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Abstract. Active and dynamic fusion for fuzzy and uncertain data have key challenges such as high complexity and difficult to
guarantee accuracy, etc. In order to resolve the challenging issues, in this article a selective and incremental data fusion approach
based on probabilistic graphical model is proposed. General Bayesian networks are adopted to represent the relationship among
the data and fusion result. It purposively selects the most informative and decision-relevant data for fusion based on Markov
Blanket in probabilistic graphical model. Meanwhile we present a special incremental learning method for updating the fusion
model to reflect the temporal changes of environment. Theoretical analysis and experimental results all demonstrate the proposed
method has higher accuracy and lower time complexity than existing state-of-the-art methods.
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1. Introduction

Nowadays, wireless sensor networks produce a large
amount of data that need to be processed [4], sensor data
fusion can be defined as the combination of multiple
sensors to obtain more accurate information than using
a single sensor. Currently sensor data fusion has been
widely used in many application areas including agri-
culture [16], fault diagnosis [11], geological exploration
[20], environmental assessment [1], and etc.

The sensor data fusion algorithms have been devel-
oped extensively in past years such as regression
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kriging [12], possibility theory [14], evidence theory
[7], neural networks [17], diffusion mapping [15], etc.

However, conventional methods always use all the
sensors for fusion, but in the real world, since imprecise
acquisition devices or the sensor noise, some sensors
may produce incorrect, insignificant or irrelevant data
for fusion, and using more sensors will also cost more
computations, so it is not efficient to use all the sensors
for fusion, and purposely choosing an optimal sub-
set (most relevant and informative to decision) from
multiple sensing data can save computational time and
physical costs, reduce redundancy, and increase the
chance of making correct and timely decisions [19].
Furthermore, the conventional methods are static, the
fusion models are constant, however, the environments
are dynamical and always change over time, sensory
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observations also evolve over time, so the data fusion
system is also needed to reflect temporal changes for
dynamic world.

Therefore, a good sensor data fusion system requires
the capability which can not only represent the tem-
poral changes of uncertain sensory information, but
also purposively select a subset of sensor data those
are most decision-relevant for fusion [21], that is active
and dynamic data fusion.

To achieve above goals, some tentative researches
have been done. Wang, et al. [8] realized active sen-
sor selection based on maximal entropy. Zhang and
Ji [21, 22] proposed a tree-like dynamic Bayesian
network (DBN) for active and dynamic data fusion,
and they applied mutual information to select opti-
mal sensor subset. Liao, et al. [18] proposed to use
Influence Diagrams as fusion model, and they pro-
posed an improved greedy approach to select most
decision-relevant sensor subset. In addition, they [19]
proposed an approximate nonmyopic active sensor
selection through partitioning and submodularity based
on DBN and greedy algorithm. Kreucher, et al. [3]
presented an entropy based active sensing approach,
at each time step only one sensor was selected. Guo,
et al. [2] proposed an active feature subsets selec-
tion method based on mutual information for gait
recognition.

But the existing methods face two key challenges,
1) the computation of sensor selection criteria has
exponential time complexity; 2) the number of sensor
subsets grows exponentially as the total number of
sensors [18]. And most methods focus only on sensor
selection, can not model the sensor selection, sensor
fusion, and decision making in a unified framework.
The above challenges lead to high complexity to this
problem. Therefore, most researches use approximate
method or select only one or few sensors for fusion,
so it affects the fusion accuracy in some degree.
Though tree-like DBN based methods improve the
performance, but they also have four major restric-
tions. 1) The fusion model is not convenient to be
learned from data, so the accuracy of fusion heav-
ily depends on the prior knowledge of experts. 2)
Tree-like DBN requires assumption that sensors are
independent of each other, but it is not realistic because
sensors always have some dependent relationships
in many applications. 3) The characteristics of
DBN make fusion model difficult to vary with the
changing circumstances. 4) It need large amount
of DBN inferences which require exponential time
complexity.

To address aforementioned problems, in the article,
a selective and incremental sensor data fusion approach
is proposed. Bayesian network (BN) is adopted to rep-
resent relationship of sensor data and fusion result,
and it realizes sensor selection and data fusion based
on Markov Blanket of BN. It makes the fusion model
accommodate the dynamic changes of circumstances
through incremental learning from sensor data which
generated continuously. The advantages of this method
are: it requires no independence assumptions; it requires
no BN inference, and it can model the sensor selection,
sensor fusion, decision making in a unified framework,
so the time complexity is low; the fusion model can
reflect the changes of environment better than DBN
based methods, so it has high accuracy.

