
Research Article
Error Prediction for SINS/GPS after GPS
Outage Based on Hybrid KF-UKF

Baiqiang Zhang,1,2 Hairong Chu,1 Tingting Sun,1,2 Hongguang Jia,1

Lihong Guo,1 and Yue Zhang1

1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
2University of Chinese Academy of Sciences, Beijing 10039, China

Correspondence should be addressed to Baiqiang Zhang; xgdzbq@163.com

Received 1 July 2015; Accepted 14 September 2015

Academic Editor: Rafael Morales

Copyright © 2015 Baiqiang Zhang et al.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Theperformance ofMEMS-SINS/GPS integrated systemdegrades evidently duringGPS outage due to the poor error characteristics
of low-cost IMU sensors.The normal EKF is unable to estimate SINS error accurately after GPS outage owing to the large nonlinear
error caused by MEMS-IMU. Aiming to solve this problem, a hybrid KF-UKF algorithm for real-time SINS/GPS integration is
presented in this paper. The linear and nonlinear SINS error models are discussed, respectively. When GPS works well, we fuse
SINS and GPS with KF with linear SINS error model using normal EKF. In the case of GPS outage, we implement Unscented
Transform to predict SINS error covariance with nonlinear SINS error model until GPS signal recovers. In the simulation test that
we designed, an evident accuracy improvement in attitude and velocity could be noticed compared to the normal EKF method
after the GPS signal recovered.

1. Introduction

Strapdown Inertial Navigation System (SINS) is a highly self-
contained navigation system, utilizing Inertial Measurement
Units (IMU) fixed to the vehicle to determine its attitude,
velocity, and position by calculating the integral of the
angular rates and accelerations that IMU measures. Global
Positioning System (GPS) is a satellite based radio naviga-
tion system that can provide accurate velocity and position
information for a vehicle equipped with a GPS receiver [1].
SINS is commonly integrated with GPS using Kalman Filter
(KF) to combine both advantages of these two techniques
so that SINS/GPS has complete navigation information, high
updating rate, good long-term accuracy, and high reliability.

In recent years, with the development of Microelectroni-
cal Mechanical System (MEMS), IMU can be manufactured
quite small with very low costs. So MEMS-SINS/GPS inte-
grated navigation systems have been widely used in many
areas, such as land-vehicle navigation, Unmanned Aerial
Vehicle (UAV) control, and tactical missile guidance [2].
Unfortunately, these low-cost MEMS inertial sensors have

relatively poor error characteristics. Although we can com-
pensate the deterministic part by calibration experiments,
the random error, including noise, bias-drifts, and random-
walk, will still cause further degradation of SINS performance
[3]. In a practical application, GPS signal may encounter
disturbance or obstacle and KF fails to estimate SINS errors
when no GPS information is available, which causes two
problems.

The first problem is that the performance of SINS
degrades very fast since MEMS-IMU has low accuracy and
no measurement information can be used for KF to correct
the errors. And when GPS signal recovers, another problem
occurs. KF or the extended KF (EKF) only works when
the system is linear or slightly nonlinear so that it can
be approximated by linearization. However, the SINS error
model may have changed and became strongly nonlinear
duringGPS outages since SINS errors have been growing very
fast. Even after GPS signal recovery, the KF cannot estimate
the system error correctly.

The first problem has been studied for many years and
several methods have been proposed to solve it. In [4],
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under the assumption that the land-vehicle has no slip on
the ground, SINS errors are constrained by considering the
movement path of the vehicle. In [5], an odometer is used
to offer extra observation information for the KF in GPS
outages.These twomethods are easy to achieve but only work
when the movement path of the vehicle is simple. So the
majority of researches have been focusing on the online study
methods using Artificial Neural Network (ANN) or Support
Vector Machine (SVM) [6]. Nowadays, several advanced
information fusion algorithms have been proposed, such
as strong-tracking Kalman Filter (STKF) combined with
wavelet neural network (WNN) [7], genetic algorithm based
adaptive neurofuzzy inference system (GANFIS) [8], and
Dempster-Shafer augmented Support Vector Machine (DS-
SVM) [9]. By online training when GPS is working, these
algorithms can be used to estimate the system errors and
correct them duringGPS outages. Although proved to be effi-
cient in theory, these methods are seldom applied practically
for their huge amounts of calculation. The second problem
wementioned above, however, has not drawnmuch attention
all these years. In fact, most MEMS-SINS/GPS integrated
navigation systems today still work in SINS alone mode if
GPS signal breaks down. And there will be a significant
degradation in the system performance when GPS signal
recovers owing to the drawback of KF.

