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Modeling and Robust Backstepping Sliding Mode
Control with Adaptive RBFNN for a Novel

Coaxial Eight-rotor UAV
Cheng Peng, Yue Bai, Xun Gong, Qingjia Gao, Changjun Zhao, and Yantao Tian

Abstract—This paper focuses on the robust attitude control of
a novel coaxial eight-rotor unmanned aerial vehicles (UAV) which
has higher drive capability as well as greater robustness against
disturbances than quad-rotor UAV. The dynamical and kinemati-
cal model for the coaxial eight-rotor UAV is developed, which has
never been proposed before. A robust backstepping sliding mode
controller (BSMC) with adaptive radial basis function neural
network (RBFNN) is proposed to control the attitude of the eight-
rotor UAV in the presence of model uncertainties and external
disturbances. The combinative method of backstepping control
and sliding mode control has improved robustness and simplified
design procedure benefiting from the advantages of both con-
trollers. The adaptive RBFNN as the uncertainty observer can ef-
fectively estimate the lumped uncertainties without the knowledge
of their bounds for the eight-rotor UAV. Additionally, the adaptive
learning algorithm, which can learn the parameters of RBFNN
online and compensate the approximation error, is derived using
Lyapunov stability theorem. And then the uniformly ultimate
stability of the eight-rotor system is proved. Finally, simulation
results demonstrate the validity of the proposed robust control
method adopted in the novel coaxial eight-rotor UAV in the case
of model uncertainties and external disturbances.

Index Terms—Coaxial eight-rotor UAV, model uncertainties,
external disturbances, robust backstepping sliding mode con-
troller, adaptive radial basis function neural network.

I. INTRODUCTION

REcently, a quad-rotor UAV as the rotary wing UAV
consisting of four individual rotors of “X” arrangement,

has evoked a great interest in the research and academic circles
due to its simple mechanical structure and attractive vertical
take-off and landing capability[1]. Numerous applications of
the quad-rotor have been steadily increasing in a wide range
of areas such as surveillance, search, rescue and scout[2].

However, in practical situations, there are many difficult
problems in controlling quad-rotor UAV because of the in-
evitable uncertainties[3]. Thus, the robust control problem
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has been increasingly considered for quad-rotor with model
uncertainties and external disturbances[4−10]. A robust sliding
mode flight controller with sliding mode disturbance observer
was developed for a small quad-rotor[4]. This technique allows
for a continuous control robust to external disturbance and
model uncertainties without the use of high control gain or
extensive computational power. Raffo et al.[5] proposed an
integral predictive and nonlinear robust control strategy with
a hierarchical scheme consisting of a model predictive con-
troller (MPC) to track the reference trajectory together with a
nonlinear H∞ controller to stabilize the rotational movements
for a quad-rotor. The effectiveness and the robustness of the
controller were corroborated by simulations in the presence
of aerodynamic disturbances, parametric and structural uncer-
tainties. Mohammadi et al.[6] used model reference adaptive
control (MRAC) technique to control a quad-rotor in the
case of various conditions with parametric and non-parametric
uncertainties in the model. An accurate simulation including
empirical dynamic model of battery, sensors, and actuators was
performed to validate the stability of the closed loop system.
A controller based on the block control technique combined
with the super twisting control algorithm[7] has been proposed
for the quad-rotor. The virtual control inputs and the wind
parameter resulting from the aerodynamic forces have been
estimated via the first order exact differentiator. Simulations
and experiments verified the validity of the controller when
faced with disturbances. Satici et al.[8] designed an L1-optimal
controller for a quad-rotor UAV that rejects persistent distur-
bances. The controller yields an exponential decrease of the
magnitude of the errors in an L1-optimal sense in the presence
of parametric uncertainty and measurement noise. Liu et
al.[9] designed a robust attitude control method combining
PD control with the robust compensation for uncertain quad-
rotors. The PD controller is aimed to achieve the desired
tracking and the robust compensator is added to restrain the
influence of the uncertainties. A simple robust quad-rotor
controller[10] was provided using linear matrix inequalities to
synthesize controller gains. The controller is based on ap-
proximate feedback linearization considering dynamic external
disturbances, inexact nonlinearity cancellation, multiplicative
actuator uncertainty and saturated integrators.

