c

(

1

p
− Nc

p1

)

=
∑

r

1

Nc

(

∑

s

1

Nc

1

p
− Nc

1

Nc

Nc

p1

)

.

(29)

Here also, we apply the Jansen inequality to the function
inverse, so that we have

∑

s

1

Nc

1

p
≥ 1

∑

s
1
Nc

p
= 1

1
Nc

p1
= Nc

p1
. (30)

So we finally have

E

[

1

p
− Nc

p1

]

=
∑

r,s

1

N 2
c

(

1

p
− Nc

p1

)

≥
∑

r

1

Nc

(

Nc

p1
− Nc

p1

)

= 0.

(31)

This means that the expectation of 1
p − Nc

p1
is pos-

itive. We cannot conclude directly for the positivity of

vt
˜
(

∂2MI
∂θ2

)

v becausewe do not know the dependency between
∑

r,s

(

1
p − Nc

p1

)

and
(

∂p
∂θ

· v
)2
. However, we can suppose

that the two variables are independent, because the joint his-
togram is computed with the intensity values from the image
and its derivatives with the image gradient. In an image there
is in general no specific dependency between the intensity
values and the gradient, so that we have

∑

r,s

(

1

p
− Nc

p1

)(

∂p

∂θ
· v

)2

= E

[

(

1

p
− Nc

p1

)(

∂p

∂θ
· v

)2
]

= E

[

1

p
− Nc

p1

]

E

[

(

∂p

∂θ
· v

)2
]

≥ 0.

(32)

We can now conclude

∀v ∈ R
6, vt

˜
(

∂2MI

∂θ2

)

v ≥ 0. (33)

We have just proven that it is “likely” that the first approx-
imation part of the Hessian is positive. The fact is that
numerically it is even definite positive, so even if the proof
is not rigorous, it gives an insight of the reason for that.

A priori the fact that the first-order approximation of the
Hessian is positive is a really bad feature for a maximization
problem, as the Hessian of a function evaluated on a local
maximum is always negative. So first of all, we cannot call it
an approximation anymore: the neglected part is big enough
to make a positive matrix negative! We will call it the first-
order part of the Hessian.

Then, how is it that [18,24] used this Hessian substitute
successfully? The reason is that this first-order part of the
Hessian still says something about the variations and more
specifically about the curvature of the mutual information.

If
˜
(

∂2MI
∂θ2

)

is always semidefinite positive, then − ˜
(

∂2MI
∂θ2

)

is

semidefinite negative and this feature is perfect for the New-
ton part of the Levenberg–Marquardt algorithm. In fact, in
the Newton process, the parameter generally converges to a
local extremum, but if the Hessian used in the algorithm is
negative, then the local extremum will be necessarily a local
maximum. We just gave the explanation for the success that
[18,24] encountered with the use of the first-order part of the
Hessian. The effect of this substitution will be tested on the
convergence and will be compared with the other Hessian
evaluation methods in Sect. 6.1.

Another approach for the Hessian computation is to use
its evaluation at convergence [7]. It is an interesting thing
to be able to compute the Mutual Information derivatives
at convergence. Indeed, the joint histogram computation is
based on the pairs of intensities from a point on a ref-
erence image and its projection on the camera image. At
the convergence, we can make an approximation and say
that the intensity on the image camera equals the one from
the reference image (as we said that mutual information is
robust to multimodal images) and therefore use only the
intensity values from the reference image to evaluate the
derivatives of the mutual information on the convergence
point.

This provides several benefits. If we use the evaluation of
the Hessian at the convergence point, then we use the same
Hessian value in all iteration steps and we can precompute
it once for all. The other good point is that the Hessian is
necessarily negative at the convergence, so it should improve
the convergence radius, as explained for the first-order part
of the Hessian.

We will try the same approach with the first-order
part of the Hessian and test the algorithm substituting
the Hessian with the opposite of its first-order part evalu-
ated at the convergence, so that the precomputation is also
cheaper.

The two last approaches will be also tested in Sect. 6.1.
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4.4 Algorithm

Weuse Levenberg–Marquardt algorithm for the optimization
of the MI as in [6]. Algorithm 1 describes the key steps of
the optimization process and algorithm 2 is a subpart of it.