In order to overcome the limitation of KF, Julier and
Uhlmann proposed the Unscented Kalman Filter (UKF) in
1995 [10].The basic approach to predict the state of a strongly
nonlinear system in UKF is the Unscented Transform (UT).
Based on UT, UKF is able to estimate a strongly nonlinear
system and a three-order accuracy can be attainable [11].
According to thework of [12, 13] on low-cost INS initial align-
ment, the errors converge more quickly in UKF compared
to EKF when the initial attitude errors and uncertainties are
large. So the problem that the SINS error model becomes
strongly nonlinear could be solved by implementing UKF.
But UKF has a larger amount of calculation compared with
KF or EKF because a great number of sample points must
be calculated in UT [14]. For a MEMS-SINS/GPS integrated
navigation system, the system model is slightly nonlinear
when GPS is functional and it is not necessary to predict the
statewithUT.Thenwe comeupwith an idea of a hybridUKF-
EKF SINS/GPS fusion method. In this algorithm, UKF and
EKF can be switched so that the filter is able to estimate the
error of system in a nonlinear case but has a low calculation
amount when the system is linear or slightly nonlinear.

In this research, we aimed at improving the MEMS-
SINS/GPS integrated navigation system performance after
GPS outage. A hybrid KF-UKF algorithm for real-time
MEMS-SINS/GPS integration is presented in the paper. First,

we will discuss two kinds of SINS error models which are
the nonlinear model and the approximately linear model.
Then we will present the hybrid KF-UKF algorithm and its
calculation progress. When GPS works well, we fuse SINS
and GPS with KF as usual. In the case of GPS outage,
we implement UT to predict SINS error covariance until
GPS signal recovers. Finally, a simulation and an in-car
experiment were designed to test the algorithm and the
results are compared with common KF method.

2. SINS Error Model

2.1. The Definition of SINS Error. Usually, the integrated
navigation systemfilter is designed as indirect filtering, which
means the system state is selected as the error of the system
parameters instead of the parameters themselves so that the
model is less complex. The navigation system model is a
function of SINS error and the errors of SINS are selected as
the system state. They are a vector of the errors of position,
attitude, velocity, gyroscopes, and accelerometers:

x = [𝛿r 𝛿k 𝜓 𝛿f𝑏
𝑖𝑏

𝛿𝜔
𝑏

𝑖𝑏
]

𝑇

. (1)

The attitude error is defined as the Euler angle 𝜓 =

[𝜓𝑥, 𝜓𝑦, 𝜓𝑧]
𝑇 between the real navigation platform 𝑛 (𝑛-

frame, local north, east, and down) and the computed
navigation platform 𝑛

󸀠. The 𝑛󸀠 frame is achieved by rotating
𝑛-frame with respect to axes 𝑧, 𝑦, and 𝑥 by the angles 𝜓𝑧,
𝜓𝑦, and 𝜓𝑥, respectively. Then we have three coordinate
transformation matrixes:

C𝑍 =
[

[

[

cos𝜓𝑧 sin𝜓𝑧 0

− sin𝜓𝑧 cos𝜓𝑧 0

0 0 1

]

]

]

,

C𝑌 =
[

[

[

[

cos𝜓𝑦 0 − sin𝜓𝑦
0 1 0

sin𝜓𝑦 0 cos𝜓𝑦

]

]

]

]

,

C𝑋 =
[

[

[

1 0 0

0 cos𝜓𝑥 sin𝜓𝑥
0 − sin𝜓𝑥 cos𝜓𝑥

]

]

]

.

(2)

Denoted by attitude transition matrix, the attitude error
is expressed as

C𝑛
󸀠

𝑏
= C𝑛

󸀠

𝑛
C𝑛
𝑏
,

C𝑛
󸀠

𝑛
= C𝑍C𝑌C𝑋 =

[

[

[

[

cos𝜓𝑦 cos𝜓𝑧 cos𝜓𝑦 sin𝜓𝑧 − sin𝜓𝑦
− cos𝜓𝑥 sin𝜓𝑧 + sin𝜓𝑥 sin𝜓𝑦 cos𝜓𝑧 cos𝜓𝑥 cos𝜓𝑧 + sin𝜓𝑥 sin𝜓𝑦 sin𝜓𝑧 sin𝜓𝑥 cos𝜓𝑦
sin𝜓𝑥 sin𝜓𝑧 + cos𝜓𝑥 sin𝜓𝑦 cos𝜓𝑧 − sin𝜓𝑥 cos𝜓𝑧 + cos𝜓𝑥 sin𝜓𝑦 sin𝜓𝑧 cos𝜓𝑥 cos𝜓𝑦

]

]

]

]

,

(3)



Mathematical Problems in Engineering 3

where C𝑛
󸀠

𝑏
is the direction cosine matrix (DCM) from the

body-frame (𝑏-frame) to the computed navigation frame (𝑛󸀠-
frame); C𝑛

𝑏
is the DCM from 𝑏-frame to the real navigation

frame (𝑛-frame); C𝑛
󸀠

𝑛
is the DCM from 𝑛-frame to 𝑛󸀠-frame

[15].

2.2. Linear SINS Error Model. KF is only able to estimate
the state when the system is linear. Fortunately, when SINS
integrated with GPS, the SINS errors can be corrected every
filtering period. And SINS errors accumulated in this period
are pretty small. So we can neglect the higher order terms
of the SINS error function and the model is approximately
linear.