The aforementioned robust control methods are all based
on the inherent structure of quad-rotor that leads to the
deficiency in driving capability. This paper therefore develops
a novel coaxial eight-rotor UAV with a new configuration. It
is designed with eight rotors that are arranged as four counter-
rotating offset pairs mounted at the ends of four carbon fiber
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arms in a cruciform configuration. The four sets of matched
counter rotating rotor blades provide differential thrust from
four equally spaced points, which allows the eight-rotor UAV
to maneuver with higher agility. And it offers the advantage
of markedly increased drive capability and greater ability to
resist to disturbance owing to its added four rotors than quad-
rotor in condition of using the same type of motors and
rotors. As a result, the coaxial eight-rotor UAV has nearly
twice overall thrust than a quad-rotor UAV without increasing
the weight to double. Besides, the eight-rotor UAV has the
same floor space as a quad-rotor UAV. Obviously, the higher
coefficient proportion between thrust and gravity as well as the
greater payload capacity are provided by the eight-rotor UAV
as compared with a quad-rotor UAV in the case of the same
type of motors and rotors. Furthermore, the coaxial eight-rotor
UAV has dominant superiorities in terms of weaker degree
of attitude coupling in the cruciform structure and stronger
damage tolerance to have stable flight when some of rotors
are broken, these features are not provided in quad-rotor UAV.

On this basis, a robust backstepping sliding mode controller
(BSMC) with adaptive radial basis function neural network
(RBFNN) is proposed to control the attitude of the coaxial
eight-rotor UAV in the case of model uncertainties and external
disturbances. As we know, the key feature of backstepping
design is that it stabilizes the system states through a step-by-
step recursive process[11]. Once the final step is completed, the
stability of the entire system is guaranteed naturally[12]. How-
ever, conventional backstepping design with integral adaptive
laws is no longer applicable when the derivatives of the
model uncertainty and the disturbance cannot be regarded as
zero[13]. Thereby, efforts to combine backstepping technique
with sliding mode control (SMC) that has inherent insensi-
tivity and robustness against disturbances under the matching
conditions were made[14−15]. Unfortunately, a prior knowl-
edge of the uncertainty and disturbance bounds is required
for the backstepping and sliding mode control. On account
of these characteristics, adaptive RBFNN is introduced as
the uncertainty observer in this research. It can effectively
estimate the model uncertainties and external disturbances
without the pre-knowledge of uncertainties bounds, which
makes it possible to combine those two design methodologies
to preserve their advantages and at the same time overcome
their drawbacks mentioned above. Finally, the satisfactory
robustness and attitude control performance of BSMC with
adaptive RBFNN method are demonstrated via simulations
in the case where the inertia matrix uncertainties as model
uncertainties and external disturbance are taken into account.

II. DYNAMIC MODEL OF COAXIAL EIGHT-ROTOR UAV

The eight-rotor UAV in cruciform configuration consists of
four pairs of coaxial double rotors, as shown in Fig. 1, where
Ωi, i = 1, 2, · · · , 8 is the speed of eight rotors respectively.
Each pair of double rotors is counter rotating. Meanwhile,
the two adjacent pairs of rotors rotate in opposite directions.
That is, the rotors of 1, 4, 5, 8 rotate clockwise, while the
other rotors rotate counterclockwise. When the rotor speeds are
together varied, the thrust will be changed, which will affect
the altitude of the system. The pitch movement is obtained by
increasing (reducing) the speed of the rear pair of rotors and
reducing (increasing) the speed of the front pair of rotors, the

roll angle can be obtained similarly using the remaining two
pairs of rotors. The yaw movement is provided by speeding
up or slowing down the speed of counter-clockwise rotors and
changing the same speed of rotary clockwise rotors in the
opposite direction depending on the desired angle direction,
which in turn generates reactive torque. The translational
movement depends on the change of pitch or roll angle.

