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In recent years, X-ray computed tomography (CT) is becoming widely used to reveal patient’s anatomical information. However,
the side effect of radiation, relating to genetic or cancerous diseases, has caused great public concern. The problem is how to
minimize radiation dose significantly while maintaining image quality. As a practical application of compressed sensing theory,
one category of methods takes total variation (TV) minimization as the sparse constraint, which makes it possible and effective to
get a reconstruction image of high quality in the undersampling situation. On the other hand, a preliminary attempt of low-dose
CT reconstruction based on dictionary learning seems to be another effective choice. But some critical parameters, such as the
regularization parameter, cannot be determined by detecting datasets. In this paper, we propose a reweighted objective function
that contributes to a numerical calculation model of the regularization parameter. A number of experiments demonstrate that this
strategy performs well with better reconstruction images and saving of a large amount of time.

1. Introduction

Nowadays, X-ray computed tomography (CT) is still an
important part of biomedical imaging technologies for the
reason that the reconstructed image is of high spatial reso-
lution and quality. Nevertheless, it confirms that an overdose
of radiation possibly increases the risk of genetic or cancerous
diseases, making it urgent to develop creative and effective
reconstruction techniques to fit low-dose CT scanning pro-
tocol. Obviously, the X-ray flux cannot be reduced much
since the signal-to-noise ratio (SNR) of measured data
declines with the reduction of dose. Another approach is to
decrease the number of projection angles, which will lead
to incomplete few-view data. In this case, analytic-based
algorithms like FDK [1], which are derived from a continuous
imagingmodel and in need of dense sampled projections, are

sensitive to insufficient projection data and arrive at a terrible
result. However, algebraic algorithms like the simultaneous
algebraic reconstruction technique (SART) [2] solved the
problem better by transforming it to a series of linear
equations.

Recently, Candes et al. [3, 4] havemade compressed sens-
ing theory popular in information theory field. This theory
indicates that a variety of signals can be represented sparsely
in a certain transform domain. Therefore, original signal can
be recovered accurately by far fewer samples while there is
no need to follow the Shannon/Nyquist sampling theorem.
A principle called restricted isometry property (RIP) guaran-
tees the perfect recovery of any sparse signal [5]. This novel
theory has been applied to many regions, like information
technology [6], signal and image processing [7], inverse
filtering [8], and so on. It is said that the data acquisition
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process with compression is good for enhancing image
quality because this method can increase imaging speed and
suppress the artifacts caused by patients’ movement [9]. For
these benefits, many compressed sensing based algorithms
are created to deal with few-viewCT reconstruction problem.
One major group is based on the total variation (TV), which
takes the TV of the image as the sparse constraint. The
image is determined by minimizing the TV term with the
constraints of the linear projection equations. Sidky and Pan
presented an improved TV-based algorithm named adaptive
steepest descent projection onto convex sets (ASD-POCS) in
circular cone-beam framework [10]. Another similar method
called gradient projection Barzilari Borwein (GPBB) has a
faster convergence speed [11]. Besides the TV minimization
algorithms, dictionary learning is also helpful to sparse
representation. During the reconstruction process, the image
is divided intomany overlapped patches, represented sparsely
by overcomplete elements of a particular dictionary. Xu et
al. combined statistical iterative reconstruction (SIR) with
dictionary learning and got a better reconstruction result
than TV-based methods in the low-dose CT condition [12].
According to Xu’s paper, this method is robust to noise
and obtains a better reconstructed image with more details
than the TV-based methods do. Naturally, there are some
parameters relevant to the final result. Some of them, like
the sparse level, the scale of the dictionary, and so on, have
less change due to different scanning data and then can be
empirically selected. However, there is a special parameter
changing according to the phantom, the scanning protocol,
the noise level, and other factors. This parameter plays an
important role in the reconstruction program to balance
the data fidelity term and the regularization term while
determining its value is time consuming with many attempts.
Hence, there is no doubt that providing a model to select a
proper value of this parameter according to the scanning data
is essential for the algorithm based on dictionary learning,
which leads to better result and time saving.

This paper is organized as follows. In Section 2, the
problem of low-dose CT reconstruction is stated and the
algorithm based on dictionary learning is reviewed. In Sec-
tion 3, the model of regularization parameter determination
is proposed by function fitting method. In Section 4, a series
of experiments are performed and corresponding discussions
are given. Finally, there is the conclusion at the end of this
paper.