The attitude error is approximated as

C𝑛
󸀠

𝑛
≈ I − [𝜓×] . (4)

The attitude, the velocity, and the position error equa-
tions, respectively, are

𝜓̇ ≈ −𝜔
𝑛

𝑖𝑛
× 𝜓 + 𝛿𝜔

𝑛

𝑖𝑛
− C𝑛
𝑏
𝛿𝜔
𝑏

𝑖𝑏
+ C𝑛
𝑏
w𝑏
𝑔
,

𝛿k̇𝑛 ≈ f𝑛
𝑖𝑏
× 𝜓 − (2𝜔

𝑛

𝑖𝑒
+ 𝜔
𝑛

𝑒𝑛
) × 𝛿k𝑛 + 𝛿g𝑛 + C𝑛

𝑏
𝛿f𝑏
𝑖𝑏

+ C𝑛
𝑏
w𝑏
𝑎
,

𝛿 ̇r𝑛 ≈ −𝜔
𝑛

𝑒𝑛
× 𝛿r𝑛 + 𝛿k𝑛,

(5)

where 𝜔𝑛
𝑖𝑛
is the angular rotation velocity of the navigation

coordinate systemwith respect to the inertial frame;𝜔𝑛
𝑖𝑒
is the

earth rotation velocity; 𝜔𝑛
𝑒𝑛
is the rotation vector from the 𝑒-

frame to the 𝑛-frame; f𝑛
𝑖𝑏
is the specific force vector in 𝑛-frame;

𝛿g𝑛 is the error of the gravity vector in 𝑛-frame;w𝑏
𝑔
andw𝑏

𝑎
are

the noise of the gyroscopes and accelerators, respectively [16].
And the SINS error model can be written as

ẋ = F (𝑡) x + G (𝑡)w. (6)

So it is able to predict the system state by using a
transform matrix. And KF is available when GPS works well.

2.3. Nonlinear SINS Error Model. Although the linear SINS
model has been proved to be efficient in SINS/GPS inte-
gration, it may be not accurate enough if the SINS errors
accumulate with time when the navigation system works in
SINS alone mode. In this situation, we cannot neglect the
nonlinear parts of the SINS error function and it is necessary
to develop the nonlinear SINS error model.

Now let us review (3). If we define 𝜔𝑛
󸀠

𝑛𝑛󸀠
as the angular

rotation vector from the 𝑛-frame to the 𝑛󸀠-frame and 𝜓̇ =

[𝜓̇𝑥 𝜓̇𝑦 𝜓̇𝑧]
𝑇 as the Euler angle rates, then we have their

relationship with the Euler angle:

𝜔
𝑛
󸀠

𝑛𝑛󸀠
=

[

[

[

𝜓̇𝑥

0

0

]

]

]

+ C𝑋
[

[

[

0

𝜓̇𝑦

0

]

]

]

+ C𝑋C𝑌
[

[

[

0

0

𝜓̇𝑧

]

]

]

. (7)

Without linearization, the attitude error differential equa-
tion can be derived from (7) as

𝜓̇ = C−1
𝜓
𝜔
𝑛
󸀠

𝑛𝑛󸀠
=

[

[

[

[

1 0 − sin𝜓𝑦
0 cos𝜓𝑥 sin𝜓𝑥 cos𝜓𝑦
0 − sin𝜓𝑥 cos𝜓𝑥 cos𝜓𝑦

]

]

]

]

−1

𝜔
𝑛
󸀠

𝑛𝑛󸀠
, (8)

where C𝜓 is the transition matrix between 𝑛-frame and 𝑛

󸀠-
frame [17].

Based on (8), the attitude, the velocity, and the position
error equations are expressed as

𝜓̇ = C−1
𝜓
[(𝐼 − C𝑛

󸀠

𝑛
) 𝜔̃
𝑛

𝑖𝑛
+ C𝑛

󸀠

𝑛
𝛿𝜔
𝑛

𝑖𝑛
− C𝑛

󸀠

𝑏
𝛿𝜔
𝑏

𝑖𝑏
]

+ C−1
𝜓
C𝑛
󸀠

𝑏
w𝑏
𝑔
,

(9)

𝛿k̇𝑛 = (I − C𝑛
𝑛󸀠
)C𝑛
󸀠

𝑏
̃f𝑏
𝑖𝑏
− (2𝜔̃

𝑛

𝑖𝑒
+ 𝜔̃
𝑛

𝑒𝑛
) × 𝛿k𝑛

− (2𝛿𝜔
𝑛

𝑖𝑒
+ 𝛿𝜔
𝑛

𝑒𝑛
) × k̃𝑛 + (2𝛿𝜔𝑛

𝑖𝑒
+ 𝛿𝜔
𝑛

𝑒𝑛
)

× 𝛿k𝑛 + 𝛿g𝑛 + C𝑛
𝑛󸀠
C𝑛
󸀠

𝑏
𝛿f𝑏
𝑖𝑏
+ C𝑛
𝑛󸀠
C𝑛
󸀠

𝑏
w𝑏
𝑎
,

(10)