There are two main reference frames defined to express the
dynamics of eight-rotor UAV, as shown in Fig. 1: the earth-
fixed inertial frame E = {Ogxgygzg} and the body-fixed
frame B = {Obxbybzb} both fixed at the centre of the aircraft.
The translational position of the eight-rotor UAV is defined as
ζζζ = [x, y, z]T and the attitude is expressed by three Euler
angles ηηη = [φ, θ, ψ]T.

Fig. 1. The scheme of coaxial eight-rotor UAV.

Owing to the eight-rotor UAV treated as a symmetrical rigid
body with six degrees of freedom, the nonlinear dynamics can
be derived by using Newton-Euler formulas. The rotational
dynamic equations of the eight-rotor UAV can be obtained by

dHHH

dt
=

δHHH

δt
+ ωωω ×HHH =

MMM + ∆M1∆M1∆M1 + ∆M2∆M2∆M2, (1)

where dHHH
dt represents the absolute derivative of HHH with respect

to the inertial frame E, and δHHH
δt the relative derivative with

respect to the body-fixed frame B, with the angular momentum
HHH represented as

HHH = JJJ ·ωωω, (2)

and JJJ = diag(Ix, Iy, Iy) as the moment of inertia along
x, y and z directions. ωωω = [p, q, r]T denotes the angu-
lar velocity with respect to body-fixed frame B. ∆M1∆M1∆M1 =
[∆M1x,∆M1y,∆M1z] expresses unmodeled dynamics such
as gyroscopic effect and aerodynamic moments that ac-
tually is very complicated and hardly modeled. ∆M2∆M2∆M2 =
[∆M2x,∆M2y,∆M2z] denotes external disturbances. From
the above, by substituting (2) into (1), it can be derived that

JJJ · ω̇ωω = −sk(ωωω) · JJJ ·ωωω + MMM + ∆M1∆M1∆M1 + ∆M2∆M2∆M2, (3)

where sk(ωωω) is called as skew-symmetric matrix and defined
as

sk(ωωω) =




0 −r q
r 0 −p
−q p 0


 . (4)

Furthermore, the inertia matrix uncertainty is considered as the
model uncertainty caused by the change in mass properties and
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is expressed as ∆JJJ = diag∆Ix,∆Iy,∆Iz . Then the rotational
dynamic equation is given by

(JJJ+∆JJJ)·ω̇ωω = −sk(ωωω)·(JJJ+∆JJJ)·ωωω+MMM+∆M1M1M1+∆M2M2M2. (5)

In addition, the torque MMM = [Mx,My,Mz]T provided by the
rotors thrust is expressed as

MMM =




lk1(Ω2
3 + Ω2

4 − Ω2
7 − Ω2

8)
lk1(Ω2

1 + Ω2
2 − Ω2

5 − Ω2
6)

lk2(Ω2
1 + Ω2

4 + Ω2
5 + Ω2

8 − Ω2
2 − Ω2

3 − Ω2
6 − Ω2

7)


 ,

(6)
where the thrust factor k1 and the drag factor k2 are positive
coefficients and assumed to be constant when the eight-rotor
UAV is operated at low speed, the parameter l expresses the
distance between the rotor and the centre of the aircraft.

Accordingly, by substituting (6) into (5), we have



ṗ
q̇
ṙ


 =




Mx+∆Mx

Ix+∆Ix
My+∆My

Iy+∆Iy
Mz+∆Mz

Iz+∆Iz


 , (7)

where

∆M∆M∆M =




∆M1x + ∆M2x − qr(Iz + ∆Iz − Iy −∆Iy)
∆M1y + ∆M2y − pr(Iz + ∆Iz − Ix −∆Ix)
∆M1z + ∆M2z − pq(Iy + ∆Iy − Ix −∆Ix)


 .

(8)
The lumped disturbance ∆M∆M∆M = [∆Mx,∆My,∆Mz]T is
bounded in the channel i = x, y, z.

