
rspa.royalsocietypublishing.org

Research
Cite this article: Deng Y, Korvink JG. 2016
Topology optimization for three-dimensional
electromagnetic waves using an edge
element-based finite-element method. Proc.
R. Soc. A 472: 20150835.
http://dx.doi.org/10.1098/rspa.2015.0835

Received: 9 December 2015
Accepted: 29 March 2016

Subject Areas:
computational physics, computer modelling
and simulation, electromagnetism

Keywords:
topology optimization, three-dimensional,
electromagnetic wave, divergence-free
condition, edge element

Authors for correspondence:
Yongbo Deng
e-mail: dengyb@ciomp.ac.cn
Jan G. Korvink
e-mail: jan.korvink@kit.edu

Topology optimization for
three-dimensional
electromagnetic waves using
an edge element-based
finite-element method
Yongbo Deng1 and Jan G. Korvink2

1State Key Laboratory of Applied Optics, Changchun Institute of
Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of
Sciences, Dongnanhu Road 3888, Changchun 130033,
People’s Republic of China
2Institute of Microstructure Technology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtzplatz 1, 76344
Eggenstein-Leopoldshafen, Germany

YD, 0000-0002-1237-040X

This paper develops a topology optimization
procedure for three-dimensional electromagnetic
waves with an edge element-based finite-element
method. In contrast to the two-dimensional case,
three-dimensional electromagnetic waves must
include an additional divergence-free condition for
the field variables. The edge element-based finite-
element method is used to both discretize the wave
equations and enforce the divergence-free condition.
For wave propagation described in terms of the
magnetic field in the widely used class of non-
magnetic materials, the divergence-free condition
is imposed on the magnetic field. This naturally
leads to a nodal topology optimization method.
When wave propagation is described using the
electric field, the divergence-free condition must be
imposed on the electric displacement. In this case,
the material in the design domain is assumed to be
piecewise homogeneous to impose the divergence-
free condition on the electric field. This results in an
element-wise topology optimization algorithm. The
topology optimization problems are regularized using
a Helmholtz filter and a threshold projection method
and are analysed using a continuous adjoint method.
In order to ensure the applicability of the filter in
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the element-wise topology optimization version, a regularization method is presented to
project the nodal into an element-wise physical density variable.

1. Introduction
Current hot topics in electromagnetics and photonics research cover electromagnetic or photonic
cloaking [1–4], surface plasmonic polaritons [5–8], metamaterials [9–12], metasurfaces [13,14] and
band gap structure or photonic crystals [15], to name the most prominent. In these research
areas, the control of electromagnetic or optical waves is realized by structures with complex
spacial configurations using pre-selected materials, and the incident waves have complicated
polarizations. Most of these situations cannot be reduced to two dimensions, except for a
minority of cases involving linear polarized waves. For this complexity, physical intuition-
based electromagnetic structure design has its limitations. To overcome these bounds, several
inverse design tests have been implemented based on structural optimization methods [16–34],
in which the method employed most is the topology optimization method. Topology optimization
is currently regarded to be the most robust methodology for the inverse determination of
material distribution in structures that meet given structural performance criteria. It was first
developed for elastic material response by Bendsøe & Kikuchi [35], and then was extended
to a variety of application areas, including acoustic, electromagnetic, fluidic and thermal
problems [16,20–22,24–33,36–45], to list the most prominent. Most of the reports on topology
optimization in electromagnetics have focused on applications, including beamsplitters [18,19],
photonic crystals [16,17], cloaks [20–22], sensors and resonators [44,45], metamaterials [23–25],
excitation of surface plasmons [26], and electromagnetic and optical antennas [27–29,34], without
presenting the systemical topology optimization methodology for electromagnetic waves in
three-dimensional space. Therefore, it is necessary to develop a unified and systematic topology
optimization approach that sufficiently considers the physical complexity of three-dimensional
electromagnetics.

It is, however, not straightforward to develop a finite-element-based topology optimization
method for electromagnetic waves in three-dimensional space, because a divergence-free
condition needs to be enforced. In the two-dimensional transverse electric or magnetic wave
(TE or TM) cases, the divergence-free conditions (∇ · D = 0 and ∇ · B = 0) are automatically
satisfied when reducing the Maxwell equations to their associated Helmholtz equations, and the
popular node element-based Galerkin finite-element method can be used to directly discretize the
Helmholtz equations [46,47]. Being different from the two-dimensional case, a divergence-free
condition is not automatically satisfied when solving three-dimensional electromagnetics with
a node element-based Galerkin finite-element method, and results in spurious solutions. Two
dominant approaches have been developed to enforce divergence-free conditions and eliminate
the spurious solutions. The first approach is to add a penalty term of the least square form of
the divergence-free condition to the weak form of the wave equation, and then to discretize
the weak form with nodal elements. However, the use of a penalty term cannot eliminate the
divergence of the solution completely, and also affects the solution accuracy [47]. The second
approach is the use of edge elements, which assign degrees of freedom to the edges rather
than to the nodes of the elements, in which a vector basis with inherent satisfaction of the
divergence-free condition is used to implement the interpolation [46–49]. The edge elements have
also removed the inconvenience of imposing boundary conditions at material interfaces, and
the difficulty in treating conducting and dielectric edges and corners owing to field singularities
[46,47]. Therefore, an edge element-based finite-element method is the more reasonable choice for
discretizing the three-dimensional wave equations and for developing a topology optimization
method for three-dimensional electromagnetic waves.

