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Abstract  A general pre-processing procedure of the measured SAXS patterns for reducing the effect of beam stop and beam 
stop holder is described. A proper method for automatically choosing the regularization parameter is implemented. The 
method works out on the two-dimensional SAXS patterns. After deblurring, the corresponding two-dimensional patterns will 
be converted into one-dimensional integrated intensity distribution curves. We tested the program using both calculated 
artificial data and real experimental data such as polystyrene and poly(methyl methacrylate) latices. The deblurred results are 
satisfactory showing the effectiveness of the method. The deblurring process of a typical two-dimensional SAXS pattern 
using the Matlab based program can be completed in few seconds on normal personal computers. 
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INTRODUCTION 

Small-angle X-ray scattering (SAXS) is a powerful tool for the investigation of structures of length scale from 
about several to hundreds of nanometers[1]. An ideal SAXS pattern should be generated from a high-intensity  
X-ray source with infinite small size. Due to finite direct-beam size and noise, the measured SAXS data always 
deviate from the ideal ones[24]. The most common solution is to balance the size and intensity of direct-beam to 
obtain scattering data with reasonable signal-to-noise ratio. In general, SAXS pattern is blurred by the direct-
beam of finite dimension, especially for the ultra-SAXS (USAXS) experiments with long sample-to-detector 
distance and the occurrence of source divergence. A blurring effect will result in a significant deviation of 
measured data from the ideal scattering cross section making the data sometimes misleading. In such situation, 
blurring effect cannot be ignorable because systematic error could be produced in the data analysis. Therefore, it 
is necessary to deblur the measured SAXS patterns in order to acquire accurate results. 

Several procedures have been proposed for the treatment of blurring effects in small-angle scattering. 
Guinier and Fournet[1] and DuMond[5] suggested an analytical solution for the experimental scattering curve in 
the case of infinite small slit-height beam. Modified versions of this approach have been developed by 
Schmidt[6], Schelten and Hossfeld[7] and others. Lake[8] developed an iterative procedure for the arbitrary height 
and width blurring. Glatter[9] modified this method by implicit smoothing technique to prevent the amplification 
of the statistical noise. Strobl[10] developed another desmearing method for any primary beam-intensity 
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distribution which can estimate the precision in the desmeared curve. The indirect Fourier transformation method 
was proposed for deblurring the experimental data by Glatter[11] and Moore[12]. This method finds the widest 
practical application but it needs a priori information about the object being investigated. Svergun[13] improved 
this method so that it did not require information about the range of definition of distance distribution function. 
Vonk[14] calculated the deblurred intensity values directly from a digitized expression by weighted least squares. 
Modified version of the method of Vonk[14] has been developed by Singh et al.[15] who made it efficient and 
stable in real application. Svergun et al.[16] applied the Tiknonov regularization method to solve the ill-posed 
problems in small-angle scattering data treatment including the slit-width and polychromaticity correction. Le 
Flanchec et al.[17] investigated the two-dimensional deblurring of centrosymmetric SAXS patterns after 
corrections of geometrical distortions and converting into polar coordinates. However, the problem of real two-
dimensional (2D) deblurring of SAXS patterns still exists. 

In this work, we investigate the application of the fast Fourier transform (FFT)-based Tikhonov 
regularization method, which was proposed in the image deblurring field by Hansen et al.[18], in treating SAXS 
patterns in reciprocal space. The most significant feature of this method is that it provides efficient calculation 
without constructing a large blurring matrix and ease of implementation. No more limitation is placed on beam 
pattern which can be arbitrary. In comparison with other methods in this field, measured data were directly 
utilized in the present method and no preceding smoothing procedures were needed. The method was tested by 
artificial and real experimental data showing that it is available for practical application. 

METHOD 

Deblurring Method 
The fast Fourier transform (FFT)-based Tikhonov regularization method was suggested by Hansen et al[18]. The 
main blurring effect in SAXS arises from the size and intensity distribution of the direct beam. And the measured 
SAXS pattern is a convolution of the ideal pattern with blurring function. The goal of FFT-based Tikhonov 
regularization method is to reconstruct the ideal SAXS patterns and to infer the certain hidden data from the 
measured data on the basis of the recorded blurred SAXS patterns and the image of direct beam. 