2. Notation and Problem Description

2.1. Background and Notation Interpretation. According to
previous work by Xu et al. [12], SIR is united with dictionary
learning to derive the algorithm. SIR assumes that the
measured data can be regarded as the Poisson distribution

𝑦
𝑖
∼ Poisson {𝑏

𝑖
𝑒
−𝑙𝑖 + 𝑟
𝑖
} , 𝑖 = 1, . . . , 𝐼, (1)

where b = (𝑏1, 𝑏2, . . . , 𝑏𝐼)𝑇 ∈ R𝐼×1 is the entrance X-ray inten-
sity, y = (𝑦1, 𝑦2, . . . , 𝑦𝐼)

𝑇
∈ R𝐼×1 is the exit X-ray inten-

sity, l = (𝑙1, 𝑙2, . . . , 𝑙𝐼)
𝑇
∈ R𝐼×1 is the integral of the lin-

ear attenuation coefficient with 𝑙
𝑖
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2
is the system matrix, the reconstructed

image 𝜇 = (𝜇1, 𝜇2, . . . , 𝜇𝑁2)
𝑇 is a linear attenuation coefficient

distribution, which transforms the initial image of𝑁×𝑁 pix-
els to a vector 𝜇 ∈ R𝑁

2
×1, and 𝑟

𝑖
represents the read-out noise.

The objective function of SIR is as
𝐼
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where 𝜑(𝜇) = ∑𝐼
𝑖=1(𝜔𝑖/2)([A𝜇]𝑖 − 𝑙̂𝑖)

2 is the data fidelity term,
l̂ = (̂𝑙1, 𝑙̂2, . . . , 𝑙̂𝐼)𝑇 ∈ R𝐼×1 is the measured data of l calculated
by 𝑙̂
𝑖
= ln(𝑏

𝑖
/(𝑦
𝑖
−𝑟
𝑖
)),𝜔
𝑖
= (𝑦
𝑖
−𝑟
𝑖
)
2
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is the statistical weight,

and 𝑅(𝜇) is the regularization term.
The regularization term usually contains prior informa-

tion of the image, like sparse constraint. When the sparse
representation is acquired by dictionary learning theory, we
can replace 𝑅(𝜇) = ∑

𝑠
‖E
𝑠
𝜇 − D𝛼

𝑠
‖
2
2 + ∑𝑠 ]𝑠‖𝛼𝑠‖0 in the

objective function. Therefore, the reconstruction problem is
equivalent to the following minimization:

min
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where E
𝑠
= {𝑒
𝑠

𝑛𝑗
} ∈ R𝑁

2
𝑜
×𝑁

2
is an operator to extract patches

with 𝑁0 × 𝑁0 pixels from the image, D = (d1, d2, . . . , d𝐾) ∈
R𝑁

2
0×𝐾 is the training dictionary whose column d

𝑘
∈ R𝑁

2
0×1

is called an atom of the same size of a patch, 𝛼
𝑠
∈ R𝐾×1

has few nonzero entries as a sparse representation of patches
by the dictionary basis D, and the variables 𝜆 and ]

𝑠
are

regularization parameters. In this optimization problem,𝜇,𝛼,
andD are all unknown; hence, a practical plan of minimizing
the object function is an alternating minimization scheme.
The plan divides the primary problem into two recursive
steps: update of the dictionary model and update of the
image. The final result is acquired by operating the two steps
alternately until reaching a stopping criterion.

2.2. Update of the Dictionary Model. During this procedure,
the image 𝜇 is supposed to be fixed, meaning that the data
fidelity term is a constant. The optimization problem is
simplified to the one as

min
(D),𝛼

∑

𝑠

󵄩󵄩󵄩󵄩󵄩
E
𝑠
𝜇
𝑡
−D𝛼
𝑠
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2
2 +∑
𝑥

]
𝑠

󵄩󵄩󵄩󵄩𝛼𝑠
󵄩󵄩󵄩󵄩0 , (4)

where 𝜇𝑡 is an intermediate image of the last updating step. In
the adaptive dictionary based statistical iterative reconstruc-
tion (ADSIR), the dictionary is defined dynamically based
on the unknown image while the dictionary in the global
dictionary based statistical iterative reconstruction (GDSIR)
is predefined beforehand [12]. Previous researches have
proved that the K-SVD algorithm performs well at training
the dictionary [13]. Once the dictionary is determined, the
OMP algorithm is used to update the sparse coding [14] with
a predetermined sparse level, instead of solving the 𝑙