Previously, [23,24,34] have focused on three-dimensional topology optimization for
electromagnetics based on the finite-element method. In [24,34], Diaz et al. and Erentok et al.
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implemented the topology optimization of antennas and metamaterials without supplying
sensitivity analysis details, which is important because of the additional divergence-free condition
needed to be enforced by edge element-based instead of node element-based discretizition.
In [23], Otomori et al. tested the level-set method-based topology optimization method for
metamaterial design, by discretizing the three-dimensional wave equations with a node element-
based finite-element method, which however does not uphold the divergence-free condition, so
that their Galerkin-weighted variational formulation is not complete. We conclude that topology
optimization for three-dimensional electromagnetics still requires methodological improvements
before it can robustly cater for the needs of electromagnetic engineering. This paper focuses on
addressing these issues.

Reports on topology optimization for electromagnetic waves are based on the density [30] and
level-set method [31] for material interpolation. When compared with the density method, the
drawbacks of the level-set method include a strong dependence on the initial guessed topology,
a low-efficiency of convergence and difficulties to deal with multiple constraints. Therefore, the
density method has grown more popular in the topology optimization community. This paper
follows this trend, and is organized as follows.

The methodologies for the topology optimization of magnetic and electric field descriptions
are presented in §2a,c, with sensitivity analysis, presented in §2b,d. The numerical
implementations that solve the corresponding variational problem are presented in §2e. Several
test problems are presented in §3 to demonstrate the feasibility and robustness of the combined
method. In the expose, all the mathematical descriptions are formulated in a Cartesian coordinate
system, and we consider only non-magnetic materials.

2. Methodology
This section develops, sequentially, a magnetic field-centric, as well as an electric field-centric
formulation. Our approach is to first determine the governing equations, then to formulate
the optimization problem statement, as well as its associated sensitivity analysis, after which
we present the solution process. As an overview, we have made the following choices for the
methodology:

— the density method is used to implement material interpolation functions, and is selected
for its robustness;

— the continuous adjoint method is used to perform the sensitivity analysis;
— the Helmholtz equation-based density filter and threshold projection is used to regularize

the topology optimization problem and ensure convergence;
— the edge element-based finite-element method is used to solve the electromagnetic field

and enforce the divergence-free condition; and
— the topology optimization method is developed for electromagnetic waves, respectively,

based on the magnetic and the electric fields as independent variables.

(a) Magnetic field formulation
As is well known, the Maxwell equations are widely used to describe propagating
electromagnetic phenomena. Under a time harmonic assumption, they can be reduced to
stationary equations that can be solved. For example, by setting the time-dependent factor to
be ejωt, the magnetic field wave equation can be derived as

∇ × [ε−1
r ∇ × (Hs + Hi)] − k2

0μr(Hs + Hi) = 0, in Ω

and ∇ · Hs = 0, in Ω

}
(2.1)

where the scattered-field formulation is used with the magnetic field H split into two parts, i.e.
the incident wave Hi and scattered field Hs; the second equation is the divergence-free condition
of the scattered field; the incident wave is the wave propagating in free space, and it satisfies
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the divergence-free condition ∇ · Hi = 0; εr and μr are respectively the relative permittivity and
permeability of the propagation medium; ω is the angular frequency; t is the time; j = √−1 is
the imaginary unit; k0 = ω

√
ε0μ0 is the free space wavenumber, with ε0 and μ0, respectively,

representing the free space permittivity and permeability; Ω ⊂ R
3 is the computational domain.

To truncate the electromagnetic field towards infinite space and investigate the field in a given
space without artefacts, boundary conditions need to be imposed on the border ∂Ω ⊂ R

2 of the
computational domain Ω . The boundary conditions for equation (2.1) usually include a first-order
adsorbing condition, as well as perfect magnetic and electric conditions. The first-order absorbing
condition is usually used to truncate the field distribution at infinity [47]

n × (ε−1
r ∇ × Hs) − jk0

√
ε−1

r μrn × (Hs × n) = 0, on Γa (2.2)

where n is the unit outward normal vector at the trace ∂Ω ; Γa ⊂ ∂Ω is the absorbing boundary.
The perfect magnetic and electric conditions are used to describe the truncation of the field
at perfect magnetic and electric conductors, where the tangential continuity of the field is
ensured

n × (Hs + Hi) = 0, on ΓPMC

and n × [ε−1
r ∇ × (Hs + Hi)] = 0, on ΓPEC

⎫⎬
⎭ (2.3)

where ΓPMC and ΓPEC are the perfect magnetic and electric boundaries, respectively. The perfect
magnetic boundary condition can also be used to express the symmetry of the field.

