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Abstract

In this letter, the cause of vulnerability of the original pseudo-random sequence generator based on
Chen chaotic system is analyzed, and the corresponding enhancement methods are proposed. Transient
data produced by the calculation among fixed-point numbers is used to improve the performance of the
original scheme. Statistical tests and security analysis indicate that the modified scheme is more secure
than the original one, and the computational complexity of the brute force attack is O(2n). At the
same time, it can still maintain the pseudo-random characteristics and satisfy the other performance
requirements of pseudo-random sequence generator.
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1 Introduction

As an important part of modern cryptography, pseudo-random binary sequences have been widely
investigated in the past decades. Most existing schemes for generating pseudo-random sequences
are based on linear feedback shift registers, oscillator, cellular automata rules, etc. [1]-[4]. In
recent years, chaotic systems have been used to develop pseudo-random sequence generator be-
cause the sensitivity to parameters and initial conditions, ergodicity, and pseudo-random be-
havior of chaotic systems satisfy the analogous requirements for a good cryptosystem. Li et
al. generated multiple pseudo-random-bit sequences from a single spatiotemporal chaotic system
(CML-MPRBG) [5]. Kanso et al. generated pseudo-random binary sequences by logistic chaotic
map [6], and Persohn et al. explored the consequences finite precision has on the periodicity
of a PRNG based on the logistic map [7]. In 2011, Liu indicated the pseudo-randomness and
complexity of the binary sequences generated by the Chebyshev map and the Lorenz system [8].
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In 2013, Palacios-Luengas et al. shown a digital electronic system that produces uniformly dis-
tributed binary sequences using the Inverted Tent Chaotic Map (ITCM) without the scaling and
discretization processes [9]. In 2014, Francois et al. proposed a secure pseudo-random number
generator three-mixer [10]. The most used chaotic systems for generating pseudo-random se-
quences above are one-dimensional chaotic maps. It is more suitable to construct pseudo-random
sequences generators by using high-dimensional chaotic systems. To overcome this limitation, Hu
et al. proposed a binary sequence generator by using the high-dimensional Chen chaotic system
[11]. Their pseudo-random bit generator is based on a combination of three coordinates of the
chaotic orbit. However, Francois M. et al. pointed out the security weaknesses of this scheme
[12]. By applying a brute force attack on a reduced key space, Francois M. et al. shown that 66%
of the generated sequences can be revealed.

In this letter, we will analyze the cause of vulnerability of the original pseudo-random sequence
generator based on Chen chaotic system in detail, and then propose the corresponding enhance-
ment measures. Statistical tests and security analysis will be performed to evaluate the security
of the modified scheme. The rest of this letter is organized as follows: Section 2 discusses the
main security problems of the original scheme. In Section 3, a modified scheme is proposed by
using the Chen chaotic system which is realized on 32-bits fixed-point calculations. The statistical
tests and security analysis of the modified scheme are presented in Section 4. Section 5 concludes
the letter.

2 Original Scheme and Its Security Problems

2.1 Description of the Pseudo-random Sequence Generator

In the original pseudo-random sequence generator, Chen chaotic system is utilized. Chen chaotic
system is defined as:





ẋ = a(y − x)

ẏ = (c− a)x− xz + cy

ż = xy − bz

(1)

where a = 35, b = 3, c = 28, and the initial values (x0, y0, z0) = (−3, 2, 20).

In order to generate sequences of uniform distributed binary random variables by using the
Chen chaotic system, effective changes were made to enhance the random statistical properties
in [11]. The pseudo-random bit generator is based on a combination of three coordinates of the
chaotic orbit. The pseudo-random sequence generator steps as follows:

Step 1. The outputs of the Chen chaotic system are computed for the selected initial conditions
and control parameters.