0
-norm

problem as (4) directly.
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2.3. Update of the Image. While updating the image, the
dictionary and sparse coding remain invariable. In other
words, the problem transforms to the form as

min
𝜇

𝐼
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where 𝜆 is the regularization parameter balancing the data
fidelity term ∑

𝐼
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term ∑
𝑠
‖E
𝑠
𝜇 − D𝛼

𝑠
‖
2
2. The regularization term is already a

separable quadratic function. By replacing the data fidelity
termwith a separable paraboloid surrogate [15], the optimiza-
tion can be iteratively solved by
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2
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]

]+

𝑗 = 1, 2, . . . , 𝑁2
. (6)

3. Materials and Methods

3.1. Effect of the Regularization Parameter. As mentioned
above, the regularization parameter 𝜆 is of great importance
during the update of image (5). We consider the optimizing
problem of the form

𝜇 (𝜆) = argmin
𝜇
𝜑 (𝜇) + 𝜆𝑅 (𝜇) ,

𝜑 (𝜇) =

𝐼

∑

𝑖=1

𝜔
𝑖

2
([A𝜇]

𝑖
− 𝑙
𝑖
)
2
,

𝑅 (𝜇) = ∑

𝑠

󵄩󵄩󵄩󵄩E𝑠𝜇−D𝛼𝑠
󵄩󵄩󵄩󵄩
2
2 .

(7)

If there is 𝜇(𝜆1) = min𝜇𝜑(𝜇) + 𝜆1𝑅(𝜇), 𝜇(𝜆2) = min𝜇𝜑(𝜇) +
𝜆2𝑅(𝜇), 0 < 𝜆1 < 𝜆2, then we can get 𝜑(𝜇(𝜆1)) ≤ 𝜑(𝜇(𝜆2))
and𝑅(𝜇(𝜆1)) ≥ 𝑅(𝜇(𝜆2)) by an easy derivation of the unequal
relations:

𝜑 (𝜇 (𝜆1)) + 𝜆1𝑅 (𝜇 (𝜆1))

≤ 𝜑 (𝜇 (𝜆2)) + 𝜆1𝑅 (𝜇 (𝜆2)) ,

𝜑 (𝜇 (𝜆2)) + 𝜆2𝑅 (𝜇 (𝜆2))

≤ 𝜑 (𝜇 (𝜆1)) + 𝜆2𝑅 (𝜇 (𝜆1)) .

(8)

It shows that a smaller 𝜆makes the data fidelity term smaller
and the regularization term bigger, which means that the
sparse constraint has less effect on the optimizing process
and more noise will appear in the final image. On the other
hand, a bigger 𝜆 weakens the effect of the data fidelity
term, generating a loss of some fine details in the image.
For example, 𝜆 should be increased to suppress the noise
increment in the projection domain since the data fidelity
term is proportional to the noise standard deviation. In order
to get an optimal result, previous work selects a great many
values of 𝜆 and picks out the best one by comparing the
final images.This testing strategy is of great time consuming,
making the algorithm based on dictionary learning not
friendly to the reconstruction task.

3.2. Morozov’s Principle and the Balancing Principle. The
research on the choices of regularization parameters in linear

inverse problems appears early in 1998 [16]. The original
optimizing function of the inverse problem is like

𝐽 (𝑓, 𝛽) =
1
2
󵄩󵄩󵄩󵄩𝑇𝑓− 𝑧

󵄩󵄩󵄩󵄩
2
𝑌
+𝛽

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2
𝑋
. (9)

Take 𝑌 = 2, 𝑋 = 2 as an example. If the noise level of 𝑧
is known, one efficient tool for selecting the proper regular-
ization parameter 𝛽 is the well-known Morozov discrepancy
principle [16]. To adaptively determine the regularization
parameter, a model function is brought in [17]:

𝑚(𝛽) = 𝑏 +
𝑠

𝑡 + 𝛽
. (10)

To find a solution of 𝛽, (9) is rewritten as

𝐹 (𝛽) =
1
2
󵄩󵄩󵄩󵄩󵄩
𝑇𝑓
𝛽
− 𝑧
󵄩󵄩󵄩󵄩󵄩

2
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𝑓
𝛽

󵄩󵄩󵄩󵄩󵄩

2
2 = 𝜑 (𝛽) + 𝛽𝐹

󸀠
(𝛽)

with 𝜑 (𝛽) = 1
2
󵄩󵄩󵄩󵄩󵄩
𝑇𝑓
𝛽
− 𝑧
󵄩󵄩󵄩󵄩󵄩

2
2 , 𝐹
󸀠
(𝛽) =

󵄩󵄩󵄩󵄩󵄩
𝑓
𝛽

󵄩󵄩󵄩󵄩󵄩

2
2 .