There is the relationship between the body angular velocity
ωωω and the Euler rates η̇ηη by the fact that they are from different
coordinate systems, which can be described as

η̇ηη = T ·ωωω, (9)

where

T =




1 sin φ tan θ cos φ tan θ
0 cos φ − sinφ
0 sin φ sec θ cos φ sec θ


 . (10)

The matrix T is invertible when the pitch angle satisfies
θ 6= (2k−1)π/2 (k ∈ Z). In the general case of small attitude
angles, we can assume that T is a unit matrix for simplicity.
As a consequence, the rotational kinematics equation can be
facilitated as follow:




φ̈

θ̈

ψ̈


 =




Mx+∆Mx

Ix+∆Ix
My+∆My

Iy+∆Iy
Mz+∆Mz

Iz+∆Iz


 . (11)

The translational model calculated by the Newton-Euler
equation is derived as

m
dVVV

dt
= m

(
δVVV

δt
+ ωωω × VVV

)
= FFF + ∆F∆F∆F + R−1(mg ·E3E3E3),

(12)

where VVV = [u, v, w]T denotes the velocity with respect to
the body fixed frame B, E3E3E3 = [0, 0, 1]T, m is mass of the
eight-rotor UAV, g is acceleration of gravity, and the thrust is
expressed by

FFF =




0
0

k1(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4 + Ω2
5 + Ω2

6 + Ω2
7 + Ω2

8)


 .

(13)
∆F∆F∆F is treated as the negligible aerodynamic force. The matrix
R called the rotation matrix maps vectors from the body-fixed
frame B to the inertial frame E and is denoted by (14).

Moreover, the relationship between the velocity VVV and the
inertial translational position ζζζ can be described as

ζ̇ζζ̇ζζζ̇ζζζ = R · VVV . (15)

Thereby, the translational dynamic model is obtained as



ẍ
ÿ
z̈


 =

1
m

R ·FFF −



0
0
g


 . (16)

In addition, according to the calculation of the pseudo-
inverse matrix, the relationship between the attitude control
and the rotor speed is given as follow

ΣΣΣ = AT(AAT)−1MMM, (17)

where the vector ΣΣΣ is the square of eight rotors speeds
expressed as

ΣΣΣ = [Ω2
1,Ω

2
2,Ω

2
3,Ω

2
4,Ω

2
5,Ω

2
6,Ω

2
7,Ω

2
8], (18)

and A termed as control allocation matrix is described as

A =




0 0 lk1 lk1 0 0 −lk1 −lk1

lk1 lk1 0 0 −lk1 −lk1 0 0
k2 −k2 −k2 k2 k2 −k2 −k2 k2




(19)

III. ROBUST BSMC WITH ADAPTIVE RBFNN METHOD

On account of inevitable model uncertainties and external
disturbances of the coaxial eight-rotor UAV, a backstepping
sliding mode control (BSMC) using adaptive RBFNN method
is exploited to control the attitude of the eight-rotor UAV.

The attitude control block diagram of the eight-rotor system
employing the robust BSMC with adaptive RBFNN method is
depicted in Fig. 2. It is noted that the attitude control of the
eight-rotor UAV is divided into three attitude channels, that
is, pitch channel, roll channel and yaw channel. Each attitude
channel is separately controlled by the proposed algorithm. For
example with respect to the roll control channel, the design
process of the proposed algorithm is described step-by-step as
follows.

R =




cos ψ cos θ − sinψ cos φ + cos ψ sin θ sinφ sinψ sinφ + cos ψ sin θ cos φ
sinψ cos θ cos ψ cos φ + cos ψ sin θ sinφ − cos ψ sinφ + sinψ sin θ cos φ
− sin θ cos θ sinφ cos θ cos φ


 . (14)



PENG et al.: MODELING AND ROBUST BACKSTEPPING SLIDING MODE CONTROL WITH ADAPTIVE RBFNN FOR · · · 59

Fig. 2. The attitude control block diagram with the proposed
method.