𝛿
̇
𝐿 =

Ṽ𝑁
̃
𝑅𝑁 +

̃
ℎ

−

Ṽ𝑁 − 𝛿V𝑁
̃
𝑅𝑁 − 𝛿𝑅𝑁 +

̃
ℎ − 𝛿ℎ

,

𝛿
̇
𝜆 =

Ṽ𝐸sec ̃𝐿
(
̃
𝑅𝐸 +

̃
ℎ)

−

(Ṽ𝐸 − 𝛿V𝐸) sec (̃𝐿 − 𝛿𝐿)

(
̃
𝑅𝐸 − 𝛿𝑅𝐸) + (

̃
ℎ − 𝛿ℎ)

,

𝛿
̇
ℎ = −𝛿V𝐷,

(11)

where 𝜔̃𝑛
𝑖𝑛
is the computed angular rotation velocity of the

navigation coordinate system with respect to the inertial
frame; 𝜔̃𝑛

𝑖𝑒
is the computed earth rotation velocity; 𝜔̃𝑛

𝑒𝑛
is the

computed rotation vector from the 𝑒-frame to the 𝑛-frame;
their errors are 𝛿𝜔𝑛

𝑖𝑛
, 𝛿𝜔𝑛
𝑖𝑒
, and 𝛿𝜔

𝑛

𝑒𝑛
; ̃f𝑏
𝑖𝑏
is the specific force

that the accelerators measure; k̃𝑛, ̃𝐿, ̃𝜆, and ̃ℎ and 𝛿𝐿, 𝛿𝜆, 𝛿ℎ,
and 𝛿k𝑛 are the computed velocity, latitude, longitude, and
height and their errors, respectively; ̃𝑅𝑁, ̃𝑅𝐸 and 𝛿𝑅𝑁, 𝛿𝑅𝐸
are the radius of the meridian and the prime vertical circle
and their errors, respectively [18].

And the SINS error model is written as

ẋ = f (x, 𝑡) + g (x, 𝑡)w. (12)

Now we cannot predict the SINS errors by transform
matrix. As we presented in the next part, the UT method is
used to predict the system state.

3. SINS/GPS Integration Algorithm

3.1. Kalman Filter. Developed in 1960s by Kalman, KF has
been proved to be a powerful optimal estimation theory for
linear systems. In SINS/GPS integration, KF is triggered in
everyGPSupdate epoch using themeasurement information,
that is, the difference of the velocity and position between
SINS and GPS. Then the errors of SINS could be estimated
and corrected. When GPS works well, no SINS error is
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accumulated and the navigation errors are bounded. Thus
the linear SINS error model is accurate enough since the
nonlinear parts could be ignored.

The linear SINS error transition matrix is discretized as
follows [19]:

Φ𝑘|𝑘−1 ≈ I + F𝑘−1Δ𝑇 +

1

2

F2
𝑘−1

Δ𝑇

2
,

Q𝑘−1

≈ G𝑘−1qG
𝑇

𝑘−1
Δ𝑇

+

1

2

(F𝑘−1G𝑘−1qG
𝑇

𝑘−1
+ G𝑘−1qG

𝑇

𝑘−1
F𝑇
𝑘−1

) Δ𝑇

2
,

(13)

where F(𝑡) is the coefficient matrix of the state equation; Δ𝑇
is the filter cycle; q is the covariance matrix of SINS sensors;
and G(𝑡) is the coefficient matrix of the state noise.

For a loosely coupled SINS/GNSS system, the measure-
ment equation is [20]

z = Hx + k, (14)

where z is the difference of the velocity and position between
SINS and GPS; H = [I6×6 06×9]; k is the noise standard
deviation vector.

KF algorithm is committed by using such formulas [21]:
x̂𝑘|𝑘−1 = Φ𝑘|𝑘−1x̂𝑘−1, (15)

P𝑘|𝑘−1 = Φ𝑘|𝑘−1P𝑘−1Φ
𝑇

𝑘|𝑘−1
+Q𝑘−1, (16)

K𝑘 = P𝑘|𝑘−1H
𝑇

𝑘
(H𝑘P𝑘|𝑘−1H

𝑇

𝑘
+ R𝑘)

−1

, (17)

x̂𝑘 = x̂𝑘|𝑘−1 + K𝑘 (z𝑘 −H𝑘x̂𝑘|𝑘−1) , (18)

P𝑘 = (I − K𝑘H𝑘)P𝑘|𝑘−1. (19)

In SINS/GPS integration, a close-loop configuration is
used. In every KF epoch when the SINS errors are corrected,
the state x̂𝑘 is set to be zero.

3.2. Unscented Kalman Filter. As we mentioned above, KF
is only available when the state equation is linear because it
is not feasible to predict the state by transition matrix for a
nonlinear system. If we neglect the higher order terms, KF
will introduce errors which cannot be ignored for a strongly
nonlinear system [22]. To predict the state of a nonlinear
system, UT is used in UKF by generating a series of sample
points to simulate the transfer of the state, which could
achieve an accuracy of three orders.