Step 2. Eq. (2) is used to generate the chaotic pseudo-random key stream, where x(i), y(i), z(i)
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are the samples of the Chen chaotic system.

v(3i) = 3000× (x(i) + 45)

v(3i + 1) = 3000× (y(i) + 35)

v(3i + 2) = 3000× (z(i) + 45)

K(j) = v(j) mod 256, i, j = 0, 1, 2, ...

(2)

Step 3. Generate pseudo-random key stream by encoding binary representation.

2.2 Security Problems

For a positive integer n, two integers a and b are said to be congruent modulo n, written a ≡
b(mod n). The properties of the congruence relation can be described as follows:

a1 ≡ b1(mod n) (3)

a2 ≡ b2(mod n) (4)

a1 ∓ a2 ≡ b1 ∓ b2(mod n) (5)

a1a2 ≡ b1b2(mod n) (6)

By using the properties of modular arithmetic listed above, Eq. (2) can be rearranged:

v(3i) = (3000 mod 256)× ((x(i) + 45) mod 256)

v(3i + 1) = (3000 mod 256)× ((y(i) + 35) mod 256)

v(3i + 2) = (3000 mod 256)× ((z(i) + 45) mod 256)

K(j) = v(j) mod 256, i, j = 0, 1, 2, ...

(7)

Although the Chen chaotic system is working with continuous values, the range is transformed
into [0, 255] with the mod operation. The maximum and minimum values of the digital Chen
chaotic system are given in Table 1. It can be seen that there are 44, 53, and 46 different values
for (x(i) + 45), (y(i) + 35), (z(i) + 45). In order to decrypt the ciphered image proposed in [11],
the attacker is suggested to reveal the v(j) values instead of attacking the initial conditions.
Once the v(j) values are known, the ciphered image is decrypted. Any generated pseudo-random
number value can be found with a maximum of 53 attempts. In this situation, the computational
complexity of the attack is O(53n) = O(n), where n is the sequence length.

Table 1: Probable output values for Eq. (2)

Minimum value Maximum Value Number of values

x(i)+45 20 64 44

y(i)+35 5 59 53

z(i)+45 45 91 46
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3 Description of the Modified Scheme

It is obvious that there are 2N − 1 bits output for N -bits multiplication or division. However,
while performing N -bits fixed-point calculation, the input and output are both N bits. In other
words, the residual N−1 bits are ignored. Theoretical analysis and computer simulation indicate
that the cryptographic characteristics of this N − 1 bits are better than the N bits output [13].
We name the ignored N − 1 bits as transient data. By using the transient data, the main frame
of our modified scheme is designed as Fig. 1, and its procedure can be described as follows:

The chen chaotic system
Sample

The sequence K(i) The pseudo-random binary sequence

The sampled transient data vector
(xi, yi, zi)" " "

Binary

representation

XOR operation as Eq. (9)

Fig. 1: The main frame of the modified scheme

Step 1. Chen chaotic system is realized under 32-bits fixed-point calculations for the selected ini-
tial conditions and control parameters. Assume that (x0, y0, z0) is the initial vector and (x′i, y

′
i, z

′
i)

is the 31-bits transient data output vector of the ith iteration.

Step 2. We can obtain 32-bits vector (x′′i , y
′′
i , z

′′
i ) by padding x′i, y

′
i, z

′
i with ’0’ at the side of the

last bit. We write the value of x′′i , y
′′
i , z

′′
i in an integer number with 32 bits. The values x′′i , y

′′
i , z

′′
i

are re-divided into 4 integers as Eq. (8), and each integer has 8 bits.

x′′i = α31α30...α24︸ ︷︷ ︸
x′′i.4

α23α22...α16︸ ︷︷ ︸
x′′i.3

α15α14...α8︸ ︷︷ ︸
x′′i.2

α7α6...α10︸ ︷︷ ︸
x′′i.1

y′′i = β31β30...β24︸ ︷︷ ︸
y′′i.4

β23β22...β16︸ ︷︷ ︸
y′′i.3

β15β14...β8︸ ︷︷ ︸
y′′i.2

β7β6...β10︸ ︷︷ ︸
y′′i.1

z′′i = γ31γ30...γ24︸ ︷︷ ︸
z′′i.4

γ23γ22...γ16︸ ︷︷ ︸
z′′i.3

γ15γ14...γ8︸ ︷︷ ︸
z′′i.2

γ7γ6...γ10︸ ︷︷ ︸
z′′i.1

(8)

where αi, βi, γi ∈ {0, 1}, i = 1, 2, ..., 31.