Topology optimization requires material interpolation between different material phases, in
which the spatial distribution of relative permittivity needs to be determined. The relative
permittivity is interpolated by a design variable that represents the structural topology. In this
research, the design variable is filtered by a Helmholtz filter [50,51] to ensure the robust evolution
of the design variable and remove tiny structures with sizes close to that of the discretized
elements. The Helmholtz filter is implemented by solving the following Helmholtz equation

− r2∇ · ∇γf + γf = γ , in Ω

and n · ∇γf = 0, on ∂Ω

}
(2.4)

where r is the filter radius chosen based on numerical experiments [51]; γf is the filtered design
variable; γ ∈ L2(Ω), satisfying 0 ≤ γ ≤ 1, is the design variable. To remove the ‘grey’ region in the
obtained structural topology, the filtered design variable is projected by the threshold method
[52–54]

γfp = tanh(βξ ) + tanh(β(γf − ξ ))
tanh(βξ ) + tanh(β(1 − ξ ))

(2.5)

where γfp, the projected design variable, is the physical density taking the place of the design
variable to represent the structural topology [54]; ξ ∈ [0, 1] and β are the threshold and projection
parameters, respectively; for the choice of the values of ξ and β, the reader is referred to [51,55].
After filtering and projection, the relative permittivity is interpolated by the physical density
instead of the design variable. The interpolation is implemented between two different materials,
respectively, corresponding to the cases γfp = 0 and γfp = 1; the material interpolation can be
chosen to be the linear form [20]

εr = εr1 + γfp(εr2 − εr1), (2.6)

where εr1 and εr2 are the relative permittivities of the two materials.

 on July 2, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


5

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150835

...................................................

Based on the above description, the variational problem for the topology optimization of
magnetic field described three-dimensional electromagnetic waves can be formulated to be

find γ to maximize or minimize J(Hs, ∇ × Hs, γfp; γ )

subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ × [ε−1
r ∇ × (Hs + Hi)] − k2

0μr(Hs + Hi) = 0, in Ω

∇ · Hs = 0, in Ω

−r2∇ · ∇γf + γf = γ , in Ω

0 ≤ γ ≤ 1,

(2.7)

where the Helmholtz filter equation is included in the partial differential equation constraints.
J is the generally formulated cost functional, which includes both the domain and boundary
integrations of the unknown state variables

J(Hs, ∇ × Hs, γfp; γ ) =
∫
Ω

A(Hs, ∇ × Hs, γfp; γ ) dΩ +
∫
Γa
⋃

ΓPEC

B(Hs) dΓ , (2.8)

where A and B are integral functionals chosen based on a mathematical description of the desired
electromagnetic wave behaviour.

(b) Magnetic field sensitivity analysis
In this section, the variational problem in equation (2.7) is analysed to derive the gradient
information used to evolve the design variable. It has been clarified that the adjoint method is an
efficient approach with which to derive the gradient expressions of a partial differential equation
(PDE) constrained optimization problem [56]. Being different from the conventional case, the
functional space for the wave equation (2.1) needs to be chosen to satisfy the divergence-free
condition [46]

VH=̇{u ∈H(curl; Ω) | ∇ · u = 0, in Ω ; n × u = 0, on ΓPMC}, (2.9)

where

H(curl; Ω) = {u ∈ (L2(Ω))3 | ∇ × u ∈ (L2(Ω))3} (2.10)

and L2(Ω) is the second-order Lebesgue integrable functional space. Then, according to the
Kurash–Kuhn–Tucker condition of the PDE constrained optimization problem [56], the adjoint
equations of the wave equation and Helmholtz filter can be obtained as: find Hsa ∈ VH and
γfa ∈H1(Ω), satisfying

∫
Ω

∂A
∂Hs

· φ + ∂A
∂∇ × Hs

· (∇ × φ) + ε−1
r (∇ × H̄sa) · (∇ × φ) − k2

0μrH̄sa · φ dΩ

+
∫
Γa

jk0

√
ε−1

r μr(n × H̄sa × n) · (n × φ × n) + ∂B
∂Hs

· φ dΓ

+
∫
ΓPEC

∂B
∂Hs

· φ dΓ = 0, ∀ φ ∈ VH (2.11)

and
∫
Ω

r2∇γ̄fa · ∇φ + γ̄faφ + ∂A
∂γf

φ + ∂ε−1
r

∂γf
[∇ × (Hs + Hi)] · (∇ × H̄sa)φ dΩ

+
∫
Γa

⎡
⎣jk0

∂

√
ε−1

r μr

∂γf
n × (Hs × n) + n ×

(
∂ε−1

r
∂γf

∇ × Hi

)⎤
⎦ · (n × H̄sa × n)φ dΓ

+
∫
ΓPEC

[
n ×

(
∂ε−1

r
∂γf

∇ × Hi

)]
· (n × H̄sa × n)φ dΓ = 0, ∀ φ ∈H1(Ω), (2.12)
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where Hsa and γfa are the adjoint variables of Hs and γf, respectively; H1(Ω) is the first-order
Sobolev space; the overbar represents the conjugate operation of a complex variable. Furthermore,
the adjoint derivative of the cost functional can be derived as

δJ =
∫
Ω

Re
(

∂A
∂γ

− γ̄fa

)
δγ dΩ . (2.13)

where Re is the operator used to extract the real part of a complex function.