5 Performance and Parameters

A natural criterion for evaluating the performance of an
iterative algorithm such as Levenberg–Marquardt is its con-
vergence radius. It consists in representing the convergence
rate with respect to the intensity of the perturbation. In our
experiments, we know the expected pose of the object so

we decide that if the final pose estimation defines a map-
ping between the planes and the cameras with a mean pixel
error under 1px, then it has converged. Even if the algorithm
does not converge, it is important that it becomes closer to
the convergence point. Therefore, we also measure the error
improvement: �e = eend−estart

estart
. If a process converges, we

alsohave toknowhow“quickly” it converges.AsLevenberg–
Marquardt is an iterative algorithm, we can first measure how
many iterations are required till it converges. We also simply
measure the execution time of the algorithm.

The Levenberg–Marquardt is an iterative algorithm and
we need means of saying if the convergence point has been
reached or not. If we know the optimal pose, we do not look at
the distance between the estimated pose and the optimal pose
(as a translation has a much smaller impact if the object is
far away from the camera) but at what we perceive from this
distance: the pixel error.We thereforemonitor themean pixel
error (distance between the pixel projectedwith the estimated
pose and those projected with the optimal pose) and declare
that the algorithm is done when this error is small enough.
If we do not know the real pose of the object there is no
direct way to say if the estimated pose is close enough to the
optimal pose and therefore we do not know a priori when to
stop the iterations. We will look at two criteria for stopping
the iterations in the next section.

6 Experiments

We test how the algorithm, in a multi-camera setup, responds
to perturbations on the initial pose guess under different cir-
cumstances. In our experiments the object is made of two
planes andwe use two cameras to track the object (i.e.M = 2
and N = 2 according to the notations used in Sect. 4). An
example is depicted Fig. 3.

The perturbation is defined by its parameter θ ∈ se(3). In
order to generate a perturbation, we apply a normal distribu-
tion on each coordinate of θ , centred in 0 and with different
variance values. If we want to study the response of the algo-
rithm to a perturbation which is a translation Tx along the

Fig. 3 Example of a generated experiment in a two camera setup for
the tracking of an object made of two planes. The images depicted are
the images taken from the two cameras
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Fig. 4 Boxplot for the initial pixel error in function of the perturbation
intensity (a translation along x-axis) for testing the estimation of the
Hessian. The boxes delimit the 25 and 75%quartiles, while thewhiskers
delimit the 5 and 95% quantiles. The red line indicates the median and
the points are the outliers (Color figure online)

x-axis then we will choose a very small variance for all other
parameters than Tx and test the algorithm response to dif-
ferent perturbation magnitudes along Tx. We repeat each
experiment 500 times with new randomly chosen parame-
ters and measure the mean outcome, so that each point on a
graph is the result of 500 trials.

The variance of the perturbation of the pose does not say
much on how strong the perceived modifications of the scene
are. For a same translation, the perceived modifications are
much stronger if the camera is close to the object than if
it is far away from it. Therefore, we will always display a
graph representing the distribution of the mean start pixel
error w.r.t. the magnitude of the perturbation (Fig. 4), so that
we knowwhich impact the perturbation has on the scene. For
a given configuration we generate artificially the images of
the cameras looking at the object.

We do not test the robustness of the algorithm against
occlusion, illumination variation or specularities because it
is a property that is inherited from the use of MI as sim-
ilarity measure [7]. With the piecewise planar approach
self-occlusion might happen, but parts of the planes that are
occluded can be detected and filtered out before the com-
putation of MI. In our experiment, the configuration is such
that there is no self-occlusion, as only the invisible side of
the plane can be occluded (the considered object is similar
to concave).

The Levenberg–Marquardt algorithm requires to fix four
λ (see algorithm 2). We set λref = 106, λfact = 10,
λmin = 10−6, and λmax = 108 [18]. As explained in Sect.
3, the computation of the mutual information introduces two

parameters: the number of histogram bins nbins (intensity
sampling) and the number of points npartial per reference
image or per plane (image sampling). Therefore, npartial is
also the number of points used for the evaluation of a par-
tial joint histogram (see Sect. 4.2), so the total number of
points used for the MI computation is ntotal = MNnpartial.
We set nbins = 14 and npartial = 700. It is also possible to
choose npartial = 300, for a quicker optimization and still get
a satisfying convergence rate. Per plane, the points are ran-
domly selected among the 30 percent of the points having the
highest gradient (i.e. with gradient intensity higher than the
70th percentile). The more planes there are, the less points
per plane are required: indeed, the decisive factor for the
accuracy of the MI computation is the total number of points
ntotal in the system, since the planes are tracked simultane-
ously. The exact relationship between the accuracy of the MI
and the total number of points (or in other terms the sampling
points) is detailed in [23].