Step 3. The chaotic pseudo-random key stream is generated by Eq. (9), where ⊕ is XOR
operation.

K(3i) = x′′i.4 ⊕ x′′i.3 ⊕ x′′i.2 ⊕ x′′i.1
K(3i + 1) = y′′i.4 ⊕ y′′i.3 ⊕ y′′i.2 ⊕ y′′i.1
K(3i + 2) = z′′i.4 ⊕ z′′i.3 ⊕ z′′i.2 ⊕ z′′i.1

(9)

Step 4. Generate pseudo-random key stream by encoding binary representation.

4 Performance Analysis of the Modified Scheme

The numerical experiments are performed on 32-bits fixed-point calculations. In order to estimate
the randomness of a pseudo-random binary sequence, various tests should be available to evaluate
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a PRNG for cryptographic purposes. The following measures must be selected: Statistical test,
Correlation test, Frequency spectral test, Security test et al..

4.1 Statistical Test

The randomness of a sequence can be estimated by using the method of statistical test. In fact,
the National Institute of Standards & Technology (NIST) proposes a battery of tests that must
be performed on the generated binary sequences. These tests assess the presence of a pattern
which, if detected, would indicate that the sequence is not random. In each statistical test, a
p value probability is computed. Each value summarizes the strength of the evidence against
the perfect randomness assumption. A p value of zero indicates that the sequence appears to
be completely not random. A p value larger than 0.01 means that the sequence is considered
to be random with a confidence level of 99%. The results of NIST tests obtained on 10 groups
of 1 000 000 sequences are given in Table 2. We can remark that all the tested sequences pass
the NIST tests successfully. These results show a high randomness level of the produced binary
sequences.

Table 2: Results of SP 800-22 test

Test name p value Results

Frequency 0.5341 SUCCESS

Block frequency 0.4944 SUCCESS

Cumulative sums (1) 0.7776 SUCCESS

Cumulative sums (2) 0.4642 SUCCESS

Runs 0.1654 SUCCESS

Longest runs of ones 0.3505 SUCCESS

Rank 0.2133 SUCCESS

FFT 0.3505 SUCCESS

Overlapping template matching 0.2364 SUCCESS

Universal statistical 0.3505 SUCCESS

Approximate entropy 0.4731 SUCCESS

Random excursions 0.6421 SUCCESS

Random excursions variant 0.6158 SUCCESS

Serial (1) 0.3201 SUCCESS

Serial (2) 0.4237 SUCCESS

Linear complexity 0.5863 SUCCESS

4.2 Correlation Test

There are two types of correlation tests for pseudo-random binary sequence estimation: the auto-
correlation and the cross-correlation. The auto-correlation of binary sequences measures the
amount of similarity between the sequences xn and a shift of xn by m positions. δ−like auto-
correlation is required for a good pseudo-random binary sequence generator. On the other hand,
the binary sequences can be generated from pseudo-random sequence generator simultaneously.
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If being independent of each other with zero cross-correlation, they can be used to encrypt many
plain-texts at one time. The auto-correlation and cross-correlation function, Corr(m), for a binary
sequence can be defined by Eq. (10) at the same time.

Corr(m) = lim
N→∞

1

N

N−1∑
i=0

(xi+m − x̄)(yi − ȳ) (10)

where

x̄ = lim
N→∞

1

N

N−1∑
i=0

(xi) (11)

ȳ = lim
N→∞

1

N

N−1∑
i=0

(yi) (12)

where, xi, yi is the binary symbol of the same or different sequences, N and m are the length
and offset of the sequence, respectively. The auto-correlation and the cross-correlation function
of binary sequences generated by the modified scheme is shown in Fig. 2. It is clearly shown that
the binary sequences have good performance of correlation. It should be noted that the length of
the tested sequences is 105 bits.