(c) Electric field formulation
In electromagnetics, electric field-based descriptions are preferred when the electromagnetic
performance is evaluated based on values of the electric field. In this case, the Maxwell equations
can be reduced into the electric field-based wave equation

∇ × [μ−1
r ∇ × (Es + Ei)] − k2

0εr(Es + Ei) = 0, in Ω

and ∇ · [εr(Es + Ei)] = 0, in Ω

}
(2.14)

where the scattered-field formulation is also used with the electric field E split into two parts, i.e.
the incident wave Ei and scattered field Es; the second equation is the divergence-free condition
of the electric displacement; the incident wave is the wave propagating in free space, satisfying
the divergence-free condition ∇ · Ei = 0. The boundary conditions for equation (2.14) also usually
include a first-order adsorbing condition, and perfect magnetic and electric conditions, which are
respectively expressed as

n × (μ−1
r ∇ × Es) − jk0

√
μ−1

r εrn × (Es × n) = 0, on Γa

n × [μ−1
r ∇ × (Es + Ei)] = 0, on ΓPMC

and n × (Es + Ei) = 0, on ΓPEC.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.15)

Being different from the magnetic field-based description case presented in §2a, the
divergence-free condition in equation (2.14) must consider the gradient of the relative
permittivity, because the permittivity gradient always arises in the topology optimization
procedure. The permittivity gradient could result in the inapplicability of numerical solution
methods, e.g. edge element-based finite-element method, which can otherwise fulfil the
divergence-free condition of the field in piecewise homogeneous media [47]. To circumvent this
problem, the computational domain Ω is assumed to be piecewise homogeneous. Under the
assumption of piecewise homogeneity, the relative permittivity is a constant distribution in every
piecewise domain, i.e.

εr(Ωn) = const, n = 1, 2 . . . N, (2.16)

where Ωn is a homogeneous piece of the computational domain, satisfying

Ω =
N⋃

n=1

Ωn; Ωp
⋂

Ωq = ∅, with p �= q, and p, q = 1, 2 . . . N, (2.17)

where N is the number of homogeneous pieces included in the computational domain. Based
on the assumed piecewise homogeneity, the divergence-free condition in equation (2.14) can be
transformed into

∇ · Es = 0, in Ω . (2.18)

The applicability of an edge element-based finite-element method is thereby ensured.
Corresponding to the assumption of piecewise homogeneity, an element-wise topology
optimization method should be developed for electric field described electromagnetic waves,
because the structural topology will be obtained as a combination of several homogeneous pieces
of material.
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To avoid the low efficiency and high computational cost convolution filter [54] usually used
in element-wise topology optimization, the following regularization procedure is proposed that
transforms the continuously defined design variable into a piecewise material density, and
furthermore, to implement material interpolation, where the applicability of the Helmholtz filter
is ensured for the design variable:

(i) define the continuous design variable γ in Ω ;
(ii) filter the design variable using a Helmholtz filter (equation (2.4)); and

(iii) transfer the filtered design variable γf into a piecewise version

γ e =
N∑

n=1

γ e
n (Ω) (2.19)

with

γ e
n (Ω) =

⎧⎨
⎩

1
VΩn

∫
Ωn

γf dΩ , ∀ x ∈ Ωn

0, ∀ x ∈ Ω\Ωn

(2.20)

where VΩn is the volume of Ωn;
(iv) project the piecewise design variable γ e into the material density γ e

p

γ e
p (γ e) = tanh(βξ ) + tanh(β(γ e − ξ ))

tanh(βξ ) + tanh(β(1 − ξ ))
; (2.21)

(v) implement material interpolation with the material density γ e
p , which represents the

material distribution in the derived structural topology

εr = εr1 + γ e
p (εr2 − εr1), (2.22)

where εr1 and εr2 are the relative permittivities of the two materials.

Based on the above regularization procedure, element-wise topology optimization can be
implemented with a continuously defined design variable. Subsequently, the variational problem
for the topology optimization of the electric field described three-dimensional electromagnetic
waves can be formulated as

find γ to maximize or minimize J(Es, ∇ × Es, γ e
p ; γ )

subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ × [μ−1
r ∇ × (Es + Ei)] − k2

0εr(Es + Ei) = 0, in Ω

∇ · Es = 0, in Ω

−r2∇ · ∇γf + γf = γ , in Ω ,

0 ≤ γ ≤ 1

(2.23)

where Ω is the piecewise homogeneous computational domain; J is a generally formulated cost
functional

J(Es, ∇ × Es, γ e
p ; γ ) =

∫
Ω

A(Es, ∇ × Es, γ e
p ; γ ) dΩ +

∫
Γa
⋃

ΓPMC

B(Es) dΓ , (2.24)

where A and B are again integral functionals chosen based on a mathematical description of the
desired electromagnetic wave behaviour.