(11)

When 𝛽 → ∞, it obviously shows that the solution of the
minimization problem is 𝑓

𝛽
= 0, and then 𝑏 = (1/2)‖𝑧‖22

is obtained easily. The other two variables 𝑠 and 𝑡 can be
determined by the equations 𝑚(𝛽𝑘) = 𝐹(𝛽

𝑘
), 𝑚󸀠(𝛽𝑘) =

𝐹
󸀠
(𝛽
𝑘
). To solve the parameter 𝛽 iteratively, the balancing

principle [18] is introduced as

(𝜎 − 1) 𝜑 (𝛽∗) = 𝛽∗𝐹󸀠 (𝛽∗) , (12)

where 𝜎 > 1 controls the relative weight of the two terms.
Equation (12) can be written as

𝐹 (𝛽
∗
) = 𝜎 (𝐹 (𝛽

∗
) − 𝛽
∗
𝐹
󸀠
(𝛽
∗
)) , (13)

which is a fixed point iteration. 𝛽𝑘+1 is calculated by the
formula

𝐹 (𝛽
𝑘+1
) = 𝜎 (𝐹 (𝛽

𝑘
) − 𝛽
𝑘
𝐹
󸀠
(𝛽
𝑘
))

= 𝜎 (𝑚 (𝛽
𝑘
) − 𝛽
𝑘
𝑚
󸀠
(𝛽
𝑘
)) .

(14)

Although the balancing principle behaves well in the
inverse problemmodel, there is no direct way introducing the
method to the dictionary based algorithm.The regularization
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term has a minimum value greater than zero, which leads to
the derivation as follows:

for 𝑅 (𝜇) = ∑

𝑠

󵄩󵄩󵄩󵄩E𝑠𝜇−D𝛼𝑠
󵄩󵄩󵄩󵄩
2
2 ≥ 𝛿 > 0
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=
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]
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𝑠

𝑡 + 𝜆

when 𝜆 󳨀→ ∞, 𝑏 ≥ 𝜆𝛿 󳨀→ ∞.

(15)

Therefore, the strategy that determining the regulariza-
tion parameter adaptively accords to the last iterative result
is not reasonable. We should look for a selecting strategy
which can determine the proper value of the regularization
parameter by making an analysis of the projection data.

3.3. Weight Modification of the Objective Function. In order
to find out an applicable selectingmodel of the regularization
parameter, we reconsider theminimizing problem (5) and the

updating formula (6). According to the former work, the data
fidelity term is replaced with a separable surrogate [15]
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𝑡
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Bymaking use of the surrogate, (5) becomes a separable form
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𝑡
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From the above, the image updating formula is just the same
as (6); the quadratic term coefficient 𝑝

𝑗
only depends on the

system matrix A and the statistical weight 𝜔. We make a
weight modification on the regularization term

𝑅̃ (𝜇) =

𝑛

∑

𝑗=1
𝑟
𝑗
𝑞
𝑗
(𝜇
𝑗
−𝑑
𝑡

𝑗
)
2
+𝐶2 =

1
2

𝑛

∑

𝑗=1
𝑝
𝑗
(𝜇
𝑗
−𝑑
𝑡

𝑗
)
2

+𝐶2

s.t. 𝑟
𝑗
=
1
2
𝑝
𝑗

𝑞
𝑗

.

(21)

By eliminating the constant term, the image reconstruction
process is equivalent to solving the following optimization
problem:

𝜇 = argmin
𝜇
𝑄(𝜇;𝜇

𝑡
) + 𝜆𝑅̃ (𝜇)

= argmin
𝜇

1
2

𝑁
2

∑

𝑗=1
𝑝
𝑗
(𝜇
𝑗
− 𝑐
𝑡

𝑗
)
2
+
1
2
𝜆

𝑛

∑

𝑗=1
𝑝
𝑗
(𝜇
𝑗
−𝑑
𝑡

𝑗
)
2
,

(22)

which can be solved iteratively by

𝜇
𝑡+1
𝑗

= [

𝑐
𝑡

𝑗
+ 𝜆𝑑
𝑡

𝑗

1 + 𝜆
]

+

. (23)

As shown in (23), 𝜆 determines the relative impact on
the updating image 𝜇 by the data fidelity term and the
regularization term, respectively.