The roll channel is represented as

ẋ1 = x2,

ẋ2 =
Mx

Ix
+ Dx, (20)

where x1 denotes the state of roll angle, x2 expresses the state
of roll angle velocity. Dx termed as the lumped uncertainties
in the roll channel is given by

Dx = τx + fx, (21)

where τx = ∆Mx/(Ix + ∆Ix) treated as the external distur-
bance in the roll channel is bounded, fx = −∆IxMx/[Ix(Ix+
∆Ix)] in the case when the inertia matrix uncertainty is
considered as the model uncertainty.

Step 1.
For the sake of roll angle tracking objective, define the roll

angle tracking error as

z1 = x1d − x1, (22)

where x1d denotes the desired roll angle. And the derivative
of z1 is obtained by

ż1 = ẋ1d − x2. (23)

Define the following stabilizing function

c1 = αz1, (24)

where α is a positive constant. The first Lyapunov function is
chosen as

V1 =
z2
1

2
. (25)

Define the roll angle velocity tracking error as z2 = x2−ẋ1d−
c1, then the derivative of V1 is

V̇1 = z1(ẋ1d − x2) = −z1z2 − αz2
1 . (26)

Step 2.
The derivative of z2 is now expressed as

ż2 = ẋ2 − ẍ1d − αż1 =
Mx

Ix
+ Dx − ẍ1d + α(z2 + αz2). (27)

Then, the following Lyapunov function is defined by

V2 = V1 +
1
2
s2, (28)

with the sliding surface designed as

s = kz1 + z2, (29)

where k is a positive constant. Then by substituting (26), (27)
and (29) into (28), it can be derived that

V̇2 = V̇1 + sṡ = −z1z2 − αz2
1 + s(kz1 + z2) =

− z1z2 − αz2
1 + s[(k − α)ż1 +

Mx

Ix
+ Dx − ẍ1d]. (30)

Step 3.
Since the lumped uncertainty Dx in the roll channel is

unknown in practical application, the bound is difficult to
determine. Thereby, an adaptive RBFNN uncertainty observer
is proposed to adapt the estimated value of the lumped uncer-
tainty D̂x. The structure of RBFNN with receptive field units
is shown in Fig. 3 and the receptive field function is usually a
Gaussian function or a logarithmic function[16]. If the Gaussian
function is selected as the receptive field function in the roll
channel and the input vector of RBFNN is ZZZ = [z1, ż1]T,
then the output is derived as follows using the weighted sum
method

D̂x =
N∑

j=1

Wjφj(ZZZ), j = 1, 2, · · · , N, (31)

φj(ZZZ) = exp(−‖ZZZ −Mj‖2
σj

2
), (32)

where Wj is the connective weight between the hidden layer
and the output layer. N denotes the number of hidden nodes.
And each hidden node contains a centre vector expressed by
Mj and a positive scalar called the width expressed by σj .

Fig. 3. The structure of RBFNN in the roll channel.

To develop the adaptation laws of the RBFNN uncertainty
observer, define minimum reconstructed error σx in the roll
channel as

σx = Dx − D̂x(W ∗W ∗W ∗), (33)

where W ∗W ∗W ∗ is an optimal weight vector that achieves the
minimum reconstructed error. Then, a Lyapunov candidate is
chosen as

V3 = V2 +
1

2η1
(W ∗W ∗W ∗−WWW )T(W ∗W ∗W ∗−WWW )+

1
2η2

(δx− δ̂x)2, (34)

where η1 and η2 are positive constants, δ̂x denotes the
estimated value of the minimum reconstructed error. δx is
provided to compensate the observed error induced by the
RBFNN uncertainty observer and to further guarantee the
stable characteristic of the attitude control system for the eight-
rotor UAV.
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Then, the derivative of the Lyapunov function V3 is ex-
pressed by

V̇3 = V̇2 − 1
η1

(W ∗W ∗W ∗ −WWW )TẆ − 1
η2

(δx − δ̂x) ˙̂
δx =

− z1z2 − αz2
1 + s[(k − α)ż1 +

Mx

Ix
+ Dx − ẍ1d]−

1
η1

(WWW ∗ −WWW )TẆWW − 1
η2

(δx − δ̂x) ˙̂
δx.