Let XRm × n represent the desired sharp SAXS pattern, while BRm × n represents the recorded blurred 
SAXS pattern. The general mathematical model for blurring process is  

 Ax = b  (1) 

where x and b are two long vectors obtained by stacking the matrices of X and B into vectors, both of length N = 
m × n. ARN × N is the large blurring matrix which represents the blurring that is taking place in the process of 
going from the exact to the blurred image. 

The blurring matrix A is determined by two ingredients: the point spread function (PSF) and the boundary 
condition. PSF defines how each pixel is blurred and can be obtained experimentally and analytically. Here we 
assume the image of direct-beam on the detector to be PSF, which is measured in the absence of samples and 
beam stop. The boundary condition is to assume the behavior of the ideal pattern outside the boundary, including 
zero, periodic and reflexive boundary conditions. For the periodic boundary condition, the blurring matrix is 
block circulant with circulant blocks (BCCB). BCCB matrix is normal so that the blurring matrix has the spectral 
decomposition 

 *A = F ΛF  (2) 

where F is the two-dimensional unitary discrete Fourier transform matrix. We can perform F and F* 
computations efficiently by Matlab functions fft2 and ifft2 which support 2D fast Fourier transform and 2D 
inverse fast Fourier transform. Therefore, the eigenvalues of A can be computed efficiently using the FFT 
algorithm. 

Usually x = A1b is not a good solution because the matrix A is severely ill-posed. At the same time, the 
inverted noise can dominate in the deblurred image. In order to diminish the effect of noise in b, we filter the 
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solution by Tikhonov regularization method. The filter factors are defined as 
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where  > 0 is called the regularization parameter and i is the eigenvalue of blurring matrix A. This choice of 
filter factors yields the solution vector x for the minimization problem 
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where the regularization parameter  adjusts the weight to the minimization of the side constraint relative to the 
minimization of the residual norm. 

Pre-processing Procedure 
In the SAXS setup, there is a beam stop which is held by a wire in front of the detector to stop the incident beam. 
However, the wire will stop part of the scattered X-ray during the experiments. In this situation, the obtained 
SAXS patterns are incomplete. It is essential to solve this problem to avoid serious deviation in the deblurred 
patterns.  

To eliminate the influence of metal wire, one could change the position of detector relative to the direct 
beam. Figure 1(a) shows a typical two-dimensional SAXS pattern of latex powders collected on a modified 
Xeuss system of Xenocs, France. The center of direct-beam is at the bottom of the detector. The pre-processing 
procedure about SAXS pattern is to mirror the pattern with respect to the horizontal axis passing through the 
beam center. The SAXS pattern in Fig. 1(b) shows the pre-processing result. However, the influence of beam 
stop cannot be removed after pre-processing. Thus, the second step is to extrapolate the scattering intensity 
toward beam center to prevent the occurrence of negative values in the pixels at the position of beam stop. A 
simple method is to set a proper value in beam stop area. In this way, there will be no negative data at beam stop 
position of deblurred pattern minimizing the deviation of the same position. For sake of simplicity, the value is 
defined as the average intensity on the edge of beam stop. 

 

 
Fig. 1  (a) Typical SAXS pattern of latex powders on the modified Xeuss system of Xenocs, 
France (logarithmic beam intensity in linear plot); (b) The pre-processed SAXS pattern after 
mirroring the measured pattern with respect to the axis passing through beam center 

 

The point spread function is represented as the image of direct beam on the detector. The image is measured 
without samples and beam stop within one second. Figure 2 shows a typical direct beam image. One observes 
clearly a square-shaped direct beam. In order to reduce the noise, only the data in the square-shaped direct beam 
area was chosen during the deblurring procedure. The point spread function was normalized with respect to the 
total intensity. 
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Fig. 2  Typical direct beam image measured in the absence of beam stop and sample 
(logarithmic beam intensity in linear plot) 
Slit size is 1.0 mm × 1.0 mm (horizontal by vertical, respectively). 