3.4. Evaluation Model of Regularization Parameter. Before
developing the evaluationmodel, some discussions about the
reconstruction result are displayed firstly. Once a value of 𝜆
is selected randomly, by solving (22) iteratively, it infers that
the relative error of the data fidelity term is as

𝛿 =
∑
𝐼

𝑖=1 (𝜔𝑖/2) ([A𝜇]𝑖 − 𝑙𝑖)
2

∑
𝐼

𝑖=1 (𝜔𝑖/2) 𝑙2𝑖
. (24)

The relative error depends on the phantom image, the noise
level, the regularization parameter, and so on.When it comes
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Determination of 𝜆
Initialize 𝜇0,D0

,𝛼
0
𝑠
, and 𝑡 = 0.

While the stopping criterion is not satisfied, do
(1) Implement the OSC algorithm for acceleration;
(2) Extract patches from the intermediate image 𝜇𝑡;
(3) Update the dictionary D𝑡+1 by K-SVD algorithm;
(4) Update the sparse coding 𝛼𝑡+1

𝑠
by OMP algorithm;

(5) Update the image 𝜇𝑡+1 by (25) with 𝜆 → ∞, 𝑡 = 𝑡 + 1;
Output the final image 𝜇∗ = 𝜇𝑡 and relative error 𝛿

𝜆→∞
calculated by (26).

When the iteration is stopped, determine 𝜆 by (27).
Image Reconstruction
Initialize 𝜇0,D0

,𝛼
0
𝑠
, and 𝑡 = 0, 𝜆 is determined in former step.

While the stopping criterion is not satisfied, do
(1) Implement the OSC algorithm for acceleration;
(2) Extract patches from the intermediate image 𝜇𝑡;
(3) Update the dictionary D𝑡+1 by K-SVD algorithm;
(4) Update the sparse coding 𝛼𝑡+1

𝑠
by OMP algorithm;

(5) Update the image 𝜇𝑡+1 by (23), 𝑡 = 𝑡 + 1;
Output the final reconstruction.

Algorithm 1: Workflow of the developed algorithm.

to the situation that the regularization parameter is infinite as
𝜆 → ∞, (23) and (24) will be like the following form:

𝜇
𝑡+1
𝑗

= [𝑑
𝑡

𝑗
]
+
, (25)

𝛿
𝜆→∞

=
∑
𝐼

𝑖=1 (𝜔𝑖/2) ([A𝜇
∗

𝜆→∞
]
𝑖
− 𝑙
𝑖
)
2

∑
𝐼

𝑖=1 (𝜔𝑖/2) 𝑙2𝑖

s.t. 𝜆 󳨀→ ∞.

(26)

It is naturally derived that the relative error 𝛿
𝜆→∞

increases
with the increment of the noise level in projection domain.
In addition, it has been mentioned above (in Section 3.1) that
𝜆 should be increased with the noise increment. Therefore,
the proper 𝜆 has a monotonous relation with the parameter
𝛿
𝜆→∞

. Since 𝛿
𝜆→∞

can be easily determined by operating
the reconstruction algorithm based on dictionary learning
once with 𝜆 → ∞, the proper value of 𝜆 can be calculated if
a reasonable function as 𝜆∗ = 𝑓(𝛿

𝜆→∞
) can be found.

With the help of a series of tests, the relationship between
𝜆
∗ and 𝛿

𝜆→∞
is fitted by a piecewise quadratic function as

follows:

𝜆
∗
= 1.74485𝛿2

𝐺
+ 0.58883𝛿

𝐺
− 6.88253

if 𝛿
𝐺
> 1.96

𝜆
∗
= − 0.21545𝛿2

𝐺
+ 1.08602𝛿

𝐺
− 0.32634

if 𝛿
𝐺
≤ 1.96

with 𝛿
𝐺
= 106𝛿

𝜆→∞
.