(d) Electric field sensitivity analysis
The Lagrangian multiplier-based adjoint sensitivity analysis of the variational problem in
equation (2.23) is implemented as follows. The functional space and trace operators of equation
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(2.14) are similarly defined as that in §2b, except that

VE=̇{u ∈H(curl; Ω) | ∇ · u = 0, in Ω ; n × u = 0, on ΓPEC}. (2.25)

Then, according to the Kurash–Kuhn–Tucker condition of the PDE constrained optimization
problem [56], the adjoint equations can be obtained as: find Esa ∈ VE and γfa in H1(Ω), satisfying

∫
Ω

∂A
∂Es

· φ + ∂A
∂∇ × Es

· (∇ × φ) + μ−1
r (∇ × Ēsa) · (∇ × φ) − k2

0εrĒsa · φ dΩ

+
∫
Γa

jk0

√
εrμ

−1
r (n × Ēsa × n) · (n × φ × n) + ∂B

∂Es
· φ dΓ

+
∫
ΓPMC

∂B
∂Es

· φ dΓ = 0, ∀ φ ∈ VE (2.26)

and ∫
Ω

r2∇γ̄fa · ∇φ + γ̄faφ + Aγ eφ − Sγ eφ dΩ = 0, ∀ φ ∈H1(Ω), (2.27)

where Esa and γfa are the adjoint variables of Es and γf, respectively; Aγ e (Ω) is defined to be

Aγ e =
N∑

n=1

Aγ e
n

(Ωn), with Aγ e
n

(Ωn) =

⎧⎪⎨
⎪⎩

1
VΩn

∫
Ωn

∂A
∂γ e

p

∂γ e
p

∂γ e dΩ , ∀ x ∈ Ωn

0, ∀ x ∈ Ω\Ωn.
(2.28)

and Sγ e (Ω) is defined to be

Sγ e =
N∑

n=1

Sγ e
n

(Ωn), with Sγ e
n

(Ωn) =

⎧⎪⎨
⎪⎩

1
VΩn

∫
Ωn

k2
0

∂εr

∂γ e
p

∂γ e
p

∂γ e (Es + Ei) · Ēsa dΩ , ∀ x ∈ Ωn

0, ∀ x ∈ Ω\Ωn.
(2.29)

The adjoint derivative of the cost functional can be derived as

δJ =
∫
Ω

Re
(

∂A
∂γ

− γ̄fa

)
δγ dΩ . (2.30)

(e) Solving
In the wave equations and corresponding adjoint equations, a divergence-free condition needs
to be satisfied for both the state variable and the adjoint variable. Therefore, the edge element-
based finite-element method is used to solve the wave equations and adjoint equations, where
brick elements are used to discretize the computational domain and simultaneously ensure the
divergence-free condition [47]. For the Helmholtz filter, the filter equation (2.4) and its adjoint
equation are solved using the standard Galerkin finite-element method.

The topology optimization method for three-dimensional electromagnetic waves is
implemented by a gradient-based iterative procedure, where the gradient information is
derived by sensitivity analysis as demonstrated in §2b,d respectively, corresponding to the
variational problems in equation (2.7) and (2.23). The flowcharts for iteratively solving the
variational problems (equations (2.7) and (2.23), respectively) corresponding to the magnetic
field formulation and electric field formulation are shown in figure 1a,b. The iterative procedure
includes the following steps: (i) solve the wave equations with the current design variable;
(ii) solve the adjoint equations based on the solution of the wave equations; (iii) compute the
adjoint derivative of the design objective; and (iv) update the design variable using the method
of moving asymptotes (MMA) [57]. During the solving procedure, the filter radius r of the
Helmholtz filter in equation (2.4) is set to be the size of the finite elements used to discretize the
computational domain; the threshold parameter ξ in equation (2.5) and (2.21) is set to be 0.5; the
initial value of the projection parameter β is set to be 1 and it is doubled after every fixed number
of iterations until the preset maximal value 1024 is reached (11 cycles). The above-mentioned steps
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initial setting filter the design variable g into gf

filter the design variable g  into gf transfer gf into g e

project g e into g e
pproject gf

 into gfp

solve wave equation for Essolve wave equation for Hs

solve adjoint equation for Hsa

solve adjoint equation for gfa

solve adjoint equation for Esa

solve adjoint equation for g fa

compute adjoint derivativecompute adjoint derivative

update the design variable gupdate the design variable g

converged?
yes

end

noconverged?
yes

end

no

initial setting
(a) (b)

Figure 1. Flowcharts for the iterative solutionof topologyoptimizationproblems for three-dimensional electromagneticwaves.
(a) Flowchart for the iterative solution of variational problem 2.7 and (b) flowchart for the iterative solution of variational
problem 2.23.

(b)(a) (c)

Figure 2. The finite-elements used in the topology optimization procedure. (a) Linear edge element for Hs or Es, (b) linear
nodal element for γ and γf and (c) zeroth-order discontinuous element for γ e.

are implemented iteratively until the stopping criterion is satisfied, specified to be the change of
the objective values in five consecutive iterations satisfying

1
5

4∑
i=1

|Jk−i − Jk−i−1|
|Jk|

≤ ε, β ≥ 1024 (2.31)

in the kth iteration, where Jk is the objective value computed in the kth iteration; ε is the tolerance
chosen to be 1 × 10−3. Because the iteration number is set to be 40 before doubling the projection
parameter, the maximal iterative number is set to be 440 in this paper.

All of the finite-element method-based numerical solutions and integrations are carried out in
the commercial software COMSOL MULTIPHYSICS (v. 3.5; http://www.comsol.com), where all
numerical implementation are based on the software’s basic module: Comsol Multiphysics → PDE
Modes → PDE, Weak Form. For details on the setting of the PDE Modes and numerical integrations,
one can refer to (http://www.comsol.com) [58,59].