In UT, the state is predicted in three steps [23]. First,
sigma points should be constructed:

𝜒
(0)

𝑘−1
= x̂𝑘−1

𝜒
(𝑖)

𝑘−1
= x̂𝑘−1 + (√(𝑛 + 𝜆)P𝑘−1)

𝑐(𝑖)

, 𝑖 = 1, 2, . . . , 𝑛

𝜒
(𝑖)

𝑘−1
= x̂𝑘−1 − (√(𝑛 + 𝜆)P𝑘−1)

𝑐(𝑖−𝑛)

,

𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛,

(20)

where 𝑛 is the dimension of the state vector x; 𝜆 = 𝛼

2
(𝑛 +

𝜅) − 𝑛, which decides the weights of the distribution of the
sigma points and, generally, 𝜅 = 3 − 𝑛 while 10−4 ≤ 𝛼 ≤

1. And (√(𝑛 + 𝜆)P𝑘−1)𝑐(𝑖) is the 𝑖 column of the Cholesky
decomposition of the matrix (𝑛 + 𝜆)P𝑘−1.

Second, the states are predicted with every sigma point.
This step is executed by solving the error state differential
equations with four-order Runge-Kutta method:

𝜉
(𝑖)

𝑘|𝑘−1
= 𝑓 (𝜒

(𝑖)

𝑘−1
) 𝑖 = 1, 2 . . . , 2𝑛. (21)

Finally, the states are weighted and summarized so we
obtain the predicted state x̂𝑘|𝑘−1 and the error covariance
matrix P𝑘|𝑘−1:

x̂𝑘|𝑘−1 =
2𝑛

∑

𝑖=0

𝑊

(𝑚)

𝑖
𝜉
(𝑖)

𝑘|𝑘−1
,

P𝑘|𝑘−1 =
2𝑛

∑

𝑖=0

𝑊

(𝑐)

𝑖
[(𝜉
(𝑖)

𝑘|𝑘−1
− x̂𝑘|𝑘−1) (𝜉

(𝑖)

𝑘|𝑘−1
− x̂𝑘|𝑘−1)

𝑇

]

+Q𝑘−1,

(22)

where Q𝑘−1 is the covariance matrix of the state noise;𝑊(𝑚)
𝑖

and𝑊(𝑐)
𝑖

are the weights of the sigma points, which could be
calculated as

𝑊

(𝑚)

0
=

𝜆

𝑛 + 𝜆

,

𝑊

(𝑐)

0
=

𝜆

𝑛 + 𝜆

+ 1 − 𝛼

2
+ 𝛽,

𝑊

(𝑚)

𝑖
= 𝑊

(𝑐)

𝑖
=

𝜆

2 (𝑛 + 𝜆)

, 𝑖 = 1, 2 . . . , 2𝑛,

(23)

where 𝛼 and 𝜆 have been given in the first step and 𝛽 is
assigned according to the distribution character of the state
error. In this case, 𝛽 = 2.

In loosely coupled SIN/GPS, the measurement equation
is linear as we saw in (14). So after we predict the state x̂𝑘|𝑘−1
and the error covariance matrix P𝑘|𝑘−1, we could estimate the
SINS errors with formulas (17) to (19).

3.3. Hybrid KF-UKF Algorithm. In this part we discussed the
architecture of the hybrid KF-UKF algorithm. As shown in
Figure 1, SINS information is updated together with GPS.
WhenGPS information is received, its availability is judged so
that whichmethod is to going be executed can be determined.

If GPS information is available, SINS and GPS can be
integrated by normal KF method, as shown in Figure 2. First,
linear SINS error equation (6) is discretized by formula (13)
with SINS information at time 𝑡 = 𝑘 − 1. Then one-step state
prediction and error covariance prediction are calculated
with formulas (15) and (16) and the filter gain is calculated
with formula (17). Afterwards, the state vector, which is the
SINS error, and error covariance at time 𝑡 = 𝑘 are estimated
with GPS information at 𝑡 = 𝑘. Finally, the SINS error
estimated at 𝑡 = 𝑘 is feedback to SINS, correcting the SINS
error, and the same procedure is committed in the next cycle.
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Velocity, position Attitude, velocity, position, 
angular rate, and acceleration

GPS information SINS information
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One-step state prediction
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Estimate SINS
errors x̂k by KF

Predict state x̂k|k−1 and
covariance Pk|k−1 by UT

k = k + 1

−

Figure 1: The architecture of the hybrid KF-UKF algorithm.

SINS update

One-step prediction:

SINS
information

Correct
SINS

Filter update

CalculateΦk|k−1, Qk−1

with F(t), G(t)

x̂k|k−1,Pk|k−1

Calculate filter gain: Kk

State estimate: x̂k
Error covariance: Pk rGPS k

t = k − 1

t = k
vGPS k,

Figure 2: Filter updates procedure when GPS is functioning well.

Table 1: Main specifications of experiment instruments in the
simulation test.