(35)

Consequently, the robust backstepping sliding-mode control
law Ux that is equal to Mx of the eight-rotor system is
designed as

Ux = Mx =
Ix[−(k − α)ż1 + ẍ1d − γs− hsgn(s)− UH − UR], (36)

in which γ, h are positive constants, the robust controller UH

is redesigned as (37) and UR is a compensated controller
designed as (38)

UH = D̂x(W ), (37)

UR = δ̂x. (38)

Accordingly, the derivative of the Lyapunov function is
derived by

V̇3 = −z1z2 − αz1
2 − γs2 − h|s|+ s[Dx − D̂x(WWW ∗)− δ̂x]−

1
η2

(δx − δ̂x) ˙̂
δx + s[D̂x(WWW ∗)− D̂x(WWW )]− 1

η1
(WWW ∗ −WWW )TẆWW.

(39)

If the adaptation laws for ẆWW and ˙̂
δx are designed as follows

ẆWW = sη1φ(ZZZ), (40)
˙̂
δx = sη2. (41)

Then the derivative of the Lyapunov function V3 can be
rewritten as

V̇3 = −z1z2 − αz1
2 − γs2 − h|s| =

− zTΛz − h|s|, (42)

where Λ is a symmetric matrix with the following form

Λ =




α + γk2 γk +
1
2

γk +
1
2

γ


 . (43)

According to Barbalat′s lemma[14,17], it is noted that V̇3 ≤ 0
when Λ is guaranteed to be positive definite as expressed by

|Λ| = γ(α− k)− 1
4

> 0. (44)

Thereby, the eight-rotor control system in the roll channel
is asymptotically stable in the case of the above condition
despite the presence of model uncertainties and external dis-
turbances without the knowledge of bounds. Furthermore, the
attitude control in pitch channel and yaw channel with the
proposed method have the same design procedure, which is
not described for the sake of simplicity.

IV. NUMERICAL SIMULATIONS RESULTS

In this section, simulations for the attitude control of the
coaxial eight-rotor UAV are performed to demonstrate the
validity of the proposed BSMC with adaptive RBFNN method
in the face of model uncertainties and external disturbances
with unknown bounds. Furthermore, the performance of the
proposed control algorithm and BSMC algorithm are com-
pared to verify the improvement on robustness of the proposed
control algorithm. The parameters of dynamic model in the
simulations are taken from the eight-rotor prototype, as listed
in Table I.

An uncertainty of −30% in the inertia matrix
is assumed as the model uncertainties, i.e., ∆I =
[−0.3Ix,−0.3Iy,−0.3Iz]T. In addition, the constant external
disturbance and the time-varying external disturbance given
by τd1 = 0.4 and τd2 = 0.2sin(0.5t) are considered to act on
the pitch, roll as well as yaw control, respectively.

TABLE I
THE PARAMETERS OF THE EIGHT-ROTOR PROTOTYPE

Parameters Values

Mass m 2.5 kg

Distance between rotor and the centre l 0.5m

Moment of inertia along x-axis Ix 8.1× 10−3 Nms−2

Moment of inertia along y-axis Iy 8.1× 10−3 Nms−2

Moment of inertia along z-axis Iz 14.2× 10−3 Nms−2

Thrust factor k1 54.2× 10−6Ns2

Drag factor k2 1.1× 10−6 Nms−2

To investigate the effectiveness of the proposed algorithm,
two simulated cases of different desired attitude angles are
considered with the same initial attitude angles as ηηη0 =
[0, 0, 0]T degree in the following:

Case 1. ηηηd = [12, 12, 30]T degree
Case 2. ηηηd = [12 cos(t), 12 cos(t), 30 cos(t)]T degree
The parameters of backstepping sliding-mode control are

tuned as follows to achieve the favorable transient control
performance, and at the same time to guarantee the great
steady-state performance along with satisfying the stability
condition described in (44).