In the optimization procedure for magnetic field described electromagnetic waves, the
magnetic field is interpolated using linear edge elements (figure 2a); the design variable and
filtered design variable is interpolated using linear nodal element (figure 2b). In the optimization
procedure for electric field described electromagnetic waves, the electric field is interpolated using
linear edge elements (figure 2a); the design variable and filtered design variable is interpolated
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using linear nodal elements (figure 2b); the filtered design variable is converted to piecewise
form by interpolating the piecewise design variable using zeroth-order discontinuous elements
(figure 2c), where Ωn in equation (2.20) is set to be the space taken up by the brick elements. All
the computations were performed on a Dell workstation (Dell Precision T5500, two Intel Xeon
Quad X5550 CPUs with frequency 2.66 GHz, RAM 48 GB).

3. Numerical examples
To demonstrate the robustness of the developed topology optimization methods for three-
dimensional electromagnetic waves, several numerical examples are presented as follows. The
numerical examples include the topology optimization-based computational design of cloaks,
resonators and splitters, which in turn demonstrate min-type, max-type and max–min-type
optimization problems. The material used in all the numerical examples is a dielectric with
relative permittivity equal to 2.

(a) Cloak
In this section, an electromagnetic cloak is computationally designed using the developed
method. This is a typical min-type optimization problem. Topology optimization-based
computational design of two-dimensional electromagnetic cloaks have been investigated for TM
and TE incident waves, where two-dimensional is the reduced case with an infinite extension
assumed in the third dimension [20–22]. Three-dimensional design is more flexible and practical
for the consideration of realistic situations. In the following, electromagnetic cloaks are designed
for a spherical perfect conductor. To cloak the sphere, the scattered field should be minimized
to achieve phase matching of the total field around the conductor. The computational domain
of the cloak is set to be a cube with side length equal to seven times the incident wavelength,
as shown in figure 3a, where the cloak domain is set to be a spherical shell with external and
internal radii equal to 2.5 and 0.75 times the incident wavelength, and the cloaked conductor is
enclosed in a central spherical domain with a radius equal to 0.75 times the incident wavelength.
The computational domain is discretized by 63 × 63 × 63 brick elements.

For a magnetic field described electromagnetic cloak, the objective in equation (2.8) is set to be
the normalized square norm of the scattered magnetic field

min J = 1
J0

∫
Ωo

Hs · H̄s dΩ , (3.1)

where Ωo is the domain outside the spherical shell-shaped design domain; J0 is the square norm
of the uncloaked scattered magnetic field in the outside domain of the cloak. The obtained
cloak topology, found by solving the corresponding topology optimization problem, is shown
in figure 3b, with incident wave, uncloaked field, and cloaked field shown in figure 3d,e,f, where
the incident wave is set to be the uniform plane wave Hi = (0, 0, e−jk0x) with k0 = 20π rad m−1. For
an electric field described electromagnetic cloak, the objective in equation (2.24) is set to be the
normalized square norm of the scattered electric field

min J = 1
J0

∫
Ωo

Es · Ēs dΩ , (3.2)

where J0 is the square norm of the uncloaked scattered electric field in the outside domain
of the cloak. The obtained cloak topology, found by solving the corresponding topology
optimization problem, is shown in figure 4a, with incident wave, uncloaked field and cloaked
field, respectively, shown in figure 4c,d,e, where the incident wave is set to be the uniform plane
wave Ei = (0, 0, e−jk0x) with k0 = 20π rad m−1. Objective convergent histories for both these two
cases were, respectively, plotted in figures 3c and 4b, which has demonstrated the robustness of
the convergent process of the solving procedure.
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Figure 3. (a) Sketch of the computational domain for the topology optimization of electromagnetic cloaks, where k is the
wavevector of the incident wave,Ωc is the central spherical domain filled with a perfect conductor,Ωd is the spherical shell-
shapeddesigndomain for the cloaks andΩo is thedomainoutside of thedesigndomain. ThedomainsΩc andΩd are implicitly
expressed by specifying spherical radius less than the given values for the convenience of discretizing the whole computational
domain with brick elements. (b) Cloak topology derived using the developed topology optimization method for magnetic field
described electromagnetic waves; (c) convergence history of the objective values during the solution procedure; (d) magnetic
field of the uniformplane incidentwave; (e)magnetic field distribution around the uncloaked spherical conductor; (f )magnetic
field distribution around the cloaked spherical conductor. The CPU time cost is 129.27 h. (Online version in colour.)
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Figure 4. (a) Cloak topology derived using the developed topology optimization method for electric field described
electromagnetic waves; (b) convergence history of the objective values during the solution procedure; (c) electric field of
the uniform plane incident wave; (d) electric field distribution around the uncloaked spherical conductor; (e) electric field
distribution around the cloaked spherical conductor. The CPU time cost is 119.69 h. (Online version in colour.)

The computationally designed cloaks have effectively reduced the scattered energy in the
outside domain of the cloaks, and this can be confirmed by comparing the uncloaked and cloaked
fields shown in figures 3e,f and 4d,e. For magnetic field-based design, the scattered energy is
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Figure 5. (a) Magnetic field distribution around the cloak in figure 4a induced by the incident wave in figure 3d; (b) electric
field distribution around the cloak in figure 3b induced by the incident wave in figure 4c. (Online version in colour.)

