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Abstract 

To solve the problem of tracking the trajectory of a moving object and learning a deep 

compact image representation in the complex environment, a novel robust incremental 

deep learning tracker is presented under the particle filter framework. The incremental 

deep classification neural network was composed of stacked denoising autoencoder, 

incremental feature learning and support vector machine to achieve the feature-

extracting and classification of particle set. Deep learning is successfully taken to 

express the image representations obtained effectively. Unsupervised feature learning is 

used to learn generic image features and transfer learning transforms knowledge from 

offline training to the online tracking process. The incremental feature learning was 

consisted of adding features and merging features to online learn compact feature set. 

Linear support vector machine increases the discretion for target with similar 

appearance and is further tuned to adapt to appearance changes of the moving object. 

Compared with the state-of-the-art trackers in the complex environment, the results of 

experiments on variant challenging image sequences show that incremental deep 

learning tracker solves the problem of existent trackers more efficiently, it has better 

robust and more accurate, especially for occlusions, background clutter, illumination 

changes and appearance changes. 

 

Keywords: particle filter, deep learning, incremental feature learning, linear support 

vector machine, neural network 

 

1. Introduction 

Object tracking is one of the most important components in a wide range of 

applications in computer vision, such as surveillance, behavioral recognition [1]. 

Although object tracking has been studied for several decades [2], it remains a very 

challenging problem. Numerous factors affect the performance of a tracking algorithm, 

such as appearance change, illumination variation, occlusion, as well as background 

clutters. 

Numerous algorithms have been proposed with focus on effective appearance models, 

which can be categorized into generative [3-7] and discriminative [8-13] algorithm. A 

generative tracking method learns an appearance model to represent the target and search 

for image regions with best matching scores as the results. While it is critical to construct 

an effective appearance model in order to handle various challenging factors in tracking. 

However, generative methods discard useful information surrounding target regions that 

can be exploited to better separate objects from backgrounds. While some trackers simply 
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use raw pixels as features, some attempts have used more informative features such as 

Haar features. These features are all handcrafted offline but not tailor-made for the 

tracked object [14]. 

Discriminative methods treat tracking as a binary classification problem which learns 

to explicitly distinguish the object being tracked from its background. Discriminative 

trackers which usually put more emphasis on improving the classifiers rather than the 

image features used. When labeled training sample is scarce, the classification model is 

not accurate, lead to drift and even fail. 

Deep learning architectures have been used successfully to give very promising results 

for learning features from complex, high-dimensional unlabeled and labeled data [15]. 

The key to success is to make use of deep network to learn richer features via multiple 

nonlinear transformations. Despite the promise, the number of features still remains a 

nontrivial question. When there are too many features, the model may over-fit the data or 

converge very slowly. When there are too few features, the model may under-fit due to 

the lack of relevant features. Further, finding an optimal feature set size becomes even 

more difficult for large-scale or online datasets whose distribution may change over time, 

since the cross-validation may be challenging given a limited amount of time or 

computational resources [16]. 

In this paper, we propose a novel incremental deep learning tracker (IDLT) for robust 

visual tracking based on particle filter framework. Firstly, it uses a stacked denoising 

autoencoder (SDAE) [17] to learn image features and to express the image 

representations obtained effectively and then transfers the features learned to the online 

tracking task. Second, linear SVM classifier replaces the sigmoid classifier to increase the 

discretion for targets with similar appearance. The support vector machine(SVM) 

classifier can be further tuned to adapt to specific objects during the online tracking 

process. Third, an incremental feature learning algorithm online choose an optimal 

number of features depending on the data and the existing features. It learns compact 

image representation and can be further tuned to adapt to appearance changes of the 

moving object. 