Roll channel: αx = 10, kx = 0.5, γx = 15, hx = 1,
Pitch channel: αy = 15, ky = 0.5, γy = 25, hy = 4,
Yaw channel: αz = 12, kz = 0.5, γz = 20, hz = 1,

where α has an influence on the response speed of system,
while excessive increase will degenerate the system stability.
Additionally, the significant reduction of k leads to the increas-
ing steady-state error, and it will produce jerk in the system
when it goes up too high. γ decides the convergent speed
to approach the sliding surface, but its dramatic increase can
worsen the stability performance. h can guarantee to reach
the sliding surface in a limited time, in the meantime, a much
larger value will cause greater chattering.

In addition, the number of the hidden nodes in the adaptive
RBFNN observer is set to 6, the centre and the width in each
hidden node is chosen as m = 3 and σ = 7, respectively.
Moreover, the adaptive coefficients are taken as η1 = 10 and
η2 = 3. All these parameters are given to achieve a better
estimation performance by trial and error.
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A. Numerical Simulations Result For Case 1

Firstly, the simulation for comparing attitude control
through the proposed method and BSMC method for Case
1 is operated with model uncertainties, along with constant
external disturbance as well as time-varying external distur-
bance, as shown in Fig. 4, Fig. 5, Fig. 6, respectively. Ad-
ditionally, to make a quantitative comparison of the results
attained by the two control algorithms, some attitude control
performance indices in Case 1 are elaborated in Table II, where
Rollij , P itchij , and Y awij , i = 1, 2, j = 1, 2, 3, respectively
denote three attitude controls. The control channel with the
proposed method is represented by i = 1 while with BSMC
method by i = 2. Besides, j = 1, 2, 3 expresses the differ-
ent uncertainties in turn, that is, model uncertainty, constant
external disturbance and time-varying external disturbance.

Therefore, it can be clearly obtained that all the attitude
angles subjected to the constant disturbance have a remarkable
steady-state error with BSMC algorithm, while the steady-
state error is thoroughly eliminated using the proposed al-
gorithm due to the fact that adaptive RBFNN successfully
estimates and compensates the constant disturbance. As such,
faced with the time-varying disturbance, three attitude control
performances suffer from significantly less deterioration with
the proposed method than that with BSMC method. While
there is relatively little difference between the two methods
under inertia matrix uncertainty. Moreover, it is worth noting
that the yaw angle control performance deteriorates more

(a) Under model uncertainties as ∆Ix = −0.3Ix

(b) Under constant external disturbance as τd1 = 0.4

(c) Under time-varying external disturbance τd2 = 0.2sin(0.5t)

Fig. 4. Roll angle comparison result between BSMC with adaptive
RBFNN and BSMC in Case 1.

TABLE II
ATTITUDE CONTROL PERFORMANCE INDICES IN THE

CASE I

Attitude Settling time (s) Overshoot (%) Steady-state error (◦)

Roll11 3.4 1.95 0

Roll21 3.8 2.50 0

Roll12 3.7 1.40 0

Roll22 2.9 0 0.67

Roll13 About 4.4 About 0.60 Average 0

Roll23 About 3.9 About 0.70 Average 0

Pitch11 0.8 0.65 0

Pitch21 1.2 0.80 0.09

Pitch12 2.7 0.63 0

Pitch22 2.1 0 0.83

Pitch13 About 3.2 About 0.80 Average 0

Pitch23 About 2.5 About 2.50 Average 0.40

Y aw11 3.8 1.10 0

Y aw21 4.1 8.30 0

Y aw12 2.7 4.60 0

Y aw22 2.8 0 2.84

Y aw13 About 3.7 About 0.50 Average 0

Y aw23 About 4.3 About 7.60 Average 0

(a) Under model uncertainties as ∆Iy = −0.3Iy
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(b) Under constant external disturbance as τd1 = 0.4

(c) Under time-varying external disturbance τd2 = 0.2sin(0.5t)

Fig. 5. Pitch angle comparison result between BSMC with adaptive
RBFNN and BSMC in Case 1.

seriously than the other attitude control performances using the
BSMC method in the case of disturbances. The phenomenon
probably results from the weaker drive ability on the yaw
movement as compared to the other attitude movements.