Equipment Parameters

GPS receiver
Velocity accuracy 0.1m/s (1𝜎)

Position accuracy 5m (horizontal)
10m (vertical)

Output frequency 10Hz

MEMS-IMU

Gyroscope
Bias 50∘/h (1𝜎)
White noise 35∘/h/√Hz

Accelerometer
Bias 2mg (1𝜎)
White noise 0.3mg/√Hz
Output frequency 200Hz

During GPS signal blockage, the GPS information is
unavailable and one-step state prediction is executed without
measurement update.Now the nonlinear SINS error equation
and UT are applied to predict the state and error covariance.
As shown in Figure 3, let us assume that theGPS signal breaks
off at 𝑡 = 𝑘 and recovers at 𝑡 = 𝑘 + 𝑛. In order to estimate
SINS error at 𝑡 = 𝑘 + 𝑛, it is necessary to predict the state
x̂𝑘+𝑛|𝑘−1 and error covariance P𝑘+𝑛|𝑘−1. Suppose that 𝑘 + 𝑠 is a
time instant in GPS outage, and x̂𝑘+𝑠|𝑘−1,P𝑘+𝑠|𝑘−1 are iterated

Table 2: Aircraft maneuvers in the test.

Stage Period Aircraft maneuver Parameters
1 0∼30 s Stationary v = 0m/s
2 30∼60 s Acceleration v = 0m/s to v = 100m/s
3 60∼75 s Pitching 𝜃 = 0∘ to 𝜃 = 30∘

4 75∼95 s Straight flight v = 100m/s
5 95∼120 s Pitching 𝜃 = 30∘ to 𝜃 = 0∘

6 120∼140 s Straight flight v = 100m/s
7 140∼165 s Coordinate turn 𝜓 = 0∘ to 𝜓 = 40∘

8 165∼190 s Straight flight v = 100m/s
9 190∼215 s Coordinate turn 𝜓 = 40∘ to 𝜓 = 0∘

10 215∼300 s Straight flight v = 100m/s

by using x̂𝑘+𝑠−1|𝑘−1,P𝑘+𝑠−1|𝑘−1 and SINS information at time
𝑡 = 𝑘 + 𝑠 − 1, 𝑡 = 𝑘 + 𝑠 − 0.5, and 𝑡 = 𝑘 + 𝑠 with formulas (24)
to (27). This calculation is executed cycle by cycle until GPS
signal recovers at 𝑡 = 𝑘 + 𝑛. When GPS receiver offered the
velocity andposition information of the vehicle at 𝑡 = 𝑘+𝑛, we
already have the state x̂𝑘+𝑛|𝑘−1 and error covariance P𝑘+𝑛|𝑘−1.
Then we can estimate SINS error at 𝑡 = 𝑘 + 𝑛 with formulas
(18) and (19), correct it, and go into the next filter cycle

𝜒
(0)

𝑘+𝑠−1|𝑘−1
= x̂𝑘+𝑠−1|𝑘−1,

𝜒
(𝑖)

𝑘+𝑠−1|𝑘−1
= x̂𝑘+𝑠−1|𝑘−1 + (√(𝑛 + 𝜆)P𝑘+𝑠−1|𝑘−1)

𝑐(𝑖)
,

𝑖 = 1, 2, . . . , 𝑛,

𝜒
(𝑖)

𝑘+𝑠−1|𝑘−1
= x̂𝑘+𝑠−1|𝑘−1 − (√(𝑛 + 𝜆)P𝑘+𝑠−1|𝑘−1)

𝑐(𝑖−𝑛)
,

𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛,

(24)

𝜉𝑘+𝑠|𝑘−1 = 𝑓 (𝜒
𝑘+𝑠−1|𝑘−1

) , 𝑖 = 1, 2 . . . , 2𝑛, (25)

x̂𝑘+𝑠|𝑘−1 =
2𝑛

∑

𝑖=0

𝑊

(𝑚)

𝑖
𝜉
(𝑖)

𝑘+𝑠|𝑘−1
, (26)

P𝑘+𝑠|𝑘−1 =
2𝑛

∑

𝑖=0

𝑊

(𝑐)

𝑖
[(𝜉
(𝑖)

𝑘+𝑠|𝑘−1
− x̂𝑘+𝑠|𝑘−1)

⋅ (𝜉
(𝑖)

𝑘+𝑠|𝑘−1
− x̂𝑘+𝑠|𝑘−1)

𝑇

] +Q𝑘−1.

(27)

4. Simulation Test

4.1. Simulation Description and Parameters. For the sake of
testing the hybrid KF-UKF algorithm, we design a simulation
comparing this algorithm with normal EKF algorithm. The
schematic diagram of the simulation is shown in Figure 4. By
using a path generator, we calculate the acceleration, angular
rate, velocity, position, and attitude information of an aircraft.
Stochastic errors were added to the acceleration and angular
rate data to simulate the IMU sensor error. And the same
process is done to the velocity and position information to
simulate the GPS error. Besides, GPS outage flag is added to
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vGPS k+n ,
Error covariance: Pk+n

Figure 3: Filter updates procedure during GPS outage.

Table 3: Comparison of navigation error between EKF and hybrid KF-UKF after GPS outage.