 

2. Particle Filter 

The particle filter approach [18] is commonly used for visual tracking. It is a 

sequential Monte Carlo importance sampling method for estimating the latent state 

variables of a dynamical system based on a sequence of observations. Suppose t
s  and t

y  

denote the latent state and observation variables, respectively, at time t. Object tracking 

corresponds to the problem of finding the most probable state for each time step t based 

on the observations up to the previous time step: 

1: 1 1 1 1: 1 1
a rg m a x ( | ) a rg m a x ( | ) ( | )

t t t t t t t t
s p s y p s s p s y d s

    
                   (1) 

When a new observation t
y  arrives, the posterior distribution of the state variable is 

updated according to Bayes’ rule: 

1: 1

1:

1: 1

( | ) ( | )
( | )

( | )

t t t t

t t

t t

p y s p s y
p s y

p y y




                    (2) 

What is specific to the particle filter approach is that it approximates the true posterior 

state distribution 1: 1
( | )

t t
p s y

  by a set of n  samples, called particles,  
1

n
t

i
i

s


 with 

corresponding importance weights  
1

n
t

i
i




 which sum to 1. The particles are drawn from 

an importance distribution 1: 1 1:
( | , )

t t t
q s s y

  and the weights are updated as follows: 
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1

1

1: 1 1:

( | ) ( | )

( | , )

t t t t

t t i i i

i i t t t

p y s p s s

q s s y
 






                     (3) 

For the choice of the importance distribution 1: 1 1:
( | , )

t t t
q s s y

 , it is often simplified to a 

first-order Markov process 1: 1
( | )

t t
q s s

  in which state transition is independent of the 

observation. Consequently, the weights are updated as 1
( | )

t t t t

i i i
p y s 


 . Note that the 

sum of weights may no longer be equal to 1 after each weight update step. In case it is 

smaller than a threshold, re-sampling is applied to draw n particles from the current 

particle set in proportion to their weights and then resetting their weights to 1 n . If the 

weight sum is above the threshold, linear normalization is applied to ensure that the 

weights sum to 1. For each frame, the tracking result is simply the particle with the 

largest weight. 

 

3. Incremental Deep Classification Neural Network 

Incremental deep classification neural network(IDCNN) consists of three modules in 

Figure 1. The first module is encoder of SDAE that extracts the feature vector from 

particle set through forward pass to express the image representations obtained 

effectively. The second module is incremental feature learning that optimize the number 

of feature set. The third module is binary class specific linear SVM that classifies the 

feature set to get the confidence of all particles in a frame. 

 

particle set

encoder of SDAE

incremental feature learning

linear SVM

confidence of particle
 

Figure 1. Incremental Deep Classification Neural Network 

3.1. SDAE 

The basic building block of an SDAE is a one-layer neural network called a denoising 

autoencoder(DAE). It learns to recover a data sample from its corrupted version. In so 

doing, robust features are learned since the neural network contains a “bottleneck” which 

is a hidden layer with fewer units than the input units. We show the architecture of DAE 

in Figure 2(a). 

The layer-by-layer learning algorithm is a very effective way to pre-train the weights 

and the bias of a deep DAE by sparsity constraints
[19]

. After the pre-training multiple 

layers of feature detectors, the model is unrolled to produce encoder and decoder 

networks that initially use the same weights. the SDAE can be form a feed-forward 

neural network. The whole network is fine-tuned using the classical back-propagation 

algorithm. 

For the network architecture, we use over-complete filters in the first layer. This is a 

deliberate choice since it has been found that an over-complete basis can usually capture 

the image structure better. Then the number of units is reduced by half whenever a new 

layer is added until there are only 256 hidden units. The whole structure of the SDAE is 

depicted in Figure 2(b). 
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(a) denoising autoencoder   (b) stacked denoising autoencoder   (c) network for online tracking 

Figure 2. The Network Architecture 

3.2. Linear SVM Classifier 

Linear SVM is originally formulated for binary classification. Given training data and 

its corresponding labels ( )
n n

x , y , , ,n 1 N ， D

n
x   ，  1, 1

n
y    , linear SVM learning 

consists of the following unconstrained optimization: 

2

1

1
m in m a x (1 , 0 )

2

N

T T

n n
W

n

C x y



 w w w  

                 (4)

 

The objective of Eq. 4 is known as the primal form problem of L2-SVM, with the 

standard the squared hinge loss.  