B. Numerical Simulations Result For Case 2

Next, to test the robustness of the proposed method, the
disturbance estimation and attitude angles error comparison
simulations in Case 2 with τd2 are presented in Fig. 7, Fig. 8
and Fig. 9, from which it can be seen that the proposed
method provides better control performance against external
disturbance over BMSC method.

(a) Under model uncertainties as ∆Iz = −0.3Iz

(b) Under constant external disturbance as τd1 = 0.4

(c) Under time-varying external disturbance τd2 = 0.2sin(0.5t)

Fig. 6. Yaw angle comparison result between BSMC with adaptive
RBFNN and BSMC in Case 2.

Fig. 7 (b) shows that the roll angle error based on the
proposed method is dramatically limited of the order of about
±0.005 degree than that of BSMC method which has an
error of about ±0.6 degree. Similarly, Fig. 8 (b) illustrates
pitch angle error utilizing the proposed method is controlled
in the interval as ±0.006 degree, while it ranges at ±0.011
degree using the BSMC algorithm. Besides, the proposed
method in the yaw control channel also has smaller yaw
error of about ±0.017 degree than BSMC method with yaw
error of approximately ±0.0126 degree, as shown in Fig. 9 (b).
Furthermore, the satisfactory estimation performance against
the external disturbance with the adaptive RBFNN observer
is definitely corroborated in attitude control, as described in
Fig. 7 (a), Fig. 8 (a) and Fig. 9 (a).

Hence simulation results highlight the claim that BSMC
with adaptive RBFNN algorithm can offer the greater attitude
control performance and the stronger robustness as compared
to BSMC algorithm in the presence of model uncertainties and
external disturbances. It is evident that the proposed method
is better suited in dealing with the robust control problem of
the uncertain eight-rotor UAV.

V. CONCLUSION

In this paper, the robust attitude control strategy is presented
for a novel coaxial eight-rotor UAV. The novel eight-rotor UAV
is modeled for the very first time to the best of our knowledge
which offers remarkable advantages with respect to increased
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ability of disturbance rejection, greater payload capacity and
damage tolerance over quad-rotor in condition of using the
same type of motors and rotors.

(a) External disturbance as τd2 = 0.2sin(0.5t) and estimation in the
roll channel

(b) Roll angle error under external disturbance as
τd2 = 0.2sin(0.5t)

Fig. 7. Disturbance estimation and roll angle error comparison be-
tween the proposed method and BSMC method in Case 2.

On this basis, a robust backstepping sliding-mode controller
with adaptive radial basis function neural network method

(a) External disturbance as τd2 = 0.2sin(0.5t) and estimation in the
pitch channel

(b) Pitch angle error under external disturbance as
τd2 = 0.2sin(0.5t)

Fig. 8. Disturbance estimation and pitch angle error comparison
between the proposed method and BSMC method in Case 2.

(a) External disturbance as τd2 = 0.2sin(0.5t) and estimation in the
yaw channel

(b) Yaw angle error under external disturbance as
τd2 = 0.2sin(0.5t)

Fig. 9. Disturbance estimation and yaw angle error comparison
between the proposed method and BSMC method in Case 2.

is proposed to control the attitude of the eight-rotor UAV
involving the model uncertainties and external disturbances.
The proposed strategy with the simplified design has ex-
cellently greater robustness against disturbances than BSMC
method. And the adaptive RBFNN observer can effectively
estimate the lumped uncertainties with the compensation of
the approximation error for the eight-rotor UAV, where the
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bounds of uncertainties are not required for the controller
design. Besides, the uniformly ultimate stability of the eight-
rotor system is proved using Lyapunov stability theorem.

Finally, simulation results demonstrate that the proposed
method adopted in the novel coaxial eight-rotor UAV has better
control performance and significantly greater robustness than
backstepping sliding mode control method, where the inertia
matrix uncertainty as model uncertainty, constant external
disturbance and time-varying external disturbance are taken
into account.
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