(27)

Finally, taking ADSIR as an example, the workflow of the
developed algorithm is exhibited in Algorithm 1. In addition,
the ordered subsets convex (OSC) algorithm [19] is utilized
as an acceleration of the convergence.

4. Experimental Results and Discussion

To make the evaluation of the regularization parameter
possible, the developed algorithm improves ADSIR with a
modifiedweight of the regularization termwhile the weight is
adaptive to the data fidelity term. So the proposed algorithm
is named adaptive weight regularized ADSIR (AWR-ADSIR).
In this section, a series of reconstruction experiments are
exhibited to validate that the regularization selecting prin-
ciple in AWR-ADSIR is practical. The simulation numerical
phantoms are Shepp-Logan phantom, human head slice
image, and human abdomen slice image. The Shepp-Logan
phantom is a numeric phantom with pixels intensities rang-
ing from 0 to 1. The sample images of human head slice
and human abdomen slice are the FBP reconstruction results
based on full-sampling scanning data, which are obtained
from our collaborator. All of these phantom images are of
256 × 256 pixels presented in Figure 1. The scanning data are
simulated as an undersampling situation with different noise
levels. Firstly, different regularization parameters are selected
to demonstrate that the one chosen by the algorithm leads
to the best reconstruction result. Secondly, by comparing
the quality of images reconstructed by diverse algorithms,
which are SART, GPBB, ADSIR, and AWR-ADSIR, it can be
confirmed that AWR-ADSIR is of remarkable performance
among these algorithms. Finally, the selecting principle is
used in the GDSIR model, proving that it also works. All the
algorithms above are coded in MATLAB and run on a dual-
core PC with 3.10GHz Intel Core i5-2400 and 4GB RAM.

4.1. Comparison of Different Regularization Parameters. In
the following experiments, all the parameters except the
regularization parameter 𝜆 keep invariant for the same
phantom with the same projection noise level. Three values
of 𝜆 are selected, of which one is calculated by the proposed
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Figure 1: From left to right are Shepp-Logan phantom, human head slice image, and human abdomen slice image. The whole windows are
[0, 1], [−1000, 1436]HU, and [−1000, 837]HU while the display windows are [0.15, 0.45], [400, 1000]HU, and [−160, 400]HU, respectively.

algorithm, another one is multiplied by 0.1, and the third one
is multiplied by 10. The distance from the X-ray source to
the center point of the phantom is twice the length of the
image edge. The iteration of the algorithm is stopped when
the relative error err𝛿 = |𝛿𝑡 − 𝛿𝑡−1|/𝛿𝑡 is less than a stopping
value (𝛿 is calculated by (24)).

To compare the difference between different selections
of the regularization parameter, the human abdomen slice
image is tested as an example. The projection data are
simulated by 180 views of 2∘ step length over a 360∘ range, and
512 detector elements are distributed in fan-beam geometry
covering the phantom. The noise levels added to the pro-
jection data are 0.0% and 0.1% Gaussian random noise. The
results are displayed in Figures 2 and 3. For the reason that
biomedical images are often observed by a proper window to
find more details, the images are displayed with a window
[−160, 400]HU. The difference between the reconstructed
image and the phantom image is displayed by a window
[−90, 90]HU.

There are two criterions to evaluate the reconstructed
image. One is the normalized mean absolute deviation
(NMAD), defined as

NMAD (%) =
∑
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
𝜇
𝑖𝑗
− 𝜇

truth
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

∑
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
𝜇
truth
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

× 100. (28)

The other one is the signal-to-noise ratio (SNR), defined
as

SNR = 10 lg(
∑
𝑖,𝑗
(𝜇

truth
𝑖𝑗

)
2

∑
𝑖,𝑗
(𝜇
𝑖𝑗
− 𝜇

truth
𝑖𝑗

)
2) . (29)

The values of the two criterions are presented in Table 1.
Comparing the results with the same noise level of the 𝜆
situation and the 10𝜆 situation, the NMAD of the 𝜆 situation
is smaller and the SNR of the 𝜆 situation is larger mostly,
which proves that the image reconstructed by choosing

Table 1: Quantitative evaluation of the results with different regu-
larization parameters.