Outages length Adopted approach RMS attitude error (∘) RMS velocity error (m/s) RMS position error (m)
Roll Pitch Yaw North East Down Latitude Longitude Height

50 s EKF 0.0451 0.0566 0.2605 0.0256 0.0233 0.0331 1.1990 0.8245 3.3450
Hybrid KF-UKF 0.0438 0.0549 0.2499 0.0255 0.0233 0.0331 1.1984 0.8199 3.2310

100 s EKF 0.0553 0.1050 0.2630 0.0286 0.0273 0.0367 1.1832 3.7463 3.0911
Hybrid KF-UKF 0.0508 0.0767 0.1706 0.0240 0.0259 0.0339 1.1701 3.7434 3.9175

150 s EKF 0.0616 0.0590 0.1282 0.0363 0.0341 0.0479 1.3913 2.2053 3.1303
Hybrid KF-UKF 0.0489 0.0367 0.1140 0.0219 0.0237 0.0333 1.3876 2.1949 3.9078

200 s EKF 0.0969 0.0560 1.7882 0.0431 0.0544 0.0619 1.5559 3.9014 3.6364
Hybrid KF-UKF 0.0586 0.0403 1.7131 0.0231 0.0318 0.0360 1.5552 3.8998 3.5416

Path generator

Integration algorithm

IMU stochastic 
error 

GPS stochastic error
GPS outage flag 

Results 
comparison

a, 𝜔 v, r 𝜓

aIMU, 𝜔IMU vGPS , rGPS

vnav, rnav,𝜓nav

𝛿v

𝛿r

𝛿𝜓

Figure 4: Schematic diagram of the simulation.

GPS data so the integration algorithm is able to judgewhether
GPS signal is lost. Finally, velocity, position, and attitude data

calculated by hybrid KF-UKF and normal EKF algorithm are
compared. The simulation parameters are shown in Table 1.

4.2. Simulation Results and Analysis. In the simulation test,
the aircraft has done a series of maneuvers which are listed in
Table 2 and its acceleration, angular rate, velocity, position,
and attitude information was recorded. We calculate the
navigation parameters of the aircraft by integrating SINS and
GPS using the normal EKF and hybrid KF-UKF, respectively.
Then the results were compared as is shown in Figure 5 and
Table 3.

Figure 5 is the comparison of attitude error curves of EKF
and hybrid KF-UKF, which are taken, for example. As we
observe, the GPS signal was lost at 𝑡 = 70 s and recovered
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Figure 5: Comparison of attitude error between EKF and hybrid KF-UKF.
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Figure 6: Comparison of velocity error between EKF and hybrid KF-UKF.

at 𝑡 = 270 s. During the 200 seconds GPS outage, the roll
and pitch angle error grew with time because the accuracy of
MEMS inertial sensors is very low and no GPS measurement
information could be used for the filter to correct the SINS
error. When the navigation system received GPS signal again
at 𝑡 = 270 s, the filter started to correct SINS error again.
In the figure we can notice that, after GPS information was
recovered, the attitude error reduced quickly. However, the
attitude calculated by using hybrid KF-UKF is more accurate
than that calculated by EKF, which is shown in the circle in
the figure. This phenomenon appears for the reason that, as
we described before, the MEMS-IMU sensor caused large
nonlinear error during GPS outage. Based on the nonlinear
SINS error model, UT is able to predict SINS errors better
than EKF; thus the filter can correct the SINS errors quickly
and accurately. And the similar phenomenon also occurs to
the velocity, which is shown in Figure 6.

Table 3 is the comparison of navigation error between
EKF and hybrid KF-UKF after GPS outage. For attitude error,
we can notice that the error of yaw is larger than that of roll
and pitch owing to the poor observability of yawing angle in
velocity/position integrationmode; thus the filter is unable to
estimate its error correctly. By comparing the RMS attitude
error and velocity error after GPS outage, it is shown that the
navigation error is lower if the hybrid KF-UKF algorithm is
applied. Also it is shown in Table 3 that, with the GPS outage
period increases, the hybrid KF-UKF algorithm was better
and better compared to the EKF algorithm. That is because
the error of an inertial navigation system accumulates with
the increase. The longer the GPS outage is, the larger the

nonlinear error the MEMS-IMU causes. And the hybrid
KF-UKF algorithm will show more superiority to normal
EKF algorithm. We can also notice that the latitude and
longitude accuracy has little improvement on the contrary to
attitude and velocity. And this can be explained by examining
the SINS error equations (9) to (11). In formulas (9) and
(10), the attitude error and velocity error are affected by the
nonlinear terms C𝑛

󸀠

𝑛
and C−1

𝜓
whose values grew fast during

GPS outage. However, when we refer to formula (11), we
can see that the numerical value of 𝛿𝐿, 𝛿𝑅𝐸, and 𝛿𝑅𝑁 is
very small and little nonlinear error is caused during GPS
outage because the aircraft did notmove quite far away during
the simulation so the EKF is still able to correct its error
accurately when GPS signal recovers.