The remainder of this article is organized as follows:
Section 2 presented the fusion method we proposed.
The experimental results of the proposed method
are described in Section 3. Finally, conclusions are
summarized in Section 4.

2. Selective and incremental data fusion

In this section, we present the method we proposed,
the principles of active fusion based on general BN is
presented in Section 2.1, then an algorithm of incremen-
tal learning to update the BN dynamically over time is
presented in Section 2.2, at last, the overall framework
of the method is described in Section 2.3.

2.1. Preliminaries of data fusion and BN

In our proposed approach, there are 2 kinds of
variables: sensor variable and fusion variable. ‘sensor
variables’ represent the information gathered from sen-
sor, and ‘fusion variable’ represent the fusion result,
we use S1, . . . ,Sn represent the sensor variables, and F

is the fusion variable. The purpose of data fusion is to
calculate the value of variable R. A sensor data fusion
process can be illustrated as Fig. 1.

A Bayesian network (BN) is a probabilistic graphical
model for representing relationships among vari-
ables. For a set of variables X = {X1, X2, . . . ,Xn}, a
Bayesian network includes two components:

– A directed acyclic graph in which the node
indicates the random variable, and the arc rep-
resent relationships of dependency between two
variables;



Y. Zhu et al. / Selective and incremental fusion for fuzzy and uncertain data based on probabilistic graphical model 2399

Fig. 1. Overview of sensor data fusion process.

Fig. 2. (a) An instance of BN with 9 variables. (b) An instance of BN
for sensor data fusion in proposed approach.

– For each node Xi, it corresponds to a conditional
probability distribution P(Xi|πi), where πi indi-
cates the parent set of Xi.

The joint probability distribution of X are repre-
sented as follows [9, 10]:

P(X1, X2, . . . ,Xn) =
n∏

i=1

P(Xi|πi)

For example, Fig. 2(a) is a simple Bayesian network.

2.2. Fusion model and sensor selection

In our approach, unlike existing methods, we do
not use the tree-like BN, but use general BN to be
fusion model, thus the fusion model can obviously
present the relationship of sensor data and fusion result.
The fusion variable and sensor variables are repre-
sented by nodes of BN, if there are n sensor variables,
then the BN has n+1 nodes {S1, . . . ,Sn,F }. The result
of fusion could be obtained by computing the prob-
ability P(F |S1, . . . ,Sn). For instance, if there are 8
sensors, Fig. 2(b) shows an possible fusion model for
our method. It should be pointed out that sometimes
one physical sensor may corresponds to multiple sensor
variables.

The purpose of selective data fusion is to select a set
S∗ ⊆ {S1, . . . ,Sn}, and the sensor variables of S∗ are
most informative and relevant for fusion. In BN, the
Markov Blanket [9] of a node F (denoted as MB(F))
are compose of F’s parent nodes, F’s children nodes
and all the parent nodes of F’s children nodes. The
Markov Blanket has a property that the MB(F) are the
nodes which make F independent of the other nodes
of BN [9], viz. P(F |S1, . . . ,Sn) = P(F |MB(F )), that
means given the values of sensor nodes, the probability
of F is influenced only by MB(F ). So MB(F ) is the
most relevant and informative sensor data for fusion.
Consequently, only the sensor nodes that belong to the
MB(F ) can be selected for computing the fusion result.
In Fig. 2(b), the Markov Blanket of F is {S2, S3, S4, S5}.

The fusion result can be obtained by computing the
P(F |MB(F )). Assuming the range of F is {f1, . . . ,fk},
so we can select the fi with the highest value of P(F =
fi|MB(F )) as the final fusion result. That is:

FusionResult = arg max
f∈F

P(F = f |MB(F ))

To calculate the value of above equation, let us con-
sider the following derivation:

Based on the independence assumption of Markov
Blanket, we have follow equation based on the charac-
ters of Markov Blanket:

P(F |MB(F )) = P(F |S1, . . . ,Sn) = P(F, S1, . . . ,Sn)

P(S1, . . . ,Sn)

Because the denominator P(S1, . . . ,Sn) does not
include F , that means no matter F takes any value, the
value of P(S1, . . . ,Sn) is the same, so it can be viewed
as constant. Moreover, the numerator P(R, S1, . . . ,Sn)
is joint probability distribution, so it can be denoted
through product of conditional probability distribution
of each node. So the above equation can be expressed
as follows:

P(F, S1, . . . ,Sn)

P(S1, . . . ,Sn)
= c · P(F, S1, . . . ,Sn)

= c ·
∏

Xi∈{F,S1,...,Sn}
P(Xi|π(Xi))

= c · P(F |π(F )) ·
∏

Xi∈Children(F )
P(Xi|π(Xi))

·
∏

Xj /= F∩Xj /∈Children(F )
P(Xj|π(Xj))

where c is a constant replacing P(S1, . . . ,Sn),
Children(F) are the children nodes of F . Because
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∏
Xj /= F∩Xj /∈Children(F ) P(Xj|π(Xj)) does not contain

F , so it can also belong to the constant. The equation
can be written by:

c · P(F |π(F )) ·
∏

Xi∈Children(F )
P(Xi|π(Xi))

·
∏

Xj /= R∩Xj /∈Children(F )
P(Xj|π(Xj))

= c′ · P(F |π(F )) ·
∏

Xi∈Children(F )
P(Xi|π(Xi))

The above equation shows the value of P(F |MB

(F )) is proportional to P(R|π(F )) ·∏Xi∈Children(F )
P(Xi|π(Xi)), so:

FusionResult = arg max
f∈F

P(F = f |MB(F ))

= arg max
f∈F

P(F = f |π(F )) ·
∏

Xi∈Children(F )

P(Xi|π(Xi))

(1)

Equation (1) contains only the CPT of fusion node F

and its children nodes which can be acquired from BN
directly, so calculation of fusion result requires no BN
inference.

For fuzzy data, for instance, the sensor data is rep-
resented as membership function of a fuzzy set. In
order to fuse such membership functions, each item
(membership degree) of the membership function can
correspond to a single node of BN, that is to say
one fuzzy sensor data corresponds to multiple sensor
variables in BN. Because the value of the item of mem-
bership function is real number, we can use the BN with
continuous variables to be the fusion model, it is also
called continuous BN.

In summary, in this method, the active sensor selec-
tion, sensor fusion, decision making are modeled in a
unified framework, so it can fuse with high efficiency.
The BN model can be established by expert knowledge,
machine learning, or the two methods together. The
detailed approaches for learning discrete or continuous
BN could be looked up in [6, 13].

2.3. Incremental updating of fusion model

Sensor data and fusion result generated by one fusion
process can compose a new case of sample. After
numerous times, the fusion system can gather a group of
new data (samples) which can reflect the latest feature
of the circumstance. Therefore the BN fusion model

t + 1t

Fig. 3. An instance of incrementally updating BN.

can be updated incrementally with novel data. So we
present a novel incremental learning algorithm special
to update the fusion model. Figure 3 shows an example
of incrementally updating process for BN fusion model
from time t to t+1, the structure and parameters of BN
all change, and MB(F ) also change.

The definition of incremental learning of BN can be
described as follows. Supposing that B indicates the
current BN, D’ represent the old data gathered before,
and D represent the new collected data. In-cremental
learning aims to learn new BN B’ which can match theD

and D’ well. In the proposed algorithm, we first design
a scoring metric that measures the fitness between BN
and the data, then proposed a new search strategy to
search the best BN which has the highest score.

Based on [5], a modified scoring metric is designed
as follows:

Score(B) = (1− η) log P(D′|B)

+ η log P(D|B)− pen(B)

In above equation, probability P(D′|B) and P(D|B)
evaluates how B fits D’ and the new data. η (0 ≤ η ≤ 1)
is learning factor which adjusts the tendency for old
or novel data, for instance, if the current fusion model
do not match the new data well, i.e. the circumstance
has changed substantially, then η would be enlarged
to trend the learning procedure to new data. Pen(B) is
penalty function to measure the structure of B to make
the learning procedure trend to get concise BN which
is easy to maintain.

To search the best BN fusion model, we use an
improved greedy method. Because the fusion proce-
dure only use the conditional probability distribution
of fusion node F and its children, so different from tra-
ditional approaches, only local modifications to fusion
node and its children nodes can be considered in order
to make the search procedure more efficient. The mod-
ifications include: reverse an arc, delete or add an arc
that ends to F or starts from F; delete or add an arc that
ends to F’s child nodes.
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Algorithm 1. Incremental Learning for BN fusion model

Input: D; D′; B
Output: B′;

while(not converse)
{Score(B)← η log P(D′|B)+ (1− η) log P(D|B)− pen(B)}

Modifications(B)← local modifications to F .
m∗ ← arg max

m∈Modifications(B)
Score(B +m)− Score(B)

B← modify B by m∗
}
return B.