Noise
level 𝛿

𝐺
(106𝛿

𝜆→∞
) 𝜆 NMAD (%) SNR (dB)

0.0% 1.7094 0.9005
𝜆 1.5819 35.5246

0.1𝜆 1.2406 37.6730
10𝜆 2.0147 32.9517

0.1% 2.5269 5.7462
𝜆 2.0371 33.1220

0.1𝜆 1.8742 34.5110
10𝜆 2.1561 32.4527

the regularization parameter as 𝜆 is more close to the
sample image. When it comes to the 0.1𝜆 situation, although
the values of the two criterions are a little better, there are
some artifacts appearing in the reconstructed image, leading
to a decline of the image quality. In the middle column of
Figures 2 and 3, some horizontal line artifacts appear in the
images (regions D, E, and F in Figure 2 and the ellipse regions
in Figure 3). It seems that there are more horizontal artifacts
in the 0.0% noise level image. The probable reason is the
noise added to the projection data since the noise covers the
inconspicuous artifact in the 0.1% noise level image. So what
is the reason for the fact that the NMAD and SNR of the
0.1𝜆 situation are better? One reasonable explanation might
be the smoothing effect of the dictionary learning algorithm.
When the iterative image is updated by (6) or (23), the sparse
constraint added by dictionary learning method smoothes
not only the noise but also the margin details. This effect
becomes more significant when the regularization parameter
is becoming larger. Therefore, the difference between the
reconstructed image and the sample image in themargin area
becomesmore obvious, which is displayed in the left and right
columns of Figure 3. By discovering this effect making the
criterion worse, future work should be devoted to improving
the reconstruction algorithm based on dictionary learning in
order to smooth the noise and preserve the margin details
meanwhile.
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Figure 2: The results of human abdomen slice simulation study. From top to bottom, the noise levels are 0.0% and 0.1% in turn. From left to
right, the regularization parameters are 𝜆∗, 0.1𝜆∗, and 10𝜆∗. The display window is [−160, 400]HU.
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𝜆
∗

0.1𝜆
∗

10𝜆
∗

Artifact

Figure 3: The difference between the reconstructed image and the original image (OI) of the human abdomen slice image. From top to
bottom, the noise levels are 0.0% and 0.1% in turn. From left to right, the regularization parameters are 𝜆∗, 0.1𝜆∗, and 10𝜆∗. The display
window is [−90, 90]HU.
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0.0

0.1

0.2

SART GPBB ADSIR AWR-ADSIR

Figure 4: Reconstructed images from low-dose projection data of the Shepp-Logan phantom. From top to bottom, the noise levels are 0.0%,
0.1%, and 0.2% in turn. From left to right, the reconstruction algorithms are SART, GPBB, ADSIR, and AWR-ADSIR, respectively.The display
window is [0.15, 0.45].

4.2. Comparison of Different Reconstruction Algorithms. To
present the advantage of AWR-ADSIR, the images recon-
structed by AWR-ADSIR and some other algorithms (SART,
GPBB, and ADSIR) are compared with the same projection
data, initial conditions, and stopping criterions. The testing
examples are the Shepp-Logan phantom and the human
head slice image. The Shepp-Logan phantom is simulated
by 120 views of 3∘ step length over a 360∘ range, and 512
detector elements are distributed in fan-beam geometry with
three different noise levels while the head slice sample is
simulated by 180 views of 2∘ step length over a 360∘ range.
The reconstructed results are displayed in the four figures
(Figure 4 to Figure 7).

With the comparative results calculated by (28) and (29)
presented inTables 2 and 3, the quality of all the reconstructed
images is decreased with the noise level increasing. Among
these four algorithms, SART generates the worst results.
GPBB behaves well when the noise level is very low but when

Table 2: Comparing criterions of the results reconstructed by
different algorithms (Shepp-Logan).

Algorithm Criterion Noise level
0.0% 0.1% 0.2%

SART NMAD (%) 2.1510 2.9273 4.1032
SNR (dB) 33.5448 31.5220 28.7997

GPBB NMAD (%) 1.3472 1.7826 3.0473
SNR (dB) 36.5443 34.6140 30.5004

ADSIR NMAD (%) 0.8110 0.9553 1.1823
SNR (dB) 35.7740 34.8516 33.3413

AWR-ADSIR NMAD (%) 0.8223 1.0639 1.1549
SNR (dB) 35.5354 34.5480 33.7801

the noise level is beyond 0.1%, the quality of reconstructed
image degenerates quickly. The regularization parameter in
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Figure 5:The difference between the reconstructed image and the original image (OI) of the Shepp-Logan phantom. From top to bottom, the
noise levels are 0.0%, 0.1%, and 0.2% in turn. From left to right, the reconstruction algorithms are SART, GPBB, ADSIR, and AWR-ADSIR,
respectively. The display window is [−0.05, 0.05].