To predict the class label of a test data x : 

a rg m ax ( )
T

y

w x y

                     (5) 

We propose using binary classification SVM’s objective to train deep neural networks 

for classification tasks. Lower layer weights are learned by back-propagating the 

gradients from the SVM. To do this, we need to differentiate the SVM objective with 

respect to the activation of the penultimate layer. Let the objective in Eq. 4 be ( )l w , and 

the input x  is replaced with the penultimate activation h , for the L2-SVM, we have 

( )
2 (m a x (1 , 0 ))

T

n n n

n

l
C y w h y

h


  



w
w

                  (6) 

3.3. Incremental Feature Learning 

Incremental feature learning algorithm
[16]

 is composed of two key processes: adding 

new feature mappings to the existing feature set. Merging parts of the existing feature 

mappings that are considered redundant. 

We define an objective function to determine when to add or merge features and how 

to learn the new features. Specifically, we form a set B  which is composed of hard 

training examples whose objective function values are greater than a certain threshold 

and use these examples as input data to greedily initialize the new features. We only 

begin adding features when B  . 

The overall algorithm is schematically shown in Figure 3, and a pseudo-code is 

provided in Algorithm 1. During the training, our incremental feature learning algorithm 

optimizes the parameters of new features (the orange units and the red units on the right), 

while holding the other features (green units outside the dotted blue box on the left). The 
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orange units are incremental features, and the red unit is the merged feature from the 

similar existing features depicted as green units in the dotted red box. 

 
Merging similar features Incremantal 

feature

Hidden layer

Input layer
 

Figure 3. Illustration of Incremental Feature Learning 

Algorithm 1 Incremental feature learning 

repeat 

Compute the objective ( )L x  for input x . 

Collect hard examples into a subset B  (i.e.,  B B x   if ( )L x  ). 

if B   then 

Select 2 M  candidate features and merge them into M  features. 

Add N  new features by greedily optimizing with respect to the subset B . 

Set B  and update 
t

N  and 
t

M . 

end if 

Fine-tune all the features jointly with in current batch of data. 

until convergence 

 

In this paper, we denote D  for input dimension, M  for the number of (existing) 

features, K for the binary class labels,  0 ,1K  . Based on these notations, the parameters 

for generative training are defined as the weight matrix M D
W


  , the hidden bias 

M
b   , and the input bias D

c   . Similarly, the parameters for discriminative training 

are composed of the weight matrix K M
    between hidden and output units, the output 

bias K
R  , as well as the weight matrix W and the hidden bias b . We use   to denote 

all parameters  , , , ,W b c  . 

For incremental feature learning, we use   to denote new features and   to denote 

existing or old features. For example, [0 ,1]
M

f h
 
   represents an encoding function 

with existing features, and [0 ,1]
N

f h
 
   denotes an encoding function with newly 

added features. A combined encoding function is then written as 

( ) [ ; ] [0 ,1]
M N

f x h h


    
  . Likewise, 


 refers to the existing parameters, i.e., 

 , , , ,W b c 
  

 , and  , , , ,W b c 
   
   denotes the parameters for new features. 

 

3.3.1. Adding Feature: We describe an efficient learning algorithm for adding 

features with different types of objective functions, such as generative, discriminative, 

and hybrid objectives. The basic idea for efficient training is that only the new features 

and corresponding parameters 


 are trained to minimize the objective function while 

keeping 


 fixed. 

A generative objective function measures an average reconstruction error between the 

input x  and the reconstruction x̂ . The cross-entropy function, assuming that the input 

and output values are both within interval [0, 1], is used as an objective function. The 

optimization problem is posed as: 

( )

,

1
m in ( )

i

g e n
W b

i B

L x
B 



                     (7) 

[P
ro

vi
de

r:
ea

rt
ic

le
] D

ow
nl

oa
d 

by
 IP

 1
59

.2
26

.1
65

.2
8 

at
  A

ug
us

t 9
, 2

01
6 

9:
58

 A
M



www.earticle.net

International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.8, No.12 (2015) 

 

 

112 Copyright ⓒ 2015 SERSC 

where ( )
g e n

L x is cross-entropy function. For incremental feature learning, the SDAE 

optimizes the new features to reconstruct the data x  from the corrupted data x . The 

encoding and decoding functions for the new features can be written as: 

( )h sig m W x b
  
                      (8) 

ˆ ( )
T T

x s ig m W h W h c
   

  
                    (9) 