We can note that the complexity of the computation of MI
is linear in the total number of points (as each point contri-
bution is added to the joint histogram) and thus linear in the
numbers of planes and cameras for a fixed number of points
per plane. The complexity is also constant for varying num-
bers of planes and cameras as long as the number of points
per plane is changed so that the total number of points stay
constant (i.e. for a constant accuracy in the computation of
the MI). For this reason, it is sufficient to carry out exper-
iments with two planes and two cameras, as the system is
scalable and the complexity is known.

6.1 Hessian Computation

There are different ways to compute an estimation of the
Hessian. We implemented the following methods: PNC:
first-order evaluated at each iteration step, PC: first-order
evaluated at convergence, FNC: full Hessian evaluated at
each iteration step and FC: full Hessian evaluated at con-
vergence. These methods are detailed in Sect. 4.3.

Analysis of the convergence radius Figure 5a represents the
convergence radius for the different Hessian computation
modes. The first observation is that the convergence rate
equals 1 for very small perturbations for all Hessian com-
putation modes and decreases as the perturbation intensity
increases. As expected, it is FNC that provides the best
results: indeed the value of the MI Hessian is exact and
completely coherent with the MI itself and therefore each
update is good. FC, for which the full Hessian is estimated
at convergence, ranks second. The graph shows that the first-
order approximation for the Hessian computation has a clear
impact on the convergence radius, as PNC and PC do not per-
form as well as FNC and FC. However, if the convergence
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(a)

(b)

Fig. 5 a Convergence rate, b mean computation time for different
Hessian computation modes

is not so good for PNC and PC, it still converges and this
corroborates the theoretical results from the Sect. 4.3.

Analysis of the computation time The computation time in
each case is represented in Fig. 5b. Without surprise, FNC
(without approximation) is the slowest method, whereas PC
(two approximations) is the quickest, being nearly real time
(it requires less than one second). This suggests that a trade-
off between performance and convergence has to be made,
depending on context where the algorithm is to be applied.
The implementation of the algorithm is not optimized, and
therefore it is useless to further comment Fig. 5. A better
algorithm implementation is likely to reduce the computa-
tion time in all cases.

6.2 Stop Criteria

The Levenberg–Marquardt algorithm used for the optimiza-
tion of the MI is an iterative algorithm. We need criteria in
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Fig. 6 ROC curves for mean pixel update (a) and MI update (b) crite-
rion

order to stop the optimizationwhenwe estimate that the solu-
tion is close enough to the convergence point.

The pose update is not relevant since a perturbation on
the object pose has a smaller impact if the cameras are fur-
ther away. In contrast, the measure of the mean pixel update
accounts for themodification of the scene as perceived by the
camera. Considering the update of MI per step also makes
sense, as the MI update is likely to be smaller when close to
the convergence point which is a local maximum of MI. For
the two criteria (the MI update and the mean pixel update),
and for different threshold valueswe look at the classification
outcome and confront itwith the true classification. The usual
way for representing the performance of a binary classifier
is to use ROC curve [17].

The ROC curve associated to the mean pixel update cri-
terion (Fig. 6a) and MI update (Fig. 6b) shows that only the
mean pixel update can be used as a criterion for evaluating
the convergence.
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7 Conclusion

We designed, implemented and tested a new approach for a
precise pose estimation of a piecewise planar object based
on an initial pose guess in near real time. It makes use of
the MI as a similarity function so that it has the robustness
required for industrial applications. The novelty is that the
tracking is made in a multi-camera setup. We also precisely
described the geometric structure of the scene and adapted it
in terms of warps between planes and cameras scene using
the properties of homographies.

We designed the warp and its update so that it is possible
to optimize the pose of the piecewise planar object exploiting
the images and the poses of several cameras looking at the
object.We also discussed the coherence of themethod used in
[7] for the Hessian estimation and identified a valid solution
that gives the algorithm nearly real-time performances.
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