Table 3: Comparing criterions of the results reconstructed by
different algorithms (head).

Algorithm Criterion Noise level
0.0% 0.1% 0.2%

SART NMAD (%) 1.0904 2.2017 4.0009
SNR (dB) 36.8554 31.6575 26.4913

GPBB NMAD (%) 0.4837 1.1631 2.7798
SNR (dB) 45.0405 36.7565 29.4104

ADSIR NMAD (%) 0.5981 0.9370 1.1693
SNR (dB) 39.0515 34.9548 32.8972

AWR-ADSIR NMAD (%) 0.6765 0.9438 1.1572
SNR (dB) 37.7225 34.9687 32.9703

ADSIR is empirically selected according to [12]. The fact that
the image quality and comparing criterions of ADSIR and
AWR-ADSIR are mostly the same proves that the parameter

selecting model in AWR-ADSIR is practical and efficient. In
addition, the marginal details appearing in Figures 5 and 7 of
algorithms ADSIR and AWR-ADSIR indicate the smoothing
effect on the margins again. Since the high-contrast edge is
smoothed by the algorithm, the structural boundaries appear
in the difference image in Figure 7. Obviously, when the
empirical regularization parameter is unknown, the ADSIR
algorithm costs a large amount of time to determine the
proper value by repeatedly operating the iterative process
(usually more than ten times) while the AWR-ADSIR algo-
rithm only operates the iterative process twice as Algorithm 1
shows. The model indeed reduces the time consumption to
determine the value of the regularization parameter.

4.3. Adaptive Weight Regularized GDSIR. The last experi-
ment is applying the parameter selecting strategy into the
GDSIRmodel.The dictionary displayed in Figure 8 is learned
from the overlapping patches of the original image in Figure 1.
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0.2

SART GPBB ADSIR AWR-ADSIR

Figure 6: The results of human head slice simulation study. From top to bottom, the noise levels are 0.0%, 0.1%, and 0.2% in turn. From left
to right, the reconstruction algorithms are SART, GPBB, ADSIR, and AWR-ADSIR, respectively. The display window is [400, 1000]HU.

The reconstruction process of AWR-GDSIR is almost the
same as AWR-ADSIR except that the dictionary has been
constructed in advance and dose not change during the
reconstruction process.The result shown in Figure 8 indicates
that the proposed model is also suitable for the general
dictionary condition.

5. Conclusion

In most optimization problems, the determination of the
regularization parameter is still a problem. In this paper,
aiming to determine the regularization parameter of the
algorithm based on dictionary learning, one model function,
whose independent variable 𝛿

𝜆→∞
can be calculated by

the known projection data, is proposed depending on some
modification on the objective function. When compared
to some other algorithms, the images reconstructed by

AWR-ADSIR and ADSIR are of similar quality, better than
the one reconstructed by SART, and the proposed algorithm
is much more robust to noise than GPBB. This indicates that
the modification of the objective function does not degrade
the performance of ADSIR. What is more, the parameter
selection model is demonstrated to be rational by the fact
that the image quality of the 𝜆 situation is better than the
ones of 0.1𝜆 and 10𝜆 situations. However, when some other
parameters (like the scale of the dictionary, the scale of the
patch, and so on) change, the model function might result
in some difference. However, it still works to look for the
function relationship between these two parameters since the
monotonous relation between 𝛿

𝜆→∞
and 𝜆 remains.

By validating the proposed selecting principle, the
smoothing effect on image margins is discovered. Our
future work will focus on improving the dictionary learning
method, with the expectation to maintain the smoothing
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Figure 7: The difference between the reconstructed image and the original image (OI) of the human head slice image. From top to bottom,
the noise levels are 0.0%, 0.1%, and 0.2% in turn. From left to right, the reconstruction algorithms are SART, GPBB, ADSIR, and AWR-ADSIR,
respectively. The display window is [−100, 100]HU.

Figure 8: The image reconstructed by AWR-GDSIR and the global dictionary. The dictionary is displayed in window [−1, 1], which is
constructed training based on the patches extracted from original image. The image is reconstructed by 0.0% noise level projection data
displayed in window [400, 1000]HU.
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effect on noise regions and preserve marginal information
better.
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