The output x̂  depends on both new features h


 and old features h


 as described in 

equation (9), the training of incremental feature 


that minimizes the residual of the 

objective function is still highly efficient because 


 is fixed during the training. From 

another point of view, we can interpret T
W h

 
 as a part of the bias. Thus, we can rewrite 

equation (9) as: 

ˆ ( ( ) )
T

d
x s ig m W h c h

  
                       (10) 

where ( )
T

d
c h W h c

  
   is viewed as a dynamic decoding bias. Since the parameters 

for existing features and the corresponding activations are not changing during the 

training of new features, we compute h


once and recall the ( )
d

c h


 repeatedly for each 

training example without additional computational cost. 

A discriminative objective function computes an average classification loss between 

the actual label [0 ,1]y   and the predicted label by ˆ [0 ,1]y  . More precisely, we pose an 

optimization problem of linear SVM as follows:  

( ) ( )

, ,

1
m in ( , )

i i

d is c
W b

i B

L x y
B  




                   (11) 

where 2
ˆ( , ) m a x (1 ( ) , 0 )

d is c
L x y y y x  . Note that the label y  is a binary vector. Formally 

speaking, the discriminative model predicts class labels via the L2-SVM function. 

ˆ ( ( ) ( ))y S V M v f x f x
   

                      (12) 

A similar interpretation for ( )v f x
 

  , as in the generative training, is possible, and 

therefore, we can efficiently train the new parameters { , , }W b
  

  using gradient descent. 

Considering the discriminative model as a single objective function has a risk of over-

fitting. As a remedy, we can use a hybrid objective function that combines the 

discriminative and generative loss function as follows: 

( , ) ( , ) ( )
h y b r id d is c g e n

L x y L x y L x                   (13) 

 

3.3.2. Merging Features: As described in the previous section, adding features could 

potentially result in many redundant features and over-fitting. To deal with this problem, 

we consider merging similar features to produce more compact feature representations. 

Our merging process is done in two steps: we select a pair of candidate features and 

merge them to a single feature. Detailed descriptions are given below:  

(1) Find a pair of features whose distance is minimal:
1 2 1 2

{ , }

ˆ a rg m in ( , )
e e e e

E d W W  

(2) Add new features to 
\ E




 by solving by ( ) ( )1
ˆ a rg m in ( , )

i i

h y b ird

i B

L x y
B








  . 

Given the candidate features to merge, a newly added feature can be trained via 

gradient descent as described in the previous section. 
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4. Implementation Details 

Flowchart of IDLT algorithm in Figure 4. 
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Figure 4.  Flowchart of the IDLT 

For offline phase, we use the Tiny Images dataset [21]
 
as auxiliary data for offline 

training processing. From the almost 80 million tiny images each of size 3 2 3 2 , we 

randomly sample 3 million images for offline training. Consequently, each image is 

represented by a vector of 1024 dimensions corresponding to 1024 pixels. The feature 

value of each dimension is linearly scaled to the range [0-1]. 

To further speed up pre-training in the first layer to learn localized features, we divide 

each 3 2 3 2  tiny image into five 1 6 1 6  patches (upper left, upper right, lower left, lower 

right, and the center one which overlaps with the other four), and then train five DAEs 

each of which has 512 hidden units
[14]

. After that, we initialize a large DAE with the 

weights of the five small DAEs and then train the large DAE normally. Some randomly 

selected filters in the first layer are shown in Figure 5. As expected, most of the filters 

play the role of highly localized edge detectors. 

 

 

Figure 5. Some Filters in the First Layer of the Learned SDAE 

For online initialization phase, the object to track is specified by the location of its 

bounding box in the first frame by selecting manually. For robust tracking, the full view 

database is established by distorting, rotating, scaling the target as positive sample. Some 

negative examples are collected from the background at a short distance from the object. 

A incremental feature learning layer and linear SVM classification layer is then added to 

the encoder part of the SDAE obtained from offline training. The overall network 

architecture is shown in Figure 2(c). Incremental deep classification neural network is 

trained by the positive and negative sample set using the supervised training. The SDAE 

encoder extracts the feature vector of the positive and negative sample set, incremental 

feature learning layer optimization the number of features, trains linear SVM classifier by 

using the feature set and the label of class, and fine tune the encoder. 