Fig. 2: The auto-correlation and the cross-correlation function

4.3 Frequency Spectral Test

The measure of the frequency spectral analysis tests whether the center frequency exists or not in
the binary sequence. If there is a center frequency in a sequence, it has periodicity, and is not an
ideal pseudo-random sequence. The frequency spectrum of sequence xn can be defined as follows:

X(k) =
N−1∑
n=0

xne
−j2πnk/N (13)

where, N is the length of a sequence, and k is the rank of a harmonic, 0 ≤ k ≤ N .

For the frequency spectrum of the binary sequences generated by the modified scheme, we
randomly select 103 and 104 sequential bits for each sequence. The results of the frequency
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spectral analysis for the selected binary sequences are shown in Fig. 3. It is obvious that there
is no center frequency in the spectrum of all binary sequences. Hence, these sequences generated
by the modified scheme are all aperiodic.

Fig. 3: Frequency spectrum of the selected binary sequences with 105 bits length

4.4 Security Test

4.4.1 Key Sensitivity

According to the basic characteristics of chaotic system, we can choose the initial values and
control parameters as the secret key of pseudo-random binary sequence generator. In order to
evaluate the sensitivity of the modified scheme to the secret key, simulation experiments have
been done under the following 5 different conditions:

G1 : (x0, y0, z0) = (−3, 2, 20), a = 35, b = 3, c = 28

G2 : (x0, y0, z0) = (−3 + ε, 2, 20), a = 35, b = 3, c = 28

G3 : (x0, y0, z0) = (−3, 2 + ε, 20), a = 35, b = 3, c = 28

G4 : (x0, y0, z0) = (−3, 2, 20), a = 35 + ε, b = 3, c = 28

G5 : (x0, y0, z0) = (−3, 2, 20), a = 35, b = 3, c = 28 + ε

where (x0, y0, z0), (a, b, c) are the initial values and control parameters of Chen chaotic system,
ε = 10−14.

The number of differences among the above conditions is shown in Table 3. For 105 bits test
binary sequences, it is clear that the variance ration of each bit is approximated 50% even if the
change of initial value or parameter is an extremely small value 10−14. The simulation result
indicates that the key sensitivity property of the modified scheme is so perfect.
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Table 3: Results of key sensitivity test

- G1 G2 G3 G4 G5

G1 - 49975 49778 50094 49928

G2 - - 49481 50045 50033

G3 - - - 49920 50160

G4 - - - - 49662

G5 - - - - -

4.4.2 Brute Force Attack

For the original scheme, the computational complexity of the brute force attack is O(53n) =
O(n), where n is the sequence length. The brute force attack is applied to evaluate the security
of the modified scheme as well. Since 32-bits precision fixed-point number is adopted as the
representation of the real number on computer in the algorithm, there are 31-bits transient data
during the calculation between fixed-point numbers. While the transient data is unavailable for
attackers, the probability to guess each bit in the binary sequence is 2 according to the description
of the modified scheme. In other words, the computational complexity of the brute force attack
is O(2n) for the modified scheme.

5 Conclusion

In this letter, the cause of vulnerability of the original pseudo-random sequence generator based
on Chen chaotic system is analyzed in detail. Enhancement methods are proposed to get rid of the
reported cryptanalysis. Transient data produced by the calculation between fixed-point numbers
is used to improved the performance of the original scheme. Statistical tests and security anal-
ysis indicate that the modified scheme is more secure than the original one. The computational
complexity of the brute force attack is O(2n). Additionally, it still maintains the pseudo-random
characteristics and satisfies the other performance requirements of pseudo-random sequence gen-
erator.
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