Table 1. List of the objective values corresponding to figures 3f and 5a, 4e and 5b. The values corresponding to figures 3f and
5a are computed using equation (3.1); and the values corresponding to figures 4e and 5b are computed using equation (3.2).

figure 3f figure 5a figure 4e figure 5b

0.061 0.786 0.076 1.364
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

weakened to be 0.061-fold of that of the uncloaked case; and it is weakened to be 0.076-fold of that
of the uncloaked case, for electric field-based design. The field distributions shown in figures 3f
and 4e demonstrate that phase matching is achieved for the propagating waves around the
conductor. Therefore, cloaking of the conductor is realized for the case of a uniform incident plane
wave, with the cloak computationally designed using a simple isotropic dielectric, a material class
which is readily available in nature.

To confirm the optimality of the derived cloak topologies in figures 3b and 4a, the cross
comparison is implemented by computing the scattered fields of these two cloak topologies with
exchanging their corresponding incident waves. The magnetic field distribution around the cloak
in figure 4a induced by the incident wave in figure 3d is shown in figure 5a; and electric field
distribution around the cloak in figure 3b induced by the incident wave in figure 4c is shown in
figure 5b. The objective values corresponding to figures 3f and 5a, 4e and 5b are listed in table 1.
From the comparison of the values in table 1, the optimality can be confirmed for the derived
cloak topologies in figures 3b and 4a.

(b) Dielectric resonator
This section considers max-type optimization problems, for which dielectric-based electromag-
netic resonator design is a typical task. Electromagnetic resonators are designed to concentrate
the electromagnetic energy in a specified spherical domain, where the total field should be
maximized, hence achieving a resonance of the total field in this domain. The computational
domain of the resonator is set to be a cube with side length equal to 2.5 times the incident
wavelength, as shown in figure 6a, where the design domain is set to be a spherical shell with
external and internal radii, respectively, equal to 1 and 0.3 times the incident wavelength, and
the resonating domain is the central spherical domain with radius equal to 0.3 times the incident
wavelength. The computational domain is discretized by 50 × 50 × 50 brick elements.

For the magnetic field described case, the objective in equation (2.8) is set to be the normalized
square norm of the total magnetic field in the resonating domain

max J = 1
J0

∫
Ωr

H · H̄ dΩ (3.3)
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Figure 6. (a) Sketch of the computational domain for the topology optimization of electromagnetic resonators, where k is the
wavevector of the incident wave, the central spherical domainΩr is the resonating domain with vacuum,Ωd is the spherical
shell-shaped design domain for the dielectric resonator, andΩo is the domain outside of the design domain. The domainsΩr

andΩd are implicitly expressed by specifying spherical radius less than the given values for the convenience of discretizing the
whole computational domain with brick elements. (b) Resonator topology derived using the developed topology optimization
method formagnetic field described electromagnetic waves; (c) convergence history of the objective values during the solution
procedure; (d)magnetic field of the parallel plane incidentwave; (e)magnetic field distribution around themagnetic resonator.
The CPU time cost is 21.59 h. (Online version in colour.)

where Ωr is the resonating domain; J0 is the square norm of the total magnetic field in the
resonating domain, with dielectric filled in the design domain. After implementing the solution
procedure introduced in §2e, the obtained resonator topology is shown in figure 6b, with incident
wave and resonating field shown in figure 6d,e, and in which the incident field is set to be the
uniform plane wave Hi = (0, 0, e−jk0x) with k0 = 20π rad m−1. For the electric field described case,
the objective in equation (2.24) is set to be the normalized square norm of the total electric field in
the resonating domain

max J = 1
J0

∫
Ωr

E · Ē dΩ , (3.4)

where J0 is the square norm of the electric field in the resonating domain, with dielectric filled
in the design domain. The obtained resonator topology is shown in figure 7a, with incident
wave and resonating field, respectively, shown in figure 7c,d, where the incident wave is set
to be the uniform plane wave Ei = (0, 0, e−jk0x) with k0 = 20π rad m−1. The objective convergent
histories for both cases are plotted in figures 6c and 7b, and demonstrate the robustness of the
convergence process of the solution procedure. The computationally designed resonators have
effectively focused the electromagnetic energy in the resonating domain of the resonator, where
the electromagnetic field has been enhanced effectively; and this can be confirmed by inspecting
the field distribution shown in figures 6e and 7d.

To check the optimality of the derived resonator topologies in figures 6b and 7a, the similar
cross comparison method is adopted as that in §3a. By exchanging the corresponding incident
waves, the magnetic field distribution around the resonator in figure 7a induced by the incident
wave in figure 6d is shown in figure 8a; and electric field distribution around the resonator in
figure 6b induced by the incident wave in figure 7c is shown in figure 8b. The objective values
corresponding to figures 6e and 8a, 7d and 8b are listed in table 2. From the comparison of the
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Figure 7. (a) Resonator topology derived using the developed topology optimization method for electric field described
electromagnetic waves; (b) convergence history of the objective values during the solution procedure; (c) electric field of the
parallel plane incident wave; (d) electric field distribution around the electric resonator. The CPU time cost is 22.36 h. (Online
version in colour.)
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Figure 8. (a) Magnetic field distribution around the resonator in figure 7a induced by the incidentwave in figure 6d; (b) electric
field distribution around the resonator in figure 6b induced by the incident wave in figure 7c. (Online version in colour.)

values in table 2, the optimality can be confirmed for the derived resonator topologies in figures
6b and 7a.