In online tracking process, when a new video frame arrives, we first draw particles 

according to the particle filter approach. The confidence 
i

c  of each particle is then 

determined by making a simple forward pass through the incremental deep classification 

neural network. If the confidence of all particles in a frame is above a predefined 

threshold  , the tracking result is the particle with the maximum confidence. If the 

maximum confidence is below  , it may indicate significant appearance change of the 

object being tracked due to the change of the environment. The maximum confidence of 
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all particles is considered as the final result of tracking. The current tracking result and 

the background at a short distance from the object are rotating and scaling to update the 

positive set and the negative set. The whole network can be tuned by the positive set and 

the negative set to update the parameter of the whole network. 

We note that the threshold   should be set by maintaining a tradeoff. If   is too small, 

the tracker cannot adapt well to appearance changes. On the other hand, if   is too large, 

even an occluding object or the background may be mistreated as the tracked object and 

hence leads to drifting of the target. 

 

5. Experiments 

We empirically compare IDLT with some state-of-the-art trackers in this section using 

8 challenging benchmark video sequences. These trackers are: IVT [3], MIL [12], OAB 

[8], SBT [9], TLD [22], DLT [14], CT [13], CXT [23], Frag [24], KMS [25]. We use the 

original implementations of these trackers provided by their authors. 

 

5.1. Quantitative Comparison 

We use two common performance metrics for quantitative comparison: success rate 

and f-measure. Let 
T

B B  denote the bounding box produced by a tracker and 
G

B B  the 

ground-truth bounding box. For each video frame, a tracker is considered successful if 

the overlap percentage ( ) ( ) 5 0 %
T G T G

a rea B B B B a rea B B B B   . As for f-measure, it is 

defined as 2 ( )F P R P R  , where precision P , recall R . The quantitative comparison 

results are summarized in Table 1, 2. For each row which corresponds to one of 8 video 

sequences, the best result is shown in red and second best in blue. On average, IDLT is 

the best according to both performance metrics. As for the central-pixel error, it is 

defined as the Euclidean distance (in pixels) between the centers of 
T

B B  and 
G

B B . We 

report the central-pixel errors over all frames for each video sequence in Figure 6. The 

central-pixel errors of IDLT is lowest than others overall. 