Parameter Choice Method 
Constructing a proper method to choose the regularization parameter is an important issue for automatic 
application. The value provided by the generalized cross validation[18] (GCV) method is always so small that the 
solution is under-smoothing. To avoid under-smoothing, a method by controlling the pixel with negative value 
within a certain q range was utilized. The pixel with negative value occurs because of the reconstruction errors 
from data and rounding errors. Although the pixel with negative value has no physical meaning for SAXS 
patterns, it often happens in numerical computations. The real parts of DFT-based basis components for the 
filtered solution are images in which the pixels with positive and negative values alternate in different frequency. 
The low-frequency spectral components are needed to describe the main characteristics of the image, while the 
high-frequency spectral components are used to represent the details of the image. The magnitude of the high-
frequency spectral components is usually smaller than that of the low-frequency components, so the high-
frequency information is highly damped or even lost in the blurring process and it is easy to be contaminated by 
the noise. The general position of pixels with negative values in the deblurred scattering pattern for latex 
powders is shown in Fig. 3. The areas with red color represent pixels with negative values. The pixels with 
negative values always appear in the position where the signal is weak. We can choose the regularization 
parameter by controlling that there is no pixel with negative value in certain scatter vector area. With the 
normalization of the point spread function the largest eigenvalue of blurring matrix is 1, so that the regularization 
parameter is between 0 and 1. We use the bisection method with maximum to iterations to find a suitable 
regularization parameter. A large parameter ensures suppressing noise and has less pixels with negative values. 
However, it makes the deblurred patterns with over-smoothing effect. A small parameter means little filtering 
that leads to an under-smoothing reconstruction dominated by noise. And there are more pixels with negative 
values in this way. As the regularization parameter increases, the number of pixels with negative values and the 
degree of deblurring both decrease. 

 

 
Fig. 3  The general position of the pixels with negative values in the deblurred pattern for latex powders under 
different regularization parameters (The red color area represents the pixels with negative values.) 
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RESULTS AND DISCUSSION 

Applications to Artificial Data 
This method is first applied to artificial data in order to illustrate the effect of deblurring with the known original 
data. The model is a homogeneous sphere of 80 nm in radius. The scattering curve of such sphere consists of a 
series of maxima and minima given by  
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where R is the radius of the homogeneous sphere, q is the scattering vector. 
The blurred pattern Iblur is generated by convolution of model pattern with a 2D Gaussian function. The 

deviation of the Gaussian function is 6 pixels. It is necessary to include additional noise for the artificial 
calculated data. There are two ways to add noise. One is using a random-number generator[19] according to  

 blur( ) ( )q n pI q   (6) 

where p is a random number describing the fraction of nIblur(q) to be randomly added to or subtracted from the 
intensity value Iblur(q). The parameter n corresponds to the maximum relative deviation and is set to value of 
0.050. The other is to add Gaussian white noise[18]. For example, the ratio of the norm of noise to blurred pattern 
||e||2/||Iblur||2 is 0.001, meaning that 0.1% noise is added to the blurred data. And we add random perturbation to 
the blurred patterns by both ways, respectively.  

In real experiment, beam stop is used to prevent direct beam from striking the detector. However, it leads to 
some scattering information lost. To make the artificial data close to the real experimental data, we deducted 
pixels in the central area of the patterns. The deducted area is q < 0.015 nm1. And a proper constant value is 
filled in the deducted area to see the difference in deblurred data.  

Based on the first way of adding noise, the deblurred, model and blurred curves for different conditions are 
acquired as shown in Fig. 4. For noiseless data in Fig. 4(a), the method is almost able to restore the sharp 
minimum completely. Deblurring becomes much easier without noise. For noisy data (n = 0.050), the deblurred 
result is fairly well. Only the very narrow feature cannot be restored wholly. This may be expected, since the 
detailed information is easy to be ruined by noise. Two sets of comparison are made. One is between Figs. 4(a) 
and 4(c), the other is between Figs. 4(b) and 4(d). One can observe that deducting the central area does not make 
much difference. It only leads to little deviation in the deducted area. 
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Fig. 4  Restoration of model scattering intensity of a homogeneous sphere blurred by Gaussian function for different noise 
levels n and with or without deducting in the central area: (a) the noise level n = 0.000 without deducting the central area, 
(b) the noise level n = 0.050 without deducting the central area, (c) the noise level n = 0.000 and the deducted area q < 
0.015 nm1 and (d) the noise level n = 0.050 and the deducted area q < 0.015 nm1 

 

For the second way of adding noise, the deblurred, model and blurred curves with or without deducting the 
central areas are shown in Fig. 5. The noise added in this way is Gaussian white noise with level of 0.1%. The 
noise in one pixel has no relation to the intensity in the same pixel. It leads to the fact that the percentage of 
noise in the sharp minimum position is much greater than that in other positions. 
 