(c) Dielectric beam splitter
An electromagnetic splitter is topologically optimized in the following, in order to demonstrate
the robustness of the developed method when applied to max–min-type optimization problems.
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Figure 9. Sketch of the computational domain for the topology optimization of an electromagnetic splitter, where k is the
incident wavevector at the incident boundaryΓi, k1 and k2 are the parallel wavevectors of the output waves at the outletsΓo1

andΓo2,Ω is the brick-shaped design domain.
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Figure 10. (a) Splitter topology derived using the developed topology optimization method for magnetic field described
electromagnetic waves; (b) convergence history of the objective values during the solution procedure, where the objective
values are normalized by the objective value corresponding to the case with the design domain uniformly filled by the chosen
dielectric; (c) magnetic field distribution in the derived splitter. The CPU time cost is 25.96 h. (Online version in colour.)

Table 2. List of the objective values corresponding to figures 6e and 8a, 7d and 8b. The values corresponding to figures 6e and 8a
are computed using equation (3.3); and the values corresponding to figures 7d and 8b are computed using equation (3.4).

figure 6e figure 8a figure 7d figure 8b

5.151 2.106 5.524 2.975
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For computationally designing the splitters, the computational domain is set up as shown in
figure 9, where the electromagnetic energy enters the domain from the inlet Γi and output from
the two specified outlets Γo1 and Γo2. The computational domain is discretized by 60 × 60 × 12
elements. The incident wave is set to be the z-polarized uniform plane wave with a frequency
equal to 1 × 109 Hz.

The design objective of the splitter is to achieve equal and maximized energy levels at the two
outlets. Therefore, for the magnetic field case, the design objective is set to be

max min
{∫

Γo1

1
2
μ0μrH · H̄ dΓ ,

∫
Γo2

1
2
μ0μrH · H̄ dΓ

}
(3.5)

and for the electric field case, the design objective is modified to be

max min
{∫

Γo1

1
2
ε0εrE · Ē dΓ ,

∫
Γo2

1
2
ε0εrE · Ē dΓ

}
. (3.6)

The splitter topology is derived as shown in figures 10 and 11, where the convergence histories
of objective values and field distribution are included. From the field distribution in figures 10c
and 11c, one can confirm by inspection the wave splitting performance of the computationally
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Figure 11. (a) Splitter topology derived using the developed topology optimization method for electric field described
electromagnetic waves; (b) convergence history of the objective values during the solution procedure, where the objective
values are normalized by the objective value corresponding to the case with the design domain uniformly filled by the chosen
dielectric; (c) electric field distribution in the derived splitter. The CPU time cost is 11.08 h. (Online version in colour.)
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Figure 12. (a) Magnetic field distribution in the splitter in figure 11a, when it is used for the magnetic field; (b) electric field
distribution in the splitter in figure 10a, when it is used for the electric field. (Online version in colour.)

Table 3. List of the objective values corresponding to figures 10c and 12a, 11c and 12b. The values corresponding to figures 10c
and 12a are computed using equation (3.5); and the values corresponding to figures 11c and 12b are computed using
equation (3.6).

figure 10c figure 12a figure 11c figure 12b

0.034 0.025 0.032 0.026
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

designed splitters. The splitting and parallelization was achieved in approximately eight
wavelengths for both versions.

The optimality of the derived splitter topologies in figures 10a and 11a is checked with the cross
comparison implemented by exchanging the corresponding incident waves. When the splitter in
figure 11a is used for the magnetic wave, the magnetic field is distributed as shown in figure 12a;
and when the splitter in figure 10a is used for the electric field, the electric field is distributed
as shown in figure 12b. The objective values corresponding to figures 10c and 12a, 11c and 12b
are listed in table 3. From the comparison of the values in table 3, the optimality for the derived
splitter topologies in figures 10a and 11a is confirmed.

4. Conclusion
This paper developed the topology optimization for three-dimensional electromagnetic waves
based on an edge finite-element method. This choice of elements allowed the topology
optimization procedures to inherently enforce divergence-free conditions for the magnetic and
electric fields. The continuous adjoint method was used to carry out the sensitivity analysis of
the topology optimization problems. In combination, a unified approach was developed for the
topology optimization of three-dimensional structures interacting with electromagnetic waves.
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A novel regularization procedure was developed, under the assumption of piecewise
homogeneity of the computational domain. This procedure frees up the choice of methodology
by providing a consistent method with which to express nodal data as element-based data for the
design variables. The low efficiency and hence high computational cost convolution filter that is
otherwise widely used in element-wise topology optimization is thereby avoided.

With the developed topology optimization method, the physical complexity of three-
dimensional electromagnetic waves are properly treated during the inverse design of
electromagnetic structures. As an outlook, the solution procedure is ready to be applied to the
inverse design of practical three-dimensional electromagnetic structures, e.g. cloacking devices,
resonators and waveguides, with feasibility demonstrated by the numerical examples.
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