During the fusion, there are two optional strategies to
determine whether to trigger the incremental learning
to update model, 1) when the new data fit the fusion
model very poorly; 2) when the number of new data
reach the specified threshold.

Because we represent the model updating not through
transitional probabilities just as in DBN, but based on
the data gathered from real environment, and the struc-
ture and the parameters of fusion model can all change,
so it can reflect the changes of world better than DBN
methods.

2.4. The overall framework of the proposed method

In a word, the following algorithm summarizes the
overall framework of the selective and incremental data
fusion procedure based on BN:

Algorithm 2. Selective and Incremental Data Fusion

Input: t; B
Output: Result of Fusion FR;

/*Select Sensor Variable*/
Discover MB(F) in B;
/*Fusion Result Calculation*/
FR← arg max

f∈F
P(F = f |π(F )) ·

∏
Xi∈Children(F ) P(Xi|π(Xi))

/*Generating new Samples*/
D←D ∪{FR + sensor data};
/*Updating Fusion Model*/
if(t == threshold || the samples fit B badly)

B← Incremental Learning (B, D)
return FR.

Above algorithm is only the process of fusion once,
so the whole fusion needs to call the algorithm multiple
times, in which the parameter t represents the time and
is initialized to 0.

In this fusion algorithm, the sensor variables belong
to MB(F) in BN are selected firstly, then MB(F) are
used to calculate posterior probability of F , at last the
value of F which maximizes the posterior probability
is selected to be the final fusion result. If the number

of new samples reaches the specified threshold or the
sample can’t fit the fusion model very well, incremental
learning is triggered for updating BN.

3. Experiment and result

In this experiment, we use 36 simulated sensors for
fusion in the wireless sensor networks. Due to space
limitation, the fusion model structure is not listed in this
paper. Every time when the fusion system collects 200
cases of new data, incremental learning is triggered for
updating the fusion model, then we validate accuracy
of fusion, with the purpose of making the test results
more precise, we use 1000 samples to test the average
percent of accuracy by comparing the fusion result gen-
erated by the fusion model with the real fusion result in
the sample. Thereby we compare the proposed method
with other state-of-the-art methods in both accuracy and
running time.

Figure 4 demonstrate the accuracy of our approach
and the state-of-the-art methods, where “DBN method”
represents the methods based on DBN and “Passive
method” represents passive fusion method (randomly
select sensors). We can observe that because our method
and DBN method are active fusion, so they have much
higher accuracy than passive fusion. And in the begin-
ning, the accuracy of the proposed method is similar
to DBN method, however, just as we discussed in Sec-
tion 2, the proposed method can vary with the changing
environment better, so it shows higher accuracy than
DBN method as time goes on.

Figure 5 illustrates average computational time with
the proposed method versus fusion method based on
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Fig. 5. Average running time of the proposed method and exact DBN
based method with various numbers of sensors.

exact optimal search and DBN inference. The com-
parison is made in various numbers of sensors. We
can observe that when the number of sensors is small,
the run time is similar. But with the number growing,
the computational time of exact method exponentially
increases, and the run time of the proposed method
increases almost linearly. Therefore, the proposed
method can save more time.

We also made an experiment about real sensor data
which is to fuse the temperature, humidity and PM2.5
sensor data to evaluate whether the environment is com-
fortable to human. And the results are also accurate to
verify the validity of the approach.

4. Conclusions and future works

To achieve rapid and precise sensor data fusion,
in this article a selective and incremental data fusion
approach based on graphical probabilistic models was
proposed. This method models the sensor selection,
sensor fusion, decision making in a unified frame-
work, it uses the general BN to indicate the relationship
among fusion result and sensor data. The active sen-
sor selection can be performed by discovering Markov
Blanket of fusion variable. The fusion model is updated
through incremental learning of BN. Theoretical anal-
ysis and experimental results both show the proposed
method has higher accuracy and lower time complex-
ity than existing methods. In future, we will do more
experiments to compare the proposed method to other
traditional and the latest methods, and apply the pro-
posed method to more real scenarios.
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