      
Fig. 5  Restoration of model scattering intensity of a homogeneous sphere blurred by Gaussian function: (a) without 
deducting the central area and (b) the deducted area q < 0.015 nm1 (The noise level is 0.1%.) 

Application to the Experimental Data 
For the application of the deblurring procedures to the experimental data, two samples were chosen: one is 
polystyrene (PS) latex powders, the other is poly(methyl methacrylate) (PMMA) colloidal dispersion. They are 
both spherical in shape. SAXS experiments were carried out on a modified Xeuss system of Xenocs, (France) 
equipped with a semiconductor detector (Pilatus 100K, DECTRIS, Swiss) attached to a multilayer focused Cu 
K X-ray source (GeniX3D Cu ULD, Xenocs SA, France), generated at 50 kV and 0.6 mA. The wavelength of 
the X-ray radiation was 0.154 nm. The sample-to-detector distance was 6520 mm. The setup is equipped with 
two scatterless slits systems 2.4 meters apart from each other located in between the X-ray source and sample. 
The motor driven slits system can shape the incident X-ray beam into different sizes. 
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The noise in the SAXS patterns puts limit on the size of the details we hope to restore, i.e., noise may lead 
to a permanent loss of some detailed information. However with the same noise level, the restoration degree 
should be the same. The polystyrene latex powders were measured with direct-beam of different slits sizes. The 
photon flux increased with increasing slits size of direct-beam. To keep the same noise level for the experiments 
of different slits sizes the exposure time was calculated using the photon flux at different slits sizes as present in 
Table 1. 

 
Table 1. The exposure time for the sample of polystyrene latex powders 

Slits opening (mm×mm ) 1.0 × 1.0 0.9 × 0.9 0.8 × 0.8 0.7 × 0.7 0.6 × 0.6 0.5 × 0.5 
Photon flux (countss1) 20326 15083 10086 6326 3534 1663 

Exposure time ( s ) 100 136 203 322 579 1241 
 

After correcting for transmitted flux, background and exposure time, the SAXS patterns were averaged 
azimuthally. The 1D SAXS curves are shown in Fig. 6(a). It is clear that the blurring effect decreases with the 
decreasing in slit size. The maxima and minima in the observed scattering intensity distribution curve are more 
obvious when the slit sizes are small. After the deblurring process, the 1D averaging curves are shown in         
Fig. 6(b). The deblurred curves obtained under the condition of different silts sizes are almost the same. The 
deviation at small q range is caused by beam stop. 

 

        
Fig. 6  (a) Experimental SAXS data of PS latex powders with different slits sizes of direct-beam; (b) Deblurred curves of the 
experimental data of PS latex powders in Fig. 6(a) 
 

In the experiment of PMMA colloidal dispersion, the size of direct-beam slits was 0.7 mm × 0.7 mm and 
the exposure time was 7200 sec. Figure 7 (a) shows the non-linear least-squares fitting of blurred model to the 
experimental data. The obtained radius of colloid is 86.9 nm and the corresponding deviation is 3.2 nm.      
Figure 7(b) shows the comparison of deblurred data and the model fitted data. The deblurred data follow the 
model fitted data very well which indicates that the deblurring method is efficient. For comparison, the scattering 
curve without deblurring has also been used to calculate particle size and size distribution (data not shown). The 
thus obtained radius is 85.9 nm with a deviation of 5.3 nm. Obviously, these values deviate from the true values 
shown above. Therefore, in case of spherical latex particles, the size distribution obtained is not correct without 
deblurring. In order to control the size of latex particles in the synthetic process, it is essential to determine the 
true size distribution.  
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Fig. 7  (a) The non-linear least-squares fitting of blurred model to the experimental data (The obtained radius is 86.9 nm. 
Deviation is 3.2 nm. The smear width is 0.0044 nm1.); (b) The comparison of the deblurred data and the model fitted data 

 

CONCLUSIONS 

The FFT-based Tikhonov regularization method provides an excellent procedure for efficient correction of the 
beam-size blurring effect and is available for direct-beam of arbitrary shape. The measured direct-beam pattern 
can be used directly without any transformation or numerical interpolation. This method works out well on 
artificial patterns and experimental patterns. Excellent and useful results are given. Provided with the spectral 
factorization of the blurring matrix A, we can compute the filtered solution efficiently via the fast Fourier 
transform and with less demanding on memory of the computer. It does not need preliminary smoothing 
procedure. A Matlab program for this method used here can be obtained from the authors. 
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