Table 1. Comparison of 11 Trackers on 8 Video Sequences in the Success 
Rate 

Seq. IDLT CT CXT DLT Frag IVT KMS TLD MIL OAB SBT 

animal 0.98 0.03 0.20 0.15 0.15 0.03 0.51 0.73 0.13 0.96 0.80 

car11 1.00 0.00  0.60  0.80 0.28  0.69 0.39 0.54 0.18 0.95 0.93 

football 0.84 0.19 0.66 0.34 0.92 0.75 0.02 0.43 0.74 0.36 0.23 

girl 0.94 0.06 0.69 0.69 0.58 0.21 0.40 0.78 0.30 0.95 0.56 

moubike 0.91 0.53 0.28 0.31 0.14 1.00 0.57 0.26 0.58 0.92 0.59 

shaking 0.87 0.03 0.12 0.02 0.09 0.01 0.15 0.40 0.23 0.01 0.08 

subway 0.99 0.63 0.23 0.32 0.51 0.06 0.25 0.23 0.81 0.22 0.38 

woman 0.93 0.16  0.26 0.09 0.18 0.19 0.12 0.17 0.19 0.62 0.37 

mean 0.92 0.20 0.38 0.34 0.36 0.37 0.30 0.44 0.40 0.62 0.49 

Table 2. Comparison of 11 Trackers on 8 Video Sequences in the f-Measure 

Seq. IDLT CT CXT DLT Frag IVT KMS TLD MIL OAB SBT 

animal 0.74 0.2 0.35 0.20 0.12 0.03 0.41 0.60 0.13 0.72 0.67 

car11 0.82 0.03 0.56 0.69 0.32 0.62 0.36 0.45 0.20 0.79 0.84 

footBall 0.63 0.34 0.55 0.31 0.70 0.57 0.07 0.50 0.59 0.34 0.22 

girl 0.73 0.31 0.59 0.54 0.47 0.17 0.34 0.58 0.41 0.73 0.49 

mountbike 0.74 0.41 0.23 0.49 0.13 0.73 0.47 0.20 0.46 0.64 0.45 

shaking 0.70 0.14 0.11 0.04 0.09 0.03 0.21 0.39 0.43 0.01 0.26 

subway 0.65 0.52 0.18 0.42 0.45 0.07 0.19 0.19 0.66 0.17 0.29 

woman 0.72 0.13 0.24 0.25 0.14 0.15 0.10 0.13 0.16 0.49 0.35 

mean 0.74 0.24 0.35 0.36 0.30 0.30 0.27 0.38 0.38 0.49 0.45 
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Figure 6. The Comparison of Central-Pixel Error 

5.2. Qualitative Comparison 

Figure 7 shows some key frames with bounding boxes reported by all 11 trackers for 

each of the 8 video sequences. 

In the animal sequence, the target is a fast moving animal with motion blur. IDLT and 

OAB can merely track the target in the cluttered background. When the object move 

rapidly, other tracker drift and even fail during tracking. 

In car11 sequences, the tracked object is car moving on an open road. At frame 114, 

CT, MIL and Frag drift to different degrees due to illumination variation. The 

environment is very dark with illumination in the cluttered background during tracking. 

IDLT and DLT can also track the car accurately, other tracker drift and fail.  

The football sequence is very challenging since the complex environment of pose 

variation, occlusion, as well as rotation. All methods can track the target to the end, 

except OAB、KMS, but drift to some extends. 

In the girl sequence, each tracker has to track the head of girl. The sequence is 

challenging because pose vary and rotate drastically along the video, e.g., at frame 86, 

132, 229, 239, 384, almost tracker drift. When the object is occluded at frame 441, DLT 

drift seriously and Frag, MIL, CT even fail to different degrees. IDLT yield the best 

results. 
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In the bike sequence, the goal is to track biker while its pose changes along the video 

sequence. As a consequence, all trackers can merely track it except that CT, CXT, Frag, 

SBT show an incorrect tracking. 

The shaking sequence is recordings on the stage with illumination changes. For 

shaking, the pose of the head being tracked also changes. OAB, IVT and CT totally fail 

before frame 49, while SBT and MIL show some drifting effects then at frame 180. KMS 

and IDLT satisfactory results. 

In the subway sequence, the target is to track a man walking. Some trackers fail or 

drift when it is occluded. IDLT, CT, DLT can track the target to the end, but DLT drift. 

In the woman sequence, we track a woman walking in the street. The woman is 

severely occluded several times by the parked cars. TLD first fails at frame 138 because 

of the pose change. All other trackers compared fail when the woman walks close to the 

car at about frame 220. DLT can follow the target accurately. 

 

 
(a)  animal 

 
(b)  car11 

 
(c)  football 

 

(d)  girl 

 
(e)  bike 
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Figure 7. Comparison of 11 Trackers on 8 Video Sequences 
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6. Conclusions and Future Work 

This paper studies the visual tracking problem and presents a novel robust incremental 

deep learning tracker under the particle filter framework. We have successfully taken 

deep learning, incremental feature learning and linear SVM to a tracking territory. A 

stacked denoising autoencoder learns useful features using unsupervised feature learning. 

Transfer learning transfers the encoder part of the SDAE from offline training to online 

tracking to alleviates the problem of not having much labeled data in visual tracking. 

During the online tracking process, train a incremental deep classification neural network 

to distinguish the tracked object from the background and optimize feature set. Since 

further fine-tuning is allowed during the online tracking process, both the feature 

extractor and the classifier can adapt to appearance changes of the moving object. 

Through comparison with state-of-the-art trackers on some challenging benchmark 

sequences, we demonstrate that our incremental deep learning tracker gives better robust 

and higher accuracy in the complex environment. 

It would be an interesting direction to investigate a deep convolution neural network 

model. Also, the classification layer in our current tracker is just a linear SVM classifier 

for simplicity. Extending it to more powerful classifiers may provide more room for 

further performance improvement. 
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