In Table 4, we list the calculation amounts of EKF and
UKF so that we can estimate the computational cost of the
proposed combined algorithm. The calculation amounts of
the algorithm are evaluated using the floating-point opera-
tions (flops), which is defined as the operation of adding,
decreasing, multiplying, or dividing between two floating
numbers. For example, if we add one (𝑛 × 𝑚) dimension
matrix to another (𝑛 × 𝑚) dimension matrix, then 𝑛𝑚 flops
have been generated in the computer. In Table 4, we suppose
the dimension of the state vector is 𝑛 and the measurement
vector dimension is 𝑙. During the prediction updating period,
4𝑛

3
+𝑛

2
−𝑛 flops are generated in EKFwhile 6(2/3)𝑛3+12𝑛2+

3𝑛 flops are generated in UKF. In SINS/GNSS integration,
𝑛 = 15 and 𝑙 = 6. So there will be 13710 flops in EKF and
25245 flops in UKF during the prediction updating period.
What is more, in Unscented Transform the state prediction
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Table 4: Comparison of computational cost of EKF and UKF.

EKF UKF (for linear measurement equation)
Step Flops Step Flops

Prediction update

Generate sigma
points
𝜒
𝑘−1

2/3𝑛

3
+ 3𝑛

2
+ 𝑛

State prediction
x̂𝑘|𝑘−1

2𝑛

2
− 𝑛

State prediction
x̂𝑘|𝑘−1

4𝑛

2
+ 𝑛

Error covariance
prediction P𝑘|𝑘−1

4𝑛

3
− 𝑛

2

Error covariance
prediction

P𝑘|𝑘−1
6𝑛

3
+ 5𝑛

2
+ 𝑛

Subtotal 4𝑛

3
+ 𝑛

2
− 𝑛 Subtotal 6(2/3)𝑛

3
+ 12𝑛

2
+ 3𝑛

Measurement update

Filter gain
K𝑘

4𝑛

2
𝑙 + 4𝑛𝑙

2
+ 𝑙

3
− 3𝑛𝑙

Filter gain
K𝑘

4𝑛

2
𝑙 + 4𝑛𝑙

2
+ 𝑙

3
− 3𝑛𝑙

State update
x̂𝑘

4𝑛𝑙

State update
x̂𝑘

4𝑛𝑙

Error covariance update
P
𝑘

2𝑛

3
+ 2𝑛

2
𝑙 − 𝑛

2

Error covariance
update
P𝑘

2𝑛

3
+ 2𝑛

2
𝑙 − 𝑛

2

Subtotal 2𝑛

3
+6𝑛

2
𝑙+4𝑛𝑙

2
+𝑙

3
+𝑛𝑙−𝑛

2 Subtotal 2𝑛

3
+ 6𝑛

2
𝑙 + 4𝑛𝑙

2
+ 𝑙

3
+ 𝑛𝑙 − 𝑛

2

In total 6𝑛

3
+ 6𝑛

2
𝑙 + 4𝑛𝑙

2
+ 𝑙

3
+𝑛𝑙 − 𝑛 In total 8(2/3)𝑛

3
+ 6𝑛

2
𝑙 + 4𝑛𝑙

2
+ 𝑙

3
+ 11𝑛

2
+

𝑛𝑙 + 3𝑛

𝑛 = 15, 𝑙 = 6 30801 𝑛 = 15, l = 6 42336

is performed by solving the error state differential equations
with Runge-Kutta method (2𝑛 + 1) times since each sigma
point has to be predicted.That is to say, more than 25245 flops
are generated in one filter recycle during GPS outages when
we predict the SINS error using Unscented Transform. So in
fact the computational cost of UKF is much larger than that
in EKF in the prediction updating part; thus the hybrid UKF-
EKF is recommended to reduce the computational burden for
the computer. In hybridUKF-EKF, theUnscented Transform,
which is necessary to predict the nonlinear SINS error, only
performs during GPS outages. Last but not least, the amount
of flops in EKF during the measurement updating period is
2𝑛

3
+6𝑛

2
𝑙+4𝑛𝑙

2
+𝑙

3
+𝑛𝑙−𝑛

2, in this case, 17091, as well as that
in UKF.This is for the reason that, in SINS/GNSS integration,
the measurement equation is linear and no sigma point is
needed in the measurement updating part. When GPS signal
is functioning well, there will be 30801 flops in each filter
cycle.

5. Conclusion

This paper presents a hybrid KF-UKF algorithm for real-
timeMEMS-SINS/GPS integration.The linear and nonlinear
SINS models are discussed. The flowchart of the hybrid KF-
UKF algorithm is described. The SINS error is estimated and
corrected with linear SINS model when GPS is functioning
well while it is predicted with nonlinear SINS model by
applying Unscented Transform during GPS outage. The
simulation results indicate that, compared to normal EKF
algorithm, the hybrid KF-UKF algorithm is able to predict
the SINS error more accurately if GPS suffers from long-
time GPS outage and the navigation error is lower after GPS

signal was regained.The results also show that the hybrid KF-
UKF algorithm is more efficient for attitude error prediction
but the effect on position error is not evident. Compared
with normal UKF, the hybrid KF-UKF algorithm has low
calculation amount. In this paper, the remaining problem
which we have not solved is that SINS errors still grow fast
during GPS outage. So, in our future work, we may combine
the UKF with ANN or SVM to create a new algorithm to
reduce the SINS errors during